1
|
Saarenheimo J, Willför H, Wahid N, Jekunen A, Andersén H. Impact of Upfront DPYD Genotyping on Fluoropyrimidine Adjuvant Therapy in Colorectal Cancer: A Real-World Data. Clin Colorectal Cancer 2025; 24:264-271. [PMID: 40000255 DOI: 10.1016/j.clcc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The application of fluoropyrimidine-based chemotherapy in colorectal cancer treatment is known to pose significant toxicity risks, which can be mitigated by tailoring treatment according to DPYD gene variants. This study evaluates the impact of DPYD genotype-guided dosing on treatment-related toxicities and patient outcomes. METHODS A retrospective analysis was conducted on CRC patients treated with fluoropyrimidines in adjuvant setting at The Wellbeing Services County of Ostrobothnia. Patients were divided into two cohorts based on the implementation of routine DPYD genotyping: pregenotyping (2016-2018) (n = 80) and postgenotyping (2020-2022) (n = 69). The incidence of side effects, treatment discontinuation, hospitalization, and 90-day mortality were compared between groups. RESULTS The study revealed a reduction in 90-day mortality rates among patients who underwent DPYD genotyping before treatment. Patients with pathogenic DPYD variants received ≥50% reduced doses initially, leading to no severe toxicities (grade ≥3). Class 3 variants showed similar side effect profiles and hospitalization rates as untested patients but had a lower rate of treatment discontinuation. CONCLUSIONS Upfront DPYD genotyping appears to improve patient safety in CRC patients treated with adjuvant fluoropyrimidines, leading to personalized dosing that reduces severe toxicities and early mortality. These findings underscore the importance of integrating pharmacogenetic testing in clinical oncology to optimize treatment regimens and enhance patient care.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Fimlab Laboratoriot Oy, Patologia, Vaasa, Finland.
| | - Hugo Willför
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Umeå University, Umeå, Sweden
| | - Nesna Wahid
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland
| | - Antti Jekunen
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - Heidi Andersén
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
2
|
Berner AM, Murugaesu N. The Evolving Role of Genomics in Colorectal Cancer. Clin Oncol (R Coll Radiol) 2025; 37:103661. [PMID: 39536702 DOI: 10.1016/j.clon.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Approximately 75% of colorectal cancers (CRCs) harbour an identifiable driver mutation, 5% of which are heritable. These drivers have recognised implications for prognosis and therapy selection. In addition, potential germline mutations require investigations to inform testing of relatives, as well as surveillance for other malignancies. With increasing numbers of targeted drugs being approved, judicious testing is required to ensure sufficient tumour sample is available for testing and at the right point in the cancer pathway. Liquid biopsy with circulating tumour DNA (ctDNA) in the blood presents an exciting adjunct to tumour tissue testing for molecular drivers, as well as escalation and de-escalation of therapy. Here, we review the most frequent molecular alterations in CRC, how genomic testing should be integrated into the treatment pathway for CRC, and sources of further education.
Collapse
Affiliation(s)
- A M Berner
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6AU, UK
| | - N Murugaesu
- Guy's & St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK; Genomics England, 1 Canada Square, London E14 5AB, UK.
| |
Collapse
|
3
|
Ambrodji A, Sadlon A, Amstutz U, Hoch D, Berger MD, Bastian S, Offer SM, Largiadèr CR. Approach for Phased Sequence-Based Genotyping of the Critical Pharmacogene Dihydropyrimidine Dehydrogenase ( DPYD). Int J Mol Sci 2024; 25:7599. [PMID: 39062841 PMCID: PMC11277299 DOI: 10.3390/ijms25147599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Pre-treatment genotyping of four well-characterized toxicity risk-variants in the dihydropyrimidine dehydrogenase gene (DPYD) has been widely implemented in Europe to prevent serious adverse effects in cancer patients treated with fluoropyrimidines. Current genotyping practices are largely limited to selected commonly studied variants and are unable to determine phasing when more than one variant allele is detected. Recent evidence indicates that common DPYD variants modulate the functional impact of deleterious variants in a phase-dependent manner, where a cis- or a trans-configuration translates into different toxicity risks and dosing recommendations. DPYD is a large gene with 23 exons spanning nearly a mega-base of DNA, making it a challenging candidate for full-gene sequencing in the diagnostic setting. Herein, we present a time- and cost-efficient long-read sequencing approach for capturing the complete coding region of DPYD. We demonstrate that this method can reliably produce phased genotypes, overcoming a major limitation with current methods. This method was validated using 21 subjects, including two cancer patients, each of whom carried multiple DPYD variants. Genotype assignments showed complete concordance with conventional approaches. Furthermore, we demonstrate that the method is robust to technical challenges inherent in long-range sequencing of PCR products, including reference alignment bias and PCR chimerism.
Collapse
Affiliation(s)
- Alisa Ambrodji
- Department of Clinical Chemistry, Inselspital, University Hospital of Bern, University of Bern, INO-F, 3010 Bern, Switzerland; (A.A.); (A.S.); (U.A.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Angélique Sadlon
- Department of Clinical Chemistry, Inselspital, University Hospital of Bern, University of Bern, INO-F, 3010 Bern, Switzerland; (A.A.); (A.S.); (U.A.)
| | - Ursula Amstutz
- Department of Clinical Chemistry, Inselspital, University Hospital of Bern, University of Bern, INO-F, 3010 Bern, Switzerland; (A.A.); (A.S.); (U.A.)
| | - Dennis Hoch
- Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland; (D.H.); (M.D.B.)
| | - Martin D. Berger
- Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland; (D.H.); (M.D.B.)
| | - Sara Bastian
- Department of Medical Oncology, Cantonal Hospital Graubünden, 7000 Chur, Switzerland;
| | - Steven M. Offer
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Carlo R. Largiadèr
- Department of Clinical Chemistry, Inselspital, University Hospital of Bern, University of Bern, INO-F, 3010 Bern, Switzerland; (A.A.); (A.S.); (U.A.)
| |
Collapse
|
4
|
Larrue R, Fellah S, Hennart B, Sabaouni N, Boukrout N, Van der Hauwaert C, Delage C, Cheok M, Perrais M, Cauffiez C, Allorge D, Pottier N. Integrating rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-induced toxicity. THE PHARMACOGENOMICS JOURNAL 2024; 24:1. [PMID: 38216550 PMCID: PMC10786722 DOI: 10.1038/s41397-023-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France.
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Benjamin Hennart
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Naoual Sabaouni
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Clément Delage
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Meyling Cheok
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Delphine Allorge
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| |
Collapse
|
5
|
Turner AJ, Haidar CE, Yang W, Boone EC, Offer SM, Empey PE, Haddad A, Tahir S, Scharer G, Broeckel U, Gaedigk A. Updated DPYD HapB3 haplotype structure and implications for pharmacogenomic testing. Clin Transl Sci 2024; 17:e13699. [PMID: 38129972 PMCID: PMC10777430 DOI: 10.1111/cts.13699] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The DPYD gene encodes dihydropyrimidine dehydrogenase, the rate-limiting enzyme for the metabolism of fluoropyrimidines 5-fluorouracil and capecitabine. Genetic variants in DPYD have been associated with altered enzyme activity, therefore accurate detection and interpretation is critical to predict metabolizer status for individualized fluoropyrimidine therapy. The most commonly observed deleterious variation is the causal variant linked to the previously described HapB3 haplotype, c.1129-5923C>G (rs75017182) in intron 10, which introduces a cryptic splice site. A benign synonymous variant in exon 11, c.1236G>A (rs56038477) is also linked to HapB3 and is commonly used for testing. Previously, these single-nucleotide polymorphisms (SNPs) have been reported to be in perfect linkage disequilibrium (LD); therefore, c.1236G>A is often utilized as a proxy for the function-altering intronic variant. Clinical genotyping of DPYD identified a patient who had c.1236G>A, but not c.1129-5923C>G, suggesting that these two SNPs may not be in perfect LD, as previously assumed. Additional individuals with c.1236G>A, but not c.1129-5923C>G, were identified in the Children's Mercy Data Warehouse and the All of Us Research Program version 7 cohort substantiating incomplete SNP linkage. Consequently, testing only c.1236G>A can generate false-positive results in some cases and lead to suboptimal dosing that may negatively impact patient therapy and prospect of survival. Our data show that DPYD genotyping should include the functional variant c.1129-5923C>G, and not the c.1236G>A proxy, to accurately predict DPD activity.
Collapse
Affiliation(s)
| | - Cyrine E. Haidar
- Department of Pharmacy and Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Erin C. Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic InnovationChildren's Mercy Research Institute (CMRI)Kansas CityMissouriUSA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Philip E. Empey
- Department of Pharmacy and TherapeuticsUniversity of Pittsburgh School of PharmacyPittsburghPennsylvaniaUSA
| | - Andrew Haddad
- Department of Pharmaceutical SciencesUniversity of Pittsburgh School of PharmacyPittsburghPennsylvaniaUSA
| | - Saba Tahir
- Medical College of Wisconsin, School of PharmacyMilwaukeeWisconsinUSA
| | | | | | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic InnovationChildren's Mercy Research Institute (CMRI)Kansas CityMissouriUSA
- School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| |
Collapse
|
6
|
Knikman JE, Wilting TA, Lopez-Yurda M, Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Nieboer P, Droogendijk HJ, Creemers GJ, Mandigers CMPW, Imholz ALT, Mathijssen RHJ, Portielje JEA, Valkenburg-van Iersel L, Vulink A, van der Poel MHW, Baars A, Swen JJ, Gelderblom H, Schellens JHM, Beijnen JH, Guchelaar HJ, Cats A. Survival of Patients With Cancer With DPYD Variant Alleles and Dose-Individualized Fluoropyrimidine Therapy-A Matched-Pair Analysis. J Clin Oncol 2023; 41:5411-5421. [PMID: 37639651 DOI: 10.1200/jco.22.02780] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE DPYD-guided fluoropyrimidine dosing improves patient safety in carriers of DPYD variant alleles. However, the impact on treatment outcome in these patients is largely unknown. Therefore, progression-free survival (PFS) and overall survival (OS) were compared between DPYD variant carriers treated with a reduced dose and DPYD wild-type controls receiving a full fluoropyrimidine dose in a retrospective matched-pair survival analysis. METHODS Data from a prospective multicenter study (ClinicalTrials.gov identifier: NCT02324452) in which DPYD variant carriers received a 25% (c.1236G>A and c.2846A>T) or 50% (DPYD*2A and c.1679T>G) reduced dose and data from DPYD variant carriers treated with a similarly reduced dose of fluoropyrimidines identified during routine clinical care were obtained. Each DPYD variant carrier was matched to three DPYD wild-type controls treated with a standard dose. Survival analyses were performed using Kaplan-Meier estimates and Cox regression. RESULTS In total, 156 DPYD variant carriers and 775 DPYD wild-type controls were available for analysis. Sixty-one c.1236G>A, 25 DPYD*2A, 13 c.2846A>T, and-when pooled-93 DPYD variant carriers could each be matched to three unique DPYD wild-type controls. For pooled DPYD variant carriers, PFS (hazard ratio [HR], 1.23; 95% CI, 1.00 to 1.51; P = .053) and OS (HR, 0.95; 95% CI, 0.75 to 1.51; P = .698) were not negatively affected by DPYD-guided dose individualization. In the subgroup analyses, a shorter PFS (HR, 1.43; 95% CI, 1.10 to 1.86; P = .007) was found in c.1236G>A variant carriers, whereas no differences were found for DPYD*2A and c.2846A>T carriers. CONCLUSION In this exploratory analysis, DPYD-guided fluoropyrimidine dosing does not negatively affect PFS and OS in pooled DPYD variant carriers. Close monitoring with early dose modifications based on toxicity is recommended, especially for c.1236G>A carriers receiving a reduced starting dose.
Collapse
Affiliation(s)
- Jonathan E Knikman
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tycho A Wilting
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda M Henricks
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Carin A T C Lunenburg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Didier Meulendijks
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Late Development Oncology, AstraZeneca, Cambridge, UK
| | - Peter Nieboer
- Department of Internal Medicine, Wilhelmina Hospital Assen, Assen, the Netherlands
| | - Helga J Droogendijk
- Department of Internal Medicine, Bravis Hospital, Roosendaal, the Netherlands
| | - Geert-Jan Creemers
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | | | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johanneke E A Portielje
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | | | - Annelie Vulink
- Department of Medical Oncology, Reinier de Graaf Gasthuis, Delft, the Netherlands
| | | | - Arnold Baars
- Department of Internal Medicine, Hospital Gelderse Vallei, Ede, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Yang Y, Hui Y, Guo Z, Song X, Zhu H, Pan C, Lan X. Investigation of the association between goat DNMT3B gene polymorphism and growth traits. Anim Biotechnol 2023; 34:2492-2498. [PMID: 35895437 DOI: 10.1080/10495398.2022.2101115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The DNA methyltransferase 3 beta (DNMT3B) gene is key for DNA methylation and has been well recognized in regulating growth and development. A previous observation indicated that an 11-bp indel of DNMT3B affected the reproductive traits in goats, yet the effect of this polymorphism on body measurement traits in goats has not been reported. This study aims to investigate the associations between DNMT3B gene polymorphism and goat growth traits. We investigated this 11-bp indel in 2184 goats and three genotypes have been found in Shaanbei white cashmere goat (SBWC): insertion/insertion (II), deletion/deletion (DD) and insertion/deletion (ID). Only ID and DD genotypes were detected in Nubian goats and Guizhou heima goat (GZHM). The allele frequencies analyzed revealed that the 'D' allele frequencies were higher in all three goat breeds. Further association analysis demonstrated that this indel is markedly associated with the cannon circumference (CC) and cannon circumference index (CCI) of SBWC and cannon circumference (CC) of Nubian goats (p < .05). The CC and CCI are essential indicators to measure the growth status of goats. In summary, our study sheds some light on the potential impact of the 11-bp indel polymorphism of the DNMT3B gene on improving the growth traits in goats.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiqing Hui
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhengang Guo
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie, Guizhou, China
| | - Xiaoyue Song
- College of Life Sciences, Yulin University, Yulin, China
| | - Haijing Zhu
- College of Life Sciences, Yulin University, Yulin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Bignucolo A, De Mattia E, Roncato R, Peruzzi E, Scarabel L, D’Andrea M, Sartor F, Toffoli G, Cecchin E. Ten-year experience with pharmacogenetic testing for DPYD in a national cancer center in Italy: Lessons learned on the path to implementation. Front Pharmacol 2023; 14:1199462. [PMID: 37256229 PMCID: PMC10225682 DOI: 10.3389/fphar.2023.1199462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Background: Awareness about the importance of implementing DPYD pharmacogenetics in clinical practice to prevent severe side effects related to the use of fluoropyrimidines has been raised over the years. Since 2012 at the National Cancer Institute, CRO-Aviano (Italy), a diagnostic DPYD genotyping service was set up. Purpose: This study aims to describe the evolution of DPYD diagnostic activity at our center over the last 10 years as a case example of a successful introduction of pharmacogenetic testing in clinical practice. Methods: Data related to the diagnostic activity of in-and out-patients referred to our service between January 2012 and December 2022 were retrieved from the hospital database. Results: DPYD diagnostic activity at our center has greatly evolved over the years, shifting gradually from a post-toxicity to a pre-treatment approach. Development of pharmacogenetic guidelines by national and international consortia, genotyping, and IT technology evolution have impacted DPYD testing uptake in the clinics. Our participation in a large prospective implementation study (Ubiquitous Pharmacogenomics) increased health practitioners' and patients' awareness of pharmacogenetic matters and provided additional standardized infrastructures for genotyping and reporting. Nationwide test reimbursement together with recommendations by regulatory agencies in Europe and Italy in 2020 definitely changed the clinical practice guidelines of fluoropyrimidines prescription. A dramatic increase in the number of pre-treatment DPYD genotyping and in the coverage of new fluoropyrimidine prescriptions was noticed by the last year of observation (2022). Conclusion: The long path to a successful DPYD testing implementation in the clinical practice of a National Cancer Center in Italy demonstrated that the development of pharmacogenetic guidelines and genotyping infrastructure standardization as well as capillary training and education activity for all the potential stakeholders are fundamental. However, only national health politics of test reimbursement and clear recommendations by drug regulatory agencies will definitely move the field forward.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G. Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | |
Collapse
|
9
|
Etienne-Grimaldi MC, Pallet N, Boige V, Ciccolini J, Chouchana L, Barin-Le Guellec C, Zaanan A, Narjoz C, Taieb J, Thomas F, Loriot MA. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2023; 181:3-17. [PMID: 36621118 DOI: 10.1016/j.ejca.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.
Collapse
Affiliation(s)
| | - Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Valérie Boige
- Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Joseph Ciccolini
- SMARTc, CRCM INSERM U1068, Université Aix-Marseille, Marseille, France; Laboratory of Pharmacokinetics and Toxicology, Hôpital Universitaire La Timone, F-13385 Marseille, France; COMPO, CRCM INSERM U1068-Inria, Université Aix-Marseille, Marseille, France
| | - Laurent Chouchana
- Regional Center of Pharmacovigilance, Department of Pharmacology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France; French Pharmacovigilance Network, France
| | - Chantal Barin-Le Guellec
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-uinversitaire de Tours, Tours, France; INSERM U1248, IPPRITT, University of Limoges, Limoges, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Julien Taieb
- SIRIC CARPEM, Université de Paris; Fédération Francophone de Cancérologie Digestive (FFCD), Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabienne Thomas
- Laboratory of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole and CRCT, INSERM UMR1037, Université Paul Sabatier, Toulouse, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | | |
Collapse
|
10
|
Lešnjaković L, Ganoci L, Bilić I, Šimičević L, Mucalo I, Pleština S, Božina N. DPYD genotyping and predicting fluoropyrimidine toxicity: where do we stand? Pharmacogenomics 2023; 24:93-106. [PMID: 36636997 DOI: 10.2217/pgs-2022-0135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluoropyrimidines (FPs) are antineoplastic drugs widely used in the treatment of various solid tumors. Nearly 30% of patients treated with FP chemotherapy experience severe FP-related toxicity, and in some cases, toxicity can be fatal. Patients with reduced activity of DPD, the main enzyme responsible for the breakdown of FP, are at an increased risk of experiencing severe FP-related toxicity. While European regulatory agencies and clinical societies recommend pre-treatment DPD deficiency screening for patients starting treatment with FPs, this is not the case with American ones. Pharmacogenomic guidelines issued by several pharmacogenetic organizations worldwide recommend testing four DPD gene (DPYD) risk variants, but these can predict only a proportion of toxicity cases. New evidence on additional common DPYD polymorphisms, as well as identification and functional characterization of rare DPYD variants, could partially address the missing heritability of DPD deficiency and FP-related toxicity.
Collapse
Affiliation(s)
- Lucija Lešnjaković
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivan Bilić
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Iva Mucalo
- Centre for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Stjepko Pleština
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Predicting Dihydropyrimidine Dehydrogenase Deficiency and Related 5-Fluorouracil Toxicity: Opportunities and Challenges of DPYD Exon Sequencing and the Role of Phenotyping Assays. Int J Mol Sci 2022; 23:ijms232213923. [PMID: 36430399 PMCID: PMC9694733 DOI: 10.3390/ijms232213923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data.
Collapse
|
12
|
Khalij Y, Belaid I, Chouchane S, Amor D, Omezzine A, Ben Rejeb N, Ben Ahmed S, Bouslama A. DPYD and TYMS polymorphisms as predictors of 5 fluorouracil toxicity in colorectal cancer patients. J Chemother 2022:1-10. [PMID: 36137946 DOI: 10.1080/1120009x.2022.2125736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death. 5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for CRC. Our objective was to determine the genotypic frequency of polymorphisms affecting dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthetase (TYMS) genes and to correlate the genetic profile with the toxicity due to 5-FU, also considering nongenetic factors. This is a prospective study that involved 66 patients. We extracted DNA by salting out methods. We carried out the genotyping of the different polymorphisms by simple PCR for the TYMS 5'UTR and by PCR-RFLP for DPYD: 1905 + 1 G > A, 85 T > C, 496 A > G, 1679 T > G, c.483 + 18G > A and the TYMS: 5'UTR VNTR, 5'UTR G > C and 3'UTR. The study of the association of DPYD and TYMS polymorphisms with the various signs of toxicity under 5-FU revealed that the polymorphisms 496 A > G were significantly associated with hepatotoxicity: OR = 3.85 (p = 0.04). In addition, 85 T > C was significantly associated with mucositis and neurotoxicity: OR = 4.35 (p = 0.03), OR = 3.79 (p = 0.02). For TYMS, the only significant association we observed for 5'UTR with vomiting: OR = 3.34 (p = 0.04). The incidence of adverse reactions related to 5-FU appears to be influenced in patients with CRC by the identified DPYD and TYMS gene polymorphisms in the Tunisian population.
Collapse
Affiliation(s)
- Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Imtinen Belaid
- Carcinology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Sana Chouchane
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Dorra Amor
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Nabila Ben Rejeb
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Slim Ben Ahmed
- Carcinology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
13
|
Diasio RB, Offer SM. Testing for Dihydropyrimidine Dehydrogenase Deficiency to Individualize 5-Fluorouracil Therapy. Cancers (Basel) 2022; 14:3207. [PMID: 35804978 PMCID: PMC9264755 DOI: 10.3390/cancers14133207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Severe adverse events (toxicity) related to the use of the commonly used chemotherapeutic drug 5-fluorouracil (5-FU) affect one in three patients and are the primary reason cited for premature discontinuation of therapy. Deficiency of the 5-FU catabolic enzyme dihydropyrimidine dehydrogenase (DPD, encoded by DPYD) has been recognized for the past 3 decades as a pharmacogenetic syndrome associated with high risk of 5-FU toxicity. An appreciable fraction of patients with DPD deficiency that receive 5-FU-based chemotherapy die as a result of toxicity. In this manuscript, we review recent progress in identifying actionable markers of DPD deficiency and the current status of integrating those markers into the clinical decision-making process. The limitations of currently available tests, as well as the regulatory status of pre-therapeutic DPYD testing, are also discussed.
Collapse
Affiliation(s)
- Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA;
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55902, USA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA;
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
14
|
Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141:1113-1136. [PMID: 34652573 PMCID: PMC9177500 DOI: 10.1007/s00439-021-02385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Both safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
15
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
16
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Zhang L, Zheng Z, Ma W, Zhang S, Xue F, Wang H, He Y, Ye F, Zhou S, Wen Y, Li X, Huang W, Huang M, Li J, Wang Z. The Effects of Gene Variations of GABRA2, GABRB1, GABRG2, GAD1 and SLC1A3 on Patients with Propofol During Anesthesia Induction. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1185-1192. [PMID: 34557020 PMCID: PMC8455292 DOI: 10.2147/pgpm.s326885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022]
Abstract
Purpose Propofol is one of the most commonly used intravenous sedatives in general anesthesia, while the individual variations of propofol are apparent. The objective of this study was to investigate the influence of genetic variations in GABAergic neurons and glutamatergic neurons on time to loss of consciousness (LOC) and the incidence of hypotension during anesthesia induction. Patients and Methods A total of 140 Chinese patients undergoing thyroid surgery or breast surgery were recruited. Genotyping of candidate genes was carried out using the Agena Bioscience MassARRAY system. Anesthesia induction was initiated with a propofol target plasma concentration (Cp) of 4.0 μg mL−1. The LOC latency, systolic blood pressure, diastolic blood pressure, mean arterial pressure were documented. Results We found that GABRA2 rs35496835, GABRB1 rs1372496, GABRG2 rs11135176, GABRG2 rs209358, GAD1 rs3791878, SLC1A3 rs1049522 and gender were significant determinants of the patient’s LOC latency following propofol administration. GABRA2 rs11503014 was highly correlated with blood pressure reduction during anesthesia induction. Multiple linear regression analysis revealed that GABRB1 rs1372496, GABRG2 rs11135176, and SLC1A3 rs1049522 accounted for 35.3% variations in LOC latency following propofol administration. Conclusion Our findings indicate that genetic variants of GABRA2, GABRB1, GABRG2, GAD1 and SLC1A3 may have influence on propofol susceptibility, which would be an important guidance towards building clinical models that can precisely predict the efficacy of propofol with various populations before surgery.
Collapse
Affiliation(s)
- Lingyi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhuoling Zheng
- Department of Pharmacy, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wudi Ma
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shuyu Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Haini Wang
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yongqi He
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shouning Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yongzi Wen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyan Li
- Department of Pharmacy, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Cura Y, Pérez Ramírez C, Sánchez Martín A, Martínez Martínez F, Calleja Hernández MÁ, Ramírez Tortosa MDC, Jiménez Morales A. Genetic polymorphisms on the effectiveness or safety of breast cancer treatment: Clinical relevance and future perspectives. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108391. [PMID: 34893156 DOI: 10.1016/j.mrrev.2021.108391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer (BC) is the most frequent neoplasm and one of the main causes of death in women. The pharmacological treatment of BC consists of hormonal therapy, chemotherapeutic agents and targeted therapy. The response to BC therapy is highly variable in clinical practice. This variability can be explained by the presence of genetic polymorphisms in genes involved in the pharmacokinetics, pharmacodynamics or immune response of patients. The abundant evidence of associations between low-activity alleles CYP2D6*3, *4, *5, *6, *10 and *41 and poor results with tamoxifen therapy, and between DPYD gene polymorphisms rs3918290, rs55886062, rs67376798 and rs75017182 and increased risk of toxicity to fluoropyrimidine therapy, justify the existence of clinical pharmacogenetic guidelines. The NQO1 rs1800566 polymorphism is related to poorer results in BC therapy with chemotherapy agents. The polymorphism rs1695 of the GSTP1 gene has been associated with the effectiveness and toxicity of fluorouracil, cyclophosphamide and epirubicin therapy. Finally, the HLA-DQA1*02:01 allele is significantly associated with the occurrence of liver toxicity events in patients receiving lapatinib. There is moderate evidence to support the aforementioned associations and, therefore, a high probability of these being considered as future predictive genetic biomarkers of response. However, further studies are required to reinforce or clarify their clinical relevance.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Cristina Pérez Ramírez
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen Macarena, Seville, Spain.
| | - Almudena Sánchez Martín
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Fernando Martínez Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | - Alberto Jiménez Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
19
|
Saarenheimo J, Wahid N, Eigeliene N, Ravi R, Salomons GS, Ojeda MF, Vijzelaar R, Jekunen A, van Kuilenburg ABP. Preemptive screening of DPYD as part of clinical practice: high prevalence of a novel exon 4 deletion in the Finnish population. Cancer Chemother Pharmacol 2021; 87:657-663. [PMID: 33544210 DOI: 10.1007/s00280-021-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
Capecitabine is a fluoropyrimidine that is widely used as a cancer drug for the treatment of patients with a variety of cancers. Unfortunately, early onset, severe or life-threatening toxicity is observed in 19-32% of patients treated with capecitabine and 5FU. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme in the degradation of 5FU and a DPD deficiency has been shown to be a major determinant of severe fluoropyrimidine-associated toxicity. DPD is encoded by the DPYD gene and some of the identified variants have been described to cause DPD deficiency. Preemptive screening for DPYD gene alterations enables the identification of DPD-deficient patients before administering fluoropyrimidines. In this article, we describe the application of upfront DPD screening in Finnish patients, as a part of daily clinical practice, which was based on a comprehensive DPYD gene analysis, measurements of enzyme activity and plasma uracil concentrations. Almost 8% of the patients (13 of 167 patients) presented with pathogenic DPYD variants causing DPD deficiency. The DPD deficiency in these patients was further confirmed via analysis of the DPD activity and plasma uracil levels. Interestingly, we identified a novel intragenic deletion in DPYD which includes exon 4 in four patients (31% of patients carrying a pathogenic variant). The high prevalence of the exon 4 deletion among Finnish patients highlights the importance of full-scale DPYD gene analysis. Based on the literature and our own experience, genotype preemptive screening should always be used to detect DPD-deficient patients before fluoropyrimidine therapy.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Hietalahdenkatu 2-4, 65130, Vaasa, Finland.
| | - Nesna Wahid
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
| | - Natalja Eigeliene
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | | | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry& Laboratory Genetic Metabolic Diseases & Department of Paediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matilde Fernandez Ojeda
- Metabolic Unit, Department of Clinical Chemistry& Laboratory Genetic Metabolic Diseases & Department of Paediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
20
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
21
|
Martens FK, Huntjens DW, Rigter T, Bartels M, Bet PM, Cornel MC. DPD Testing Before Treatment With Fluoropyrimidines in the Amsterdam UMCs: An Evaluation of Current Pharmacogenetic Practice. Front Pharmacol 2020; 10:1609. [PMID: 32047438 PMCID: PMC6997151 DOI: 10.3389/fphar.2019.01609] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction The fluoropyrimidines (FP) (5-Fluorouracil, capecitabine, and tegafur) are commonly used anti-cancer drugs, but lead to moderate to severe toxicity in about 10-40% of patients. DPD testing [either the enzyme activity of dihydropyrimidine dehydrogenase (DPD) or the DPYD genotype] identifies patients at higher risk for toxicity who may be treated more safely with a lower drug dose. The Netherland's National guideline for colon carcinoma was updated in 2017 to recommend DPYD genotyping before treatment with FP. Pretreatment DPYD genotyping identifies approximately 50% of the patients that will develop severe FP toxicity. The aim of the study was to assess the uptake of DPD testing in the Amsterdam University Medical Centers over time and to evaluate stakeholder experiences to indicate barriers and facilitators of implementation in routine clinical care. Materials and Methods We used a mixed-method approach involving electronic patient records of 753 unique patients and pharmacy information systems analyses and fifteen semi-structured interviews with oncologists, pharmacists, and patients. The constellation perspective was used to identify barriers and facilitators at the level of practice, culture and structure. The proportion of FP users who were DPD tested pretreatment showed an increase from 1% (1/86) in Q2-2017 up to 87% (73/84) in Q4-2018. Unlike a landmark paper published in 2015, the National guideline for colorectal carcinoma followed by meetings to achieve local consensus led to this steep increase in the proportion of patients tested. Results Facilitating factors for stakeholders to implement testing included the existence of clear protocols, (anecdotal) evidence of the utility, being aware that peers are adhering to standard practice and clear and simple procedures for ordering and reporting. Main barriers included the lack of clear divisions of responsibilities, the lack of consensus on a test approach, long turn-around times and non-user-friendly IT-infrastructures. More professional education on the utility and limitations of pharmacogenetic testing was desired by most stakeholders. Conclusion While the evidence for DPD testing was sufficient, only after the update of a National guideline and local consensus meetings the proportion of FP users that were DPD tested pretreatment rose to 87%. The implementation of personalized medicine requires stakeholders involved to attune practice, culture and structure.
Collapse
Affiliation(s)
- Forike K Martens
- Department of Clinical Genetics, Section Community Genetics, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Daan W Huntjens
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tessel Rigter
- Department of Clinical Genetics, Section Community Genetics, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Meike Bartels
- Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pierre M Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martina C Cornel
- Department of Clinical Genetics, Section Community Genetics, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Merloni F, Ranallo N, Scortichini L, Giampieri R, Berardi R. Tailored therapy in patients treated with fluoropyrimidines: focus on the role of dihydropyrimidine dehydrogenase. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:787-802. [PMID: 35582578 PMCID: PMC8992529 DOI: 10.20517/cdr.2018.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/01/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Abstract
Fluoropyrimidines are widely used in the treatment of solid tumors, mainly gastrointestinal, head and neck and breast cancer. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme for catabolism of 5-FU and it is encoded by DPYD gene. To date, many known polymorphisms cause DPD deficiency and subsequent increase of 5-FU toxicity. In addition, reduced inactivation of 5-FU could lead to increased 5-FU intracellular concentration and augmented efficacy of this drugs. Therefore DPD expression, particularly intratumoral, has been investigated as predictive and prognostic marker in 5-FU treated patients. There also seems to be a tendency to support the correlation between DPD expression and response/survival in patients treated with fluoropyrimidine even if definitive conclusions cannot be drawn considering that some studies are conflicting. Therefore, the debate on intratumoral DPD expression as a potential predictor and prognostic marker in patients treated with fluoropyrimidines is still open. Four DPD-polymorphisms are the most relevant for their frequency in population and clinical relevance. Many studies demonstrate that treating a carrier of one of these polymorphisms with a full dose of fluoropyrimidine can expose patient to a severe, even life-threatening, toxicity. Severe toxicity is reduced if this kind of patients received a dose-adjustment after being genotyped. CPIC (Clinical Pharmacogenetics Implementation Consortium) is an International Consortium creating guidelines for facilitating use of pharmacogenetic tests for patient care and helps clinicians ensuring a safer drug delivery to the patient. Using predictive DPD deficiency tests in patients receiving 5FU-based chemotherapy, in particular for colorectal cancer, has proven to be a cost-effective strategy.
Collapse
Affiliation(s)
- Filippo Merloni
- Scuola di Specializzazione in Oncologia, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Nicoletta Ranallo
- Scuola di Specializzazione in Oncologia, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Laura Scortichini
- Scuola di Specializzazione in Oncologia, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Riccardo Giampieri
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona 60126, Italy
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona 60126, Italy
| |
Collapse
|
23
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Coenen MJH, Paulussen ADC, Breuer M, Lindhout M, Tserpelis DCJ, Steyls A, Bierau J, van den Bosch BJC. Evolution of Dihydropyrimidine Dehydrogenase Diagnostic Testing in a Single Center during an 8-Year Period of Time. Curr Ther Res Clin Exp 2018; 90:1-7. [PMID: 30510603 PMCID: PMC6258870 DOI: 10.1016/j.curtheres.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/17/2023] Open
Abstract
Objective Fluoropyrimidine treatment can be optimized based on dihydropyrimidine dehydrogenase (DPD) activity. DPD dysfunction leads to increased exposure to active metabolites, which can result in severe or even fatal toxicity. Methods We provide an overview of 8 years of DPD diagnostic testing (n = 1194). Results Within the study period, our diagnostic test evolved from a single-enzyme measurement using first a radiochemical and then a nonradiochemical assay by ultra HPLC-MS in peripheral blood mononuclear cells with uracil, to a combined enzymatic and genetic test (ie, polymerase chain reaction) followed by Sanger sequence analysis of 4 variants of the DPYD gene (ie, DPYD*2A, DPYD*13, c.2846A>T, and 1129-5923C>G; allele frequencies 0.58%, 0.03%, 0.29%, and 1.35%, respectively). Patients who have 1 of the 4 variants tested (n = 814) have lower enzyme activity than the overall patient group. The majority of patients with the DPYD*2A variant (83%) consistently showed decreased enzyme activity. Only 24 (25.3%) of 95 patients (tested for 4 variants) with low enzyme activity carried a variant. Complete DPYD sequencing in a subgroup with low enzyme activity and without DPYD*2A variant (n = 47) revealed 10 genetic variants, of which 4 have not been described previously. We did not observe a strong link between DPYD genotype and enzyme activity. Conclusions Previous studies have shown that DPD status should be determined before treatment with fluoropyrimidine agents to prevent unnecessary side effects with possible fatal consequences. Our study in combination with literature shows that there is a discrepancy between the DPD enzyme activity and the presence of clinically relevant single nucleotide polymorphisms. At this moment, a combination of a genetic and enzyme test is preferable for diagnostic testing. (Curr Ther Res Clin Exp. 2018; 79:XXX–XXX).
Collapse
Affiliation(s)
- Marieke J H Coenen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Aimée D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marc Breuer
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martijn Lindhout
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Demis C J Tserpelis
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anja Steyls
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bianca J C van den Bosch
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
25
|
Tong CC, Lam CW, Lam KO, Lee VHF, Luk MY. A Novel DPYD Variant Associated With Severe Toxicity of Fluoropyrimidines: Role of Pre-emptive DPYD Genotype Screening. Front Oncol 2018; 8:279. [PMID: 30087856 PMCID: PMC6066555 DOI: 10.3389/fonc.2018.00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022] Open
Abstract
Background: The fluoropyrimidine anticancer drug, especially 5- fluorouracil (5-FU) and its prodrug capecitabine are still being the backbone of chemotherapeutic regimens for colorectal cancer. Dihydropyrimidine dehydrogenase (DPD) is the crucial enzyme in the catabolism of 5-FU. Over the past 30 years, there is substantial clinical evidence showing that DPD deficiency is strongly associated with severe and fatal fluoropyrimidine-induced toxicity. Patients and methods: A 49-year-old lady with resected stage III carcinoma of sigmoid colon was scheduled to have a course of 5-FU based adjuvant chemotherapy. She developed unexpected acute severe (grade 4) toxicity after the first cycle of chemotherapy. Genomic DNA was isolated from 3 ml peripheral blood cells for full sequencing of DPYD (the gene encoding DPD). Results: Exome sequencing confirmed that she is heterozygous for NM_000110.3: c.321+2T>C of the DPYD gene. To the best of our knowledge, this variant is a novel pathogenic splicing variant of the DPYD gene resulting in a non-functional allele. As she has a heterozygous genotype and considered having decreased DPD activity, we followed the international recommendation and restart chemotherapy with at least 50% reduction for 5-FU dose. We then titrated the 5-FU dose, and she tolerated the subsequent cycles of chemotherapy and completed the whole course of adjuvant chemotherapy. Conclusions: With a pre-emptive test on DPD deficiency before the administration of the fluoropyrimidine drugs, the aforementioned patient's life-threatening event could be avoided. This clinical utility has been confirmed by two recent large-scale studies and called for a drug label update.
Collapse
Affiliation(s)
- Chi C Tong
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Ching W Lam
- Department of Pathology, University of Hong Kong, Pokfulam, Hong Kong
| | - Ka O Lam
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong
| | - Victor H F Lee
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong
| | - Mai-Yee Luk
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, Hong Kong
| |
Collapse
|
26
|
Genome sequencing reveals a novel genetic mechanism underlying dihydropyrimidine dehydrogenase deficiency: A novel missense variant c.1700G>A and a large intragenic inversion in DPYD
spanning intron 8 to intron 12. Hum Mutat 2018; 39:947-953. [DOI: 10.1002/humu.23538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
|
27
|
Shrestha S, Zhang C, Jerde CR, Nie Q, Li H, Offer SM, Diasio RB. Gene-Specific Variant Classifier (DPYD-Varifier) to Identify Deleterious Alleles of Dihydropyrimidine Dehydrogenase. Clin Pharmacol Ther 2018; 104:709-718. [PMID: 29327356 DOI: 10.1002/cpt.1020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Abstract
Deleterious variants in dihydropyrimidine dehydrogenase (DPD, DPYD gene) can be highly predictive of clinical toxicity to the widely prescribed chemotherapeutic 5-fluorouracil (5-FU). However, there are very limited data pertaining to the functional consequences of the >450 reported no-synonymous DPYD variants. We developed a DPYD-specific variant classifier (DPYD-Varifier) using machine learning and in vitro functional data for 156 missense DPYD variants. The developed model showed 85% accuracy and outperformed other in silico prediction tools. An examination of feature importance within the model provided additional insight into functional aspects of the DPD protein relevant to 5-FU toxicity. In the absence of clinical data for unstudied variants, prediction tools like DPYD-Varifier have great potential to individualize medicine and improve the clinical decision-making process.
Collapse
Affiliation(s)
- Shikshya Shrestha
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Calvin R Jerde
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Qian Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Mayo Clinic Center for Individualized Medicine, Minnesota, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Henricks LM, Opdam FL, Beijnen JH, Cats A, Schellens JHM. DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: call for a drug label update. Ann Oncol 2017; 28:2915-2922. [PMID: 29045513 DOI: 10.1093/annonc/mdx411] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The fluoropyrimidine anticancer drugs, especially 5-fluorouracil (5-FU) and capecitabine, are frequently prescribed for several types of cancer, including breast, colorectal, head and neck and gastric cancer. In the current drug labels of 5-FU and capecitabine in the European Union and the United States, no adaptive dosing strategies are incorporated for polymorphic metabolism of 5-FU. Although treatment with fluoropyrimidines is generally well tolerated, a major clinical limitation is that a proportion of the treated population experiences severe, sometimes life-threatening, fluoropyrimidine-related toxicity. This toxicity is strongly affected by interindividual variability in activity of dihydropyrimidine dehydrogenase (DPD), the main metabolic enzyme for inactivation of fluoropyrimidines, with an estimated 3%-8% of the population being partially DPD deficient. A reduced functional or abrogated DPD enzyme is often caused by genetic polymorphisms in DPYD, the gene encoding for DPD, and heterozygous carriers of such DPYD polymorphisms have a partial DPD deficiency. When these partially DPD deficient patients are treated with a full dose of fluoropyrimidines, they are generally exposed to toxic levels of 5-FU and its metabolites, and the risk of developing severe treatment-related toxicity is therefore significantly increased.Currently, functional and clinical validity is well established for four DPYD variants (DPYD*2A, c.2846A>T, c.1679T>G and c.1236G>A), as those variants have retrospectively and in a large population study prospectively been shown to be associated with increased risk of fluoropyrimidine-associated toxicity. Patient safety of fluoropyrimidine treatment can be significantly improved by pre-emptive screening for DPYD genotype variants and dose reductions in heterozygous DPYD variant allele carriers, thereby normalizing 5-FU exposure. Based on the critical appraisal of currently available data, adjusting the labels of capecitabine and 5-FU by including recommendations on pre-emptive screening for DPYD variants and DPYD genotype-guided dose adjustments should be the new standard of care.
Collapse
Affiliation(s)
- L M Henricks
- Division of Pharmacology.,Department of Clinical Pharmacology, Division of Medical Oncology
| | - F L Opdam
- Division of Pharmacology.,Department of Clinical Pharmacology, Division of Medical Oncology
| | - J H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
| | - A Cats
- Department of Gastroenterology and Hepatology, Division of Medical Oncology
| | - J H M Schellens
- Division of Pharmacology.,Department of Clinical Pharmacology, Division of Medical Oncology.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
| |
Collapse
|
29
|
Henricks LM, Kienhuis E, de Man FM, van der Veldt AA, Hamberg P, van Kuilenburg AB, van Schaik RH, Lunenburg CA, Guchelaar HJ, Schellens JH, Mathijssen RH. Treatment Algorithm for Homozygous or Compound Heterozygous DPYD Variant Allele Carriers With Low-Dose Capecitabine. JCO Precis Oncol 2017; 1:1-10. [DOI: 10.1200/po.17.00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Linda M. Henricks
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Emma Kienhuis
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Femke M. de Man
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Astrid A.M. van der Veldt
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Paul Hamberg
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - André B.P. van Kuilenburg
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Ron H.N. van Schaik
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Carin A.T.C. Lunenburg
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Guchelaar
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Jan H.M. Schellens
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Ron H.J. Mathijssen
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
30
|
Abstract
RATIONALE Capecitabine (CAP) is a chemotherapeutic agent used to treat breast and gastrointestinal cancers. The most common adverse reactions of CAP primarily included gastrointestinal and dermatological effects. Whereas, the CAP-induced fatty liver had never been reported. PATIENT CONCERNS In this study, a-69-year old female presented a history of hypertension with regulated blood pressure, whereas diabetes mellitus, hyperlipidemia, and hepatitis were excluded. No alcohol,tobacco, or other drugs use was declared. DIAGNOSES She was diagnosed as infiltrating ductal carcinoma of left breast with the hepatic and pulmonary metastasis. The dihydropyrimidine dehydrogenase (DPD) deficiency is not involved. INTERVENTIONS She received treatment with CAP that was administered orally at a dosage of 1500mg twice daily intermittently (2weeks on/1 week off). The treatment was well-tolerated any typical adverse reactions such as diarrhea, nausea, and hand-foot syndrome (HFS) were noted. The parameters of the functional liver, the total cholesterol, and triglyceride were in normal ranges before and after therapy. After 3 cycles of the treatment, computed tomography (CT) scan revealed signs of fatty liver. After a 10-cycle course, CAP was substituted with tamoxifen because of the further aggravation of fatty liver. OUTCOMES Several months after withdrawal, the follow-up CT scans demonstrated significant improvement of fatty liver. LESSONS We presented a case of breast cancer with severe fatty liver as a consequence of the administration of CAP that was not involved in DPD deficiency or CAP-associated hypertriglyceridemia; these potential adverse effects of therapy with CAP should be intensely investigated.
Collapse
|
31
|
Nie Q, Shrestha S, Tapper EE, Trogstad-Isaacson CS, Bouchonville KJ, Lee AM, Wu R, Jerde CR, Wang Z, Kubica PA, Offer SM, Diasio RB. Quantitative Contribution of rs75017182 to Dihydropyrimidine Dehydrogenase mRNA Splicing and Enzyme Activity. Clin Pharmacol Ther 2017; 102:662-670. [PMID: 28295243 PMCID: PMC6138243 DOI: 10.1002/cpt.685] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD; DPYD gene) variants have emerged as reliable predictors of adverse toxicity to the chemotherapy agent 5-fluorouracil (5-FU). The intronic DPYD variant rs75017182 has been recently suggested to promote alternative splicing of DPYD. However, both the extent of alternative splicing and the true contribution of rs75017182 to DPD function remain unclear. In the present study we quantified alternative splicing and DPD enzyme activity in rs75017182 carriers utilizing healthy volunteer specimens from the Mayo Clinic Biobank. Although the alternatively spliced transcript was uniquely detected in rs75017182 carriers, canonically spliced DPYD levels were only reduced by 30% (P = 2.8 × 10-6 ) relative to controls. Similarly, DPD enzyme function was reduced by 35% (P = 0.025). Carriers of the well-studied toxicity-associated variant rs67376798 displayed similar reductions in DPD activity (31% reduction). The modest effects on splicing and function suggest that rs75017182 may have clinical utility as a predictor of 5-FU toxicity similar to rs67376798.
Collapse
Affiliation(s)
- Qian Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Shikshya Shrestha
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Erin E. Tapper
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Kelly J. Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Adam M. Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rentian Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Calvin R. Jerde
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Cancer Center, Rochester, MN 55905 USA
| | - Zhiquan Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Phillip A. Kubica
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic College of Medicine, Mayo Clinic, 200 1 St. SW, Rochester, MN 55905 USA
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Cancer Center, Rochester, MN 55905 USA
- Mayo Clinic College of Medicine, Mayo Clinic, 200 1 St. SW, Rochester, MN 55905 USA
| |
Collapse
|
32
|
Falvella FS, Luoni M, Cheli S, Fava S, Cergnul M. Fluoropyrimidine-Associated Toxicity in Two Gastrointestinal Cancer Patients: Potential Role of Common DPYD Polymorphisms. Chemotherapy 2017; 62:323-326. [PMID: 28614820 DOI: 10.1159/000477333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022]
Abstract
While the majority of patients can be treated safely with fluoropyrimidine, some experience severe fluoropyrimidine-associated toxicity. The frequency and severity of these adverse events vary from patient to patient and are partially explained by genetic polymorphism into the dihydropyrimidine dehydrogenase (DPYD) gene. Carriers of the rare allelic variants DPYD*2A, DPYD*13, and DPYD D949V are more likely to experience severe adverse reactions during fluoropyrimidine-based therapy. However, these 3 genetic variants explain only a small percentage of the overall drug toxicity, and more frequent ones such as homozygous or compound heterozygous DPYD V732I can play a key role.
Collapse
Affiliation(s)
- Felicia Stefania Falvella
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | | | | | | |
Collapse
|
33
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
34
|
Etienne-Grimaldi MC, Boyer JC, Beroud C, Mbatchi L, van Kuilenburg A, Bobin-Dubigeon C, Thomas F, Chatelut E, Merlin JL, Pinguet F, Ferrand C, Meijer J, Evrard A, Llorca L, Romieu G, Follana P, Bachelot T, Chaigneau L, Pivot X, Dieras V, Largillier R, Mousseau M, Goncalves A, Roché H, Bonneterre J, Servent V, Dohollou N, Château Y, Chamorey E, Desvignes JP, Salgado D, Ferrero JM, Milano G. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One 2017; 12:e0175998. [PMID: 28481884 PMCID: PMC5421769 DOI: 10.1371/journal.pone.0175998] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Deficiency in dihydropyrimidine dehydrogenase (DPD) enzyme is the main cause of severe and lethal fluoropyrimidine-related toxicity. Various approaches have been developed for DPD-deficiency screening, including DPYD genotyping and phenotyping. The goal of this prospective observational study was to perform exhaustive exome DPYD sequencing and to examine relationships between DPYD variants and toxicity in advanced breast cancer patients receiving capecitabine. Methods Two-hundred forty-three patients were analysed (88.5% capecitabine monotherapy). Grade 3 and grade 4 capecitabine-related digestive and/or neurologic and/or hemato-toxicities were observed in 10.3% and 2.1% of patients, respectively. DPYD exome, along with flanking intronic regions 3’UTR and 5’UTR, were sequenced on MiSeq Illumina. DPD phenotype was assessed by pre-treatment plasma uracil (U) and dihydrouracil (UH2) measurement. Results Among the 48 SNPs identified, 19 were located in coding regions, including 3 novel variations, each observed in a single patient (among which, F100L and A26T, both pathogenic in silico). Combined analysis of deleterious variants *2A, I560S (*13) and D949V showed significant association with grade 3–4 toxicity (sensitivity 16.7%, positive predictive value (PPV) 71.4%, relative risk (RR) 6.7, p<0.001) but not with grade 4 toxicity. Considering additional deleterious coding variants D342G, S492L, R592W and F100L increased the sensitivity to 26.7% for grade 3–4 toxicity (PPV 72.7%, RR 7.6, p<0.001), and was significantly associated with grade 4 toxicity (sensitivity 60%, PPV 27.3%, RR 31.4, p = 0.001), suggesting the clinical relevance of extended targeted DPYD genotyping. As compared to extended genotype, combining genotyping (7 variants) and phenotyping (U>16 ng/ml) did not substantially increase the sensitivity, while impairing PPV and RR. Conclusions Exploring an extended set of deleterious DPYD variants improves the performance of DPYD genotyping for predicting both grade 3–4 and grade 4 toxicities (digestive and/or neurologic and/or hematotoxicities) related to capecitabine, as compared to conventional genotyping restricted to consensual variants *2A, *13 and D949V.
Collapse
Affiliation(s)
| | | | - Christophe Beroud
- Aix-Marseille University, INSERM UMR S910, GMGF, Marseille, France
- APHM Hôpital Timone, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Litaty Mbatchi
- Faculté de Pharmacie de Montpellier, Montpellier, France
| | - André van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam,The Netherlands
| | | | - Fabienne Thomas
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Etienne Chatelut
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, UMR CNRS 7039 CRAN, Université de Lorraine, Nancy, France
| | | | | | - Judith Meijer
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam,The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | - Henri Roché
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | | | | | | | | | | | - David Salgado
- Aix-Marseille University, INSERM UMR S910, GMGF, Marseille, France
| | | | | |
Collapse
|
35
|
van Kuilenburg ABP, Meijer J, Maurer D, Dobritzsch D, Meinsma R, Los M, Knegt LC, Zoetekouw L, Jansen RLH, Dezentjé V, van Huis-Tanja LH, van Kampen RJW, Hertz JM, Hennekam RCM. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing. Biochim Biophys Acta Mol Basis Dis 2016; 1863:721-730. [PMID: 28024938 DOI: 10.1016/j.bbadis.2016.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity. All patients possessed a strongly reduced DPD activity, ranging from 9 to 53% of controls. Analysis of the DPD gene (DPYD) showed the presence of 21 variable sites including 4 novel and 4 very rare aberrations: 3 missense mutations, 2 splice-site mutations, 1 intronic mutation, a deletion of 21 nucleotides and a genomic amplification of exons 9-12. Two novel/rare variants (c.2843T>C, c.321+1G>A) were present in multiple, unrelated patients. Functional analysis of recombinantly-expressed DPD mutants carrying the p.I948T and p.G284V mutation showed residual DPD activities of 30% and 0.5%, respectively. Analysis of a DPD homology model indicated that the p.I948T and p.G284V mutations may affect electron transfer and the binding of FAD, respectively. cDNA analysis showed that the c.321+1G>A mutation in DPYD leads to skipping of exon 4 immediately upstream of the mutated splice-donor site in the process of DPD pre-mRNA splicing. A lethal toxicity in two DPD patients suggests that fluoropyrimidines combined with other therapies such as radiotherapy might be particularly toxic for DPD deficient patients. Our study advocates a more comprehensive genotyping approach combined with phenotyping strategies for upfront screening for DPD deficiency to ensure the safe administration of fluoropyrimidines.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, Departments of Clinical Chemistry, Pediatrics and Clinical Genetics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| | - Judith Meijer
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, Departments of Clinical Chemistry, Pediatrics and Clinical Genetics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Dirk Maurer
- Uppsala University, Department of Chemistry, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Doreen Dobritzsch
- Uppsala University, Department of Chemistry, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Rutger Meinsma
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, Departments of Clinical Chemistry, Pediatrics and Clinical Genetics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Maartje Los
- St. Antonius Hospital, Department of Oncology, Nieuwegein, The Netherlands
| | - Lia C Knegt
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, Departments of Clinical Chemistry, Pediatrics and Clinical Genetics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Lida Zoetekouw
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, Departments of Clinical Chemistry, Pediatrics and Clinical Genetics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Rob L H Jansen
- Maastricht University Medical Center, Department of Oncology, Maastricht, The Netherlands
| | - Vincent Dezentjé
- Reinier de Graaf Gasthuis, Department of Clinical Oncology, Delft, The Netherlands
| | | | - Roel J W van Kampen
- Zuyderland Medical Center, Department of Oncology, Sittard-Geleen, The Netherlands
| | - Jens Michael Hertz
- Odense University Hospital, Department of Clinical Genetics, Odense C, Denmark
| | - Raoul C M Hennekam
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, Departments of Clinical Chemistry, Pediatrics and Clinical Genetics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Meulendijks D, Rozeman EA, Cats A, Sikorska K, Joerger M, Deenen MJ, Beijnen JH, Schellens JHM. Pharmacogenetic variants associated with outcome in patients with advanced gastric cancer treated with fluoropyrimidine and platinum-based triplet combinations: a pooled analysis of three prospective studies. THE PHARMACOGENOMICS JOURNAL 2016; 17:441-451. [DOI: 10.1038/tpj.2016.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
|
37
|
Xie DY, Wang SM, Yang JM, Wang LH, Chen HY, Huai C, Shang J, Mao Q, Lei CL, Luo GH, Qian J, Lu DR. IFIT1 polymorphisms predict interferon-α treatment efficiency for hepatitis B virus infection. World J Gastroenterol 2016; 22:9813-9821. [PMID: 27956805 PMCID: PMC5124986 DOI: 10.3748/wjg.v22.i44.9813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) polymorphisms and interferon-α (IFNα) treatment efficiency among Chinese hepatitis B virus (HBV) infection patients.
METHODS Two hundred and twenty five newly diagnosed chronic hepatitis B (CHB) patients were enrolled in the study. All of these patients received IFNα treatment for a course of 48 wk, and were followed up for 24 wk after the treatment was end. Clinical information about virological response, hepatitis B e antigen (HBeAg) seroconversion rate and combined response at the end of the treatment, as well as the sustained response by the time of following up 24 wk after the treatment, was collected. Four tag-single nucleotide polymorphisms (SNPs) of IFIT1 were selected and assessed for their association with these clinical outcomes.
RESULTS At the end of the treatment, HBeAg seroconversion was observed in 27.1% patients. Thirty-six point nine percent patients achieved virological response, and 15.6% patients exhibited combined response. Sustained response was obtained in 26.2% patients. The main HBV genotype of the study was genotype B. Patients who infected with HBV genotype B or C showed better treatment efficiency, no matter which clinical outcome was considered. Among the four SNPs assessed, rs303218 (A > G) was found to be significantly associated with the end point virological response when assuming additive model [OR = 0.64 (95%CI: 0.42-0.96), P = 0.032]. Patients who carried rs303218 GG genotype had a rather higher rate of achieving virological response (response rate: 52%, OR = 0.40, 95%CI: 0.18-0.91; P = 0.028) when compared to those had AA genotype (response rate: 27%). The most significant interaction was observed in patients who had relative lower baseline aspartate transaminase. No association between SNPs and HBeAg seroconversion, combined response or sustained response was observed.
CONCLUSION IFIT1 involves in the regulation of IFNα treatment for CHB and its polymorphism rs303218 can predict the end point virological response. The finding requires further validation.
Collapse
|
38
|
Elraiyah T, Jerde CR, Shrestha S, Wu R, Nie Q, Giama NH, Sarangi V, Roberts LR, Offer SM, Diasio RB. Novel Deleterious Dihydropyrimidine Dehydrogenase Variants May Contribute to 5-Fluorouracil Sensitivity in an East African Population. Clin Pharmacol Ther 2016; 101:382-390. [PMID: 27727460 DOI: 10.1002/cpt.531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 11/08/2022]
Abstract
Clinical studies have identified specific genetic variants in dihydropyrimidine dehydrogenase (DPD; DPYD gene) as predictors of severe adverse toxicity to the commonly used chemotherapeutic 5-fluorouracil (5-FU); however, these studies have focused on European and European-American populations. Our laboratory recently demonstrated that additional variants in non-European haplotypes are predictive of 5-FU toxicity. The objective of this study was to identify potential risk variants in an understudied East African population relevant to our institution's catchment area. The DPYD protein-coding region was sequenced in 588 individuals of Somali or Kenyan ancestry living in central/southeast Minnesota. Twelve novel nonsynonymous variants were identified, seven of which significantly decreased DPD activity in vitro. The commonly reported toxicity-associated variants, *2A, D949V, and I560S, were not detected in any individuals. Overall, this study demonstrates a critical limitation in our knowledge of pharmacogenetic predictors of 5-FU toxicity, which has been based on clinical studies conducted in populations of limited diversity.
Collapse
Affiliation(s)
- T Elraiyah
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - C R Jerde
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| | - S Shrestha
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - R Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Q Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - N H Giama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - V Sarangi
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - L R Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - S M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| | - R B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Association between DPYD c.1129-5923 C>G/hapB3 and severe toxicity to 5-fluorouracil-based chemotherapy in stage III colon cancer patients: NCCTG N0147 (Alliance). Pharmacogenet Genomics 2016; 26:133-7. [PMID: 26658227 DOI: 10.1097/fpc.0000000000000197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Severe (grade≥3) adverse events (AEs) to 5-fluorouracil (5-FU)-based chemotherapy regimens can result in treatment delays or cessation, and, in extreme cases, life-threatening complications. Current genetic biomarkers for 5-FU toxicity prediction, however, account for only a small proportion of toxic cases. In the current study, we assessed DPYD variants suggested to correlate with 5-FU toxicity, a deep intronic variant (c.1129-5923 C>G), and four variants within a haplotype (hapB3) in 1953 stage III colon cancer patients who received adjuvant FOLFOX±cetuximab. Logistic regression was used to assess multivariable associations between DPYD variant status and AEs common to 5-FU (5FU-AEs). In our study cohort, 1228 patients (62.9%) reported any grade≥3 AE (overall AE), with 638 patients (32.7%) reporting any grade≥3 5FU-AE. Only 32 of 78 (41.0%) patients carrying DPYD c.1129-5923 C>G and the completely linked hapB3 variants c.1236 C>G and c.959-51 T>C showed at least one grade≥3 5FU-AE, resulting in no statistically significant association (adjusted odds ratio=1.47, 95% confidence interval=0.90-2.43, P=0.1267). No significant associations were identified between c.1129-5923 C>G/hapB3 and overall grade≥3 AE rate. Our results suggest that c.1129-5923 C>G/hapB3 have limited predictive value for severe toxicity to 5-FU-based combination chemotherapy.
Collapse
|
40
|
Wang S, Song X, Li X, Zhao X, Chen H, Wang J, Wu J, Gao Z, Qian J, Han B, Bai C, Li Q, Lu D. RICTOR polymorphisms affect efficiency of platinum-based chemotherapy in Chinese non-small-cell lung cancer patients. Pharmacogenomics 2016; 17:1637-1647. [PMID: 27676404 DOI: 10.2217/pgs-2016-0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM We investigated the association between RICTOR polymorphisms and clinical outcomes of platinum-based chemotherapy for Chinese non-small-cell lung cancer patients. MATERIALS & METHODS Ten tag SNPs were genotyped in 1004 patients to assess their association with clinical benefit, overall survival, progression-free survival, gastrointestinal toxicity, neutropenia, anemia and thrombocytopenia. RESULTS rs6878291 was significantly associated with clinical benefit (odds ratio: 2.037; p = 0.001) and reduced progression-free survival (hazard ratio: 1.461; p = 0.001). Stratified analysis showed that their most significant interaction was in nonsmokers. No association was observed between SNPs and other clinical outcomes. CONCLUSION The study showed evidences for RICTOR polymorphisms' role in platinum-based chemotherapy efficiency, which could provide new insight to lung cancer management.
Collapse
Affiliation(s)
- Shiming Wang
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao Song
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Crime SceneEvidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Xueying Zhao
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Wu
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Zhiqiang Gao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Patients homozygous for DPYD c.1129-5923C>G/haplotype B3 have partial DPD deficiency and require a dose reduction when treated with fluoropyrimidines. Cancer Chemother Pharmacol 2016; 78:875-80. [DOI: 10.1007/s00280-016-3137-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/12/2016] [Indexed: 12/22/2022]
|
42
|
Meulendijks D, Cats A, Beijnen JH, Schellens JHM. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice? Cancer Treat Rev 2016; 50:23-34. [PMID: 27589829 DOI: 10.1016/j.ctrv.2016.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
Fluoropyrimidines remain the cornerstone of treatment for different types of cancer, and are used by an estimated two million patients annually. The toxicity associated with fluoropyrimidine therapy is substantial, however, and affects around 30% of the patients, with 0.5-1% suffering fatal toxicity. Activity of the main 5-fluorouracil (5-FU) metabolic enzyme, dihydropyrimidine dehydrogenase (DPD), is the key determinant of 5-FU pharmacology, and accounts for around 80% of 5-FU catabolism. There is a consistent relationship between DPD activity and 5-FU exposure on the one hand, and risk of severe and potentially lethal fluoropyrimidine-associated toxicity on the other hand. Therefore, there is a sound rationale for individualizing treatment with fluoropyrimidines based on DPD status in order to improve patient safety. The field of individualized treatment with fluoropyrimidines is now rapidly developing. The main strategies that are available, are based on genotyping of the gene encoding DPD (DPYD) and measuring of pretreatment DPD phenotype. Clinical validity of additional approaches, including genotyping of MIR27A has also recently been demonstrated. Here, we critically review the evidence on clinical validity and utility of strategies available to clinicians to identify patients at risk of developing severe and potentially fatal toxicity as a result of DPD deficiency. We evaluate the advantages and limitations of these methods when used in clinical practice, and discuss for which strategies clinical implementation is currently justified based on the available evidence and, in addition, which additional data will be required before implementing other, as yet less developed strategies.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| | - Annemieke Cats
- Department of Gastroenterology & Hepatology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
43
|
Deenen MJ, Cats A, Severens JL, Beijnen JH, Schellens JHM. Reply to T. Magnes et al. J Clin Oncol 2016; 34:2434-5. [PMID: 27161961 DOI: 10.1200/jco.2016.67.4374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maarten J Deenen
- Netherlands Cancer Institute, Amsterdam; and Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Annemieke Cats
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Jos H Beijnen
- Netherlands Cancer Institute, Amsterdam; and Utrecht University, Utrecht, the Netherlands
| | - Jan H M Schellens
- Netherlands Cancer Institute, Amsterdam; and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
44
|
Lunenburg CATC, van Staveren MC, Gelderblom H, Guchelaar HJ, Swen JJ. Evaluation of clinical implementation of prospective DPYD genotyping in 5-fluorouracil- or capecitabine-treated patients. Pharmacogenomics 2016; 17:721-9. [DOI: 10.2217/pgs-2016-0013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Fluoropyrimidines are commonly used anti-cancer drugs, but lead to severe toxicity in 10–30% of patients. Prospective DPYD screening identifies patients at risk for toxicity and leads to a safer treatment with fluoropyrimidines. This study evaluated the routinely application of prospective DPYD screening at the Leiden University Medical Center. Methods: Prospective DPYD screening as part of routine patient care was evaluated by retrospectively screening databases and patient files to determine genotype, treatment, dose recommendations and dose adjustments. Results: 86.9% of all patients with a first fluoropyrimidine prescription were screened. Fourteen out of 275 patients (5.1%) carried a DPYD variant and received a 25–50% dose reduction recommendation. None of the patients with a DPYD variant treated with a reduced dose developed toxicities. Conclusion: Prospective DPYD screening can be implemented successfully in a real world clinical setting, is well accepted by physicians and results in low toxicity.
Collapse
Affiliation(s)
- Carin ATC Lunenburg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice C van Staveren
- Department of Pharmacy, Treant Healthgroup, The Netherlands
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Meulendijks D, Henricks LM, Amstutz U, Froehlich TK, Largiadèr CR, Beijnen JH, de Boer A, Deenen MJ, Cats A, Schellens JH. Rs895819 inMIR27Aimproves the predictive value ofDPYDvariants to identify patients at risk of severe fluoropyrimidine-associated toxicity. Int J Cancer 2016; 138:2752-61. [DOI: 10.1002/ijc.30014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Division of Medical Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Division of Molecular Pathology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Linda M. Henricks
- Department of Clinical Pharmacology, Division of Medical Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Division of Molecular Pathology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Ursula Amstutz
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern; Bern Switzerland
| | - Tanja K. Froehlich
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern; Bern Switzerland
| | - Carlo R. Largiadèr
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern; Bern Switzerland
| | - Jos H. Beijnen
- Department of Clinical Pharmacology, Division of Medical Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Department of Pharmacy & Pharmacology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | - Anthonius de Boer
- Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | - Maarten J. Deenen
- Department of Clinical Pharmacology, Division of Medical Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Division of Molecular Pathology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Annemieke Cats
- Department of Gastroenterology & Hepatology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Jan H.M. Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Division of Molecular Pathology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| |
Collapse
|
46
|
Kuilenburg ABPV, Meijer J, Tanck MWT, Dobritzsch D, Zoetekouw L, Dekkers LL, Roelofsen J, Meinsma R, Wymenga M, Kulik W, Büchel B, Hennekam RCM, Largiadèr CR. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta Mol Basis Dis 2016; 1862:754-762. [PMID: 26804652 DOI: 10.1016/j.bbadis.2016.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil, thymine and the antineoplastic agent 5-fluorouracil. Genetic variations in the gene encoding DPD (DPYD) have emerged as predictive risk alleles for 5FU-associated toxicity. Here we report an in-depth analysis of genetic variants in DPYD and their consequences for DPD activity and pyrimidine metabolites in 100 Dutch healthy volunteers. 34 SNPs were detected in DPYD and 15 SNPs were associated with altered plasma concentrations of pyrimidine metabolites. DPD activity was significantly associated with the plasma concentrations of uracil, the presence of a specific DPYD mutation (c.1905+1G>A) and the combined presence of three risk variants in DPYD (c.1905+1G>A, c.1129-5923C>G, c.2846A>T), but not with an altered uracil/dihydrouracil (U/UH2) ratio. Various haplotypes were associated with different DPD activities (haplotype D3, a decreased DPD activity; haplotype F2, an increased DPD activity). Functional analysis of eight recombinant mutant DPD enzymes showed a reduced DPD activity, ranging from 35% to 84% of the wild-type enzyme. Analysis of a DPD homology model indicated that the structural effect of the novel p.G401R mutation is most likely minor. The clinical relevance of the p.D949V mutation was demonstrated in a cancer patient heterozygous for the c.2846A>T mutation and a novel nonsense mutation c.1681C>T (p.R561X), experiencing severe grade IV toxicity. Our studies showed that the endogenous levels of uracil and the U/UH2 ratio are poor predictors of an impaired DPD activity. Loading studies with uracil to identify patients with a DPD deficiency warrants further investigation.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands.
| | - Judith Meijer
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Doreen Dobritzsch
- Department of Chemistry, Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden
| | - Lida Zoetekouw
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jeroen Roelofsen
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Rutger Meinsma
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Machteld Wymenga
- Department of Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Wim Kulik
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Büchel
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raoul C M Hennekam
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Del Re M, Quaquarini E, Sottotetti F, Michelucci A, Palumbo R, Simi P, Danesi R, Bernardo A. Uncommon dihydropyrimidine dehydrogenase mutations and toxicity by fluoropyrimidines: a lethal case with a new variant. Pharmacogenomics 2015; 17:5-9. [PMID: 26651493 DOI: 10.2217/pgs.15.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DPD is the rate-limiting enzyme involved in the metabolism of 5-fluorouracil and its prodrugs, capecitabine and tegafur. Many cases of severe toxicities by fluoropyrimidines are reported in the literature, sometimes with lethal outcome, due to a poor or null metabolizer phenotype. The exon 14-skipping mutation IVS14+1G>A and the c.2846A>T are the most common deficient variants. However, many additional variants of the DPYD gene with unclear functional significance have been reported. We describe a patient with metastatic breast cancer who received capecitabine and trastuzumab at standard doses. Six days after beginning capecitabine, the patient developed fever, leucopenia and neutropenia, mucositis, hand-foot syndrome, multiple organ dysfunction and eventually died. Since the toxicity profile was compatible with capecitabine administration, complete exon sequencing of DPYD was carried out and the patient was found to be compound heterozygous for the rare mutation c.257C>T in exon 4, c.496A>G in exon 6, the new variant c.1850C>T in exon 14 and c.2194G>A in exon 18. Given the marginal role of c.496A>G and c.2194G>A in DPD deficiency, the cause of death was suggested to be dependent on the novel c.1850C>T in combination with c.257C>T. The complexity of DPD pharmacogenetics suggests the need to develop cost-effective screening approaches to identify patients at risk of severe toxicities.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, 55, Via Roma, I-56126 Pisa, Italy
| | - Erica Quaquarini
- Departmental Unit of Medical Oncology, IRCCS Fondazione Maugeri, 4, Via Salvatore Maugeri, I-27100 Pavia, Italy
| | - Federico Sottotetti
- Departmental Unit of Medical Oncology, IRCCS Fondazione Maugeri, 4, Via Salvatore Maugeri, I-27100 Pavia, Italy
| | - Angela Michelucci
- Unit of Medical Genetics, Department of Laboratory Medicine, University Hospital, 67, Via Roma, I-56126 Pisa, Italy
| | - Raffaella Palumbo
- Departmental Unit of Medical Oncology, IRCCS Fondazione Maugeri, 4, Via Salvatore Maugeri, I-27100 Pavia, Italy
| | - Paolo Simi
- Unit of Medical Genetics, Department of Laboratory Medicine, University Hospital, 67, Via Roma, I-56126 Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, 55, Via Roma, I-56126 Pisa, Italy
| | - Antonio Bernardo
- Departmental Unit of Medical Oncology, IRCCS Fondazione Maugeri, 4, Via Salvatore Maugeri, I-27100 Pavia, Italy
| |
Collapse
|
48
|
Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, Largiadèr CR, Jennings BA, Marinaki AM, Sanderson JD, Kleibl Z, Kleiblova P, Schwab M, Zanger UM, Palles C, Tomlinson I, Gross E, van Kuilenburg ABP, Punt CJA, Koopman M, Beijnen JH, Cats A, Schellens JHM. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015; 16:1639-50. [PMID: 26603945 DOI: 10.1016/s1470-2045(15)00286-7] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The best-known cause of intolerance to fluoropyrimidines is dihydropyrimidine dehydrogenase (DPD) deficiency, which can result from deleterious polymorphisms in the gene encoding DPD (DPYD), including DPYD*2A and c.2846A>T. Three other variants-DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A-have been associated with DPD deficiency, but no definitive evidence for the clinical validity of these variants is available. The primary objective of this systematic review and meta-analysis was to assess the clinical validity of c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity. METHODS We did a systematic review of the literature published before Dec 17, 2014, to identify cohort studies investigating associations between DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A and severe (grade ≥3) fluoropyrimidine-associated toxicity in patients treated with fluoropyrimidines (fluorouracil, capecitabine, or tegafur-uracil as single agents, in combination with other anticancer drugs, or with radiotherapy). Individual patient data were retrieved and analysed in a multivariable analysis to obtain an adjusted relative risk (RR). Effect estimates were pooled by use of a random-effects meta-analysis. The threshold for significance was set at a p value of less than 0·0167 (Bonferroni correction). FINDINGS 7365 patients from eight studies were included in the meta-analysis. DPYD c.1679T>G was significantly associated with fluoropyrimidine-associated toxicity (adjusted RR 4·40, 95% CI 2·08-9·30, p<0·0001), as was c.1236G>A/HapB3 (1·59, 1·29-1·97, p<0·0001). The association between c.1601G>A and fluoropyrimidine-associated toxicity was not significant (adjusted RR 1·52, 95% CI 0·86-2·70, p=0·15). Analysis of individual types of toxicity showed consistent associations of c.1679T>G and c.1236G>A/HapB3 with gastrointestinal toxicity (adjusted RR 5·72, 95% CI 1·40-23·33, p=0·015; and 2·04, 1·49-2·78, p<0·0001, respectively) and haematological toxicity (adjusted RR 9·76, 95% CI 3·03-31·48, p=0·00014; and 2·07, 1·17-3·68, p=0·013, respectively), but not with hand-foot syndrome. DPYD*2A and c.2846A>T were also significantly associated with severe fluoropyrimidine-associated toxicity (adjusted RR 2·85, 95% CI 1·75-4·62, p<0·0001; and 3·02, 2·22-4·10, p<0·0001, respectively). INTERPRETATION DPYD variants c.1679T>G and c.1236G>A/HapB3 are clinically relevant predictors of fluoropyrimidine-associated toxicity. Upfront screening for these variants, in addition to the established variants DPYD*2A and c.2846A>T, is recommended to improve the safety of patients with cancer treated with fluoropyrimidines. FUNDING None.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands; Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Linda M Henricks
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands; Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Gabe S Sonke
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands; Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tanja K Froehlich
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Carlo R Largiadèr
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | | | | | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Claire Palles
- Molecular and Population Genetics Laboratory and Oxford NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory and Oxford NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eva Gross
- Department of Gynecology and Obstetrics, Technische Universität München, Munich, Germany
| | - André B P van Kuilenburg
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Annemieke Cats
- Department of Gastroenterology and Hepatology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands; Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
49
|
Deenen MJ, Meulendijks D, Cats A, Sechterberger MK, Severens JL, Boot H, Smits PH, Rosing H, Mandigers CMPW, Soesan M, Beijnen JH, Schellens JHM. Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J Clin Oncol 2015; 34:227-34. [PMID: 26573078 DOI: 10.1200/jco.2015.63.1325] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Fluoropyrimidines are frequently prescribed anticancer drugs. A polymorphism in the fluoropyrimidine metabolizing enzyme dihydropyrimidine dehydrogenase (DPD; ie, DPYD*2A) is strongly associated with fluoropyrimidine-induced severe and life-threatening toxicity. This study determined the feasibility, safety, and cost of DPYD*2A genotype-guided dosing. PATIENTS AND METHODS Patients intended to be treated with fluoropyrimidine-based chemotherapy were prospectively genotyped for DPYD*2A before start of therapy. Variant allele carriers received an initial dose reduction of ≥ 50% followed by dose titration based on tolerance. Toxicity was the primary end point and was compared with historical controls (ie, DPYD*2A variant allele carriers receiving standard dose described in literature) and with DPYD*2A wild-type patients treated with the standard dose in this study. Secondary end points included a model-based cost analysis, as well as pharmacokinetic and DPD enzyme activity analyses. RESULTS A total of 2,038 patients were prospectively screened for DPYD*2A, of whom 22 (1.1%) were heterozygous polymorphic. DPYD*2A variant allele carriers were treated with a median dose-intensity of 48% (range, 17% to 91%). The risk of grade ≥ 3 toxicity was thereby significantly reduced from 73% (95% CI, 58% to 85%) in historical controls (n = 48) to 28% (95% CI, 10% to 53%) by genotype-guided dosing (P < .001); drug-induced death was reduced from 10% to 0%. Adequate treatment of genotype-guided dosing was further demonstrated by a similar incidence of grade ≥ 3 toxicity compared with wild-type patients receiving the standard dose (23%; P = .64) and by similar systemic fluorouracil (active drug) exposure. Furthermore, average total treatment cost per patient was lower for screening (€2,772 [$3,767]) than for nonscreening (€2,817 [$3,828]), outweighing screening costs. CONCLUSION DPYD*2A is strongly associated with fluoropyrimidine-induced severe and life-threatening toxicity. DPYD*2A genotype-guided dosing results in adequate systemic drug exposure and significantly improves safety of fluoropyrimidine therapy for the individual patient. On a population level, upfront genotyping seemed cost saving.
Collapse
Affiliation(s)
- Maarten J Deenen
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Didier Meulendijks
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Annemieke Cats
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Marjolein K Sechterberger
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Johan L Severens
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Henk Boot
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Paul H Smits
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Hilde Rosing
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Caroline M P W Mandigers
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Marcel Soesan
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Jos H Beijnen
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Jan H M Schellens
- Maarten J. Deenen, Didier Meulendijks, Annemieke Cats, Marjolein K. Sechterberger, Henk Boot, Hilde Rosing, Jos H. Beijnen, and Jan H.M. Schellens, Netherlands Cancer Institute; Paul H. Smits and Marcel Soesan, Slotervaart Hospital, Amsterdam; Johan L. Severens, Erasmus University Medical Center, Rotterdam; Caroline M.P.W. Mandigers, Canisius Wilhelmina Hospital, Nijmegen; and Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
50
|
Thomas F, Hennebelle I, Delmas C, Lochon I, Dhelens C, Garnier Tixidre C, Bonadona A, Penel N, Goncalves A, Delord JP, Toulas C, Chatelut E. Genotyping of a family with a novel deleteriousDPYDmutation supports the pretherapeutic screening of DPD deficiency with dihydrouracil/uracil ratio. Clin Pharmacol Ther 2015; 99:235-42. [DOI: 10.1002/cpt.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- F Thomas
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - I Hennebelle
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - C Delmas
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - I Lochon
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - C Dhelens
- UJF Grenoble I, University Hospital Albert Michallon, Department of Pharmacy; Grenoble France
| | - C Garnier Tixidre
- Institut Daniel Hollard, Department of Medical Oncology; Grenoble France
| | - A Bonadona
- University Hospital Albert Michallon, Medical Intensive Care Unit, UJF Grenoble I; Grenoble France
| | - N Penel
- Centre Oscar Lambret, Department of Medical Oncology; Lille France
| | - A Goncalves
- Institut Paoli Calmettes, Department of Medical Oncology; Marseille France
| | - JP Delord
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
- Institut Claudius Regaud, IUCT-O, Department of Medical Oncology; Toulouse France
| | - C Toulas
- Institut Claudius Regaud, IUCT-O, Laboratory of Oncogenetics; Toulouse France
| | - E Chatelut
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| |
Collapse
|