1
|
Ralli S, Vira T, Robles-Espinoza CD, Adams DJ, Brooks-Wilson AR. Variant ranking pipeline for complex familial disorders. Sci Rep 2024; 14:13599. [PMID: 38866901 PMCID: PMC11169219 DOI: 10.1038/s41598-024-64169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Identifying genetic susceptibility factors for complex disorders remains a challenging task. To analyze collections of small and large pedigrees where genetic heterogeneity is likely, but biological commonalities are plausible, we have developed a weights-based pipeline to prioritize variants and genes. The Weights-based vAriant Ranking in Pedigrees (WARP) pipeline prioritizes variants using 5 weights: disease incidence rate, number of cases in a family, genome fraction shared amongst cases in a family, allele frequency and variant deleteriousness. Weights, except for the population allele frequency weight, are normalized between 0 and 1. Weights are combined multiplicatively to produce family-specific-variant weights that are then averaged across all families in which the variant is observed to generate a multifamily weight. Sorting multifamily weights in descending order creates a ranked list of variants and genes for further investigation. WARP was validated using familial melanoma sequence data from the European Genome-phenome Archive. The pipeline identified variation in known germline melanoma genes POT1, MITF and BAP1 in 4 out of 13 families (31%). Analysis of the other 9 families identified several interesting genes, some of which might have a role in melanoma. WARP provides an approach to identify disease predisposing genes in studies with small and large pedigrees.
Collapse
Affiliation(s)
- Sneha Ralli
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Tariq Vira
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | | | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
2
|
Wang X, Liu X, Qu M, Li H. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms. Cell Mol Life Sci 2023; 80:67. [PMID: 36814036 PMCID: PMC11072804 DOI: 10.1007/s00018-023-04723-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China.
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430000, China.
| |
Collapse
|
3
|
Al-Mamari W, Idris AB, Al-Thihli K, Abdulrahim R, Jalees S, Al-Jabri M, Gabr A, Al Murshedi F, Al Kindy A, Al-Hadabi I, Bruwer Z, Islam MM, Alsayegh A. Applying whole exome sequencing in a consanguineous population with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2023; 69:190-200. [PMID: 37025335 PMCID: PMC10071987 DOI: 10.1080/20473869.2021.1937000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study aimed to systematically assess the impact of clinical and demographic variables on the diagnostic yield of Whole Exome Sequencing (WES) when applied to children with Autism Spectrum Disorder (ASD) from a consanguineous population. Ninety-seven children were included in the analysis, 63% were male and 37% were females. 77.3% had a suspected syndromic aetiology of which 68% had co-existent central nervous system (CNS) clinical features, while 69% had other systems involved. The diagnostic yield of WES in our cohort with ASD was 34%. Children with seizures were more likely to have positive WES results (46% vs. 31%, p = 0.042). Probands with suspected syndromic ASD aetiology showed no significant differential impact on the diagnostic yield of WES.
Collapse
Affiliation(s)
- Watfa Al-Mamari
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
- Correspondence to: Watfa Al-Mamari, Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Ahmed B. Idris
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Reem Abdulrahim
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Saquib Jalees
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Muna Al-Jabri
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ahlam Gabr
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Adila Al Kindy
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Intisar Al-Hadabi
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandrè Bruwer
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - M. Mazharul Islam
- Department of Statistics, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Abeer Alsayegh
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
4
|
Next-Generation Sequencing Advances the Genetic Diagnosis of Cerebral Cavernous Malformation (CCM). Antioxidants (Basel) 2022; 11:antiox11071294. [PMID: 35883785 PMCID: PMC9311989 DOI: 10.3390/antiox11071294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin that predisposes to seizures, focal neurological deficits and fatal intracerebral hemorrhage. It may occur sporadically or in familial forms, segregating as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. Its pathogenesis has been associated with loss-of-function mutations in three genes, namely KRIT1 (CCM1), CCM2 and PDCD10 (CCM3), which are implicated in defense mechanisms against oxidative stress and inflammation. Herein, we screened 21 Italian CCM cases using clinical exome sequencing and found six cases (~29%) with pathogenic variants in CCM genes, including a large 145−256 kb genomic deletion spanning the KRIT1 gene and flanking regions, and the KRIT1 c.1664C>T variant, which we demonstrated to activate a donor splice site in exon 16. The segregation of this cryptic splicing mutation was studied in a large Italian family (five affected and seven unaffected cases), and showed a largely heterogeneous clinical presentation, suggesting the implication of genetic modifiers. Moreover, by analyzing ad hoc gene panels, including a virtual panel of 23 cerebrovascular disease-related genes (Cerebro panel), we found two variants in NOTCH3 and PTEN genes, which could contribute to the abnormal oxidative stress and inflammatory responses to date implicated in CCM disease pathogenesis.
Collapse
|
5
|
Abstract
BACKGROUND To date, besides genome-wide association studies, a variety of other genetic analyses (e.g. polygenic risk scores, whole-exome sequencing and whole-genome sequencing) have been conducted, and a large amount of data has been gathered for investigating the involvement of common, rare and very rare types of DNA sequence variants in bipolar disorder. Also, non-invasive neuroimaging methods can be used to quantify changes in brain structure and function in patients with bipolar disorder. AIMS To provide a comprehensive assessment of genetic findings associated with bipolar disorder, based on the evaluation of different genomic approaches and neuroimaging studies. METHOD We conducted a PubMed search of all relevant literatures from the beginning to the present, by querying related search strings. RESULTS ANK3, CACNA1C, SYNE1, ODZ4 and TRANK1 are five genes that have been replicated as key gene candidates in bipolar disorder pathophysiology, through the investigated studies. The percentage of phenotypic variance explained by the identified variants is small (approximately 4.7%). Bipolar disorder polygenic risk scores are associated with other psychiatric phenotypes. The ENIGMA-BD studies show a replicable pattern of lower cortical thickness, altered white matter integrity and smaller subcortical volumes in bipolar disorder. CONCLUSIONS The low amount of explained phenotypic variance highlights the need for further large-scale investigations, especially among non-European populations, to achieve a more complete understanding of the genetic architecture of bipolar disorder and the missing heritability. Combining neuroimaging data with genetic data in large-scale studies might help researchers acquire a better knowledge of the engaged brain regions in bipolar disorder.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, USA
| |
Collapse
|
6
|
Pratella D, Ait-El-Mkadem Saadi S, Bannwarth S, Paquis-Fluckinger V, Bottini S. A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases. Int J Mol Sci 2021; 22:10891. [PMID: 34639231 PMCID: PMC8509321 DOI: 10.3390/ijms221910891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
Rare diseases (RDs) concern a broad range of disorders and can result from various origins. For a long time, the scientific community was unaware of RDs. Impressive progress has already been made for certain RDs; however, due to the lack of sufficient knowledge, many patients are not diagnosed. Nowadays, the advances in high-throughput sequencing technologies such as whole genome sequencing, single-cell and others, have boosted the understanding of RDs. To extract biological meaning using the data generated by these methods, different analysis techniques have been proposed, including machine learning algorithms. These methods have recently proven to be valuable in the medical field. Among such approaches, unsupervised learning methods via neural networks including autoencoders (AEs) or variational autoencoders (VAEs) have shown promising performances with applications on various type of data and in different contexts, from cancer to healthy patient tissues. In this review, we discuss how AEs and VAEs have been used in biomedical settings. Specifically, we discuss their current applications and the improvements achieved in diagnostic and survival of patients. We focus on the applications in the field of RDs, and we discuss how the employment of AEs and VAEs would enhance RD understanding and diagnosis.
Collapse
Affiliation(s)
- David Pratella
- Center of Modeling, Simulation and Interactions, Université Côte d’Azur, 06200 Nice, France;
| | - Samira Ait-El-Mkadem Saadi
- Centre Hospitalier Universitaire (CHU) de Nice, Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, 06200 Nice, France; (S.A.-E.-M.S.); (S.B.); (V.P.-F.)
| | - Sylvie Bannwarth
- Centre Hospitalier Universitaire (CHU) de Nice, Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, 06200 Nice, France; (S.A.-E.-M.S.); (S.B.); (V.P.-F.)
| | - Véronique Paquis-Fluckinger
- Centre Hospitalier Universitaire (CHU) de Nice, Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, 06200 Nice, France; (S.A.-E.-M.S.); (S.B.); (V.P.-F.)
| | - Silvia Bottini
- Center of Modeling, Simulation and Interactions, Université Côte d’Azur, 06200 Nice, France;
| |
Collapse
|
7
|
Pattan V, Kashyap R, Bansal V, Candula N, Koritala T, Surani S. Genomics in medicine: A new era in medicine. World J Methodol 2021; 11:231-242. [PMID: 34631481 PMCID: PMC8472545 DOI: 10.5662/wjm.v11.i5.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
The sequencing of complete human genome revolutionized the genomic medicine. However, the complex interplay of gene-environment-lifestyle and influence of non-coding genomic regions on human health remain largely unexplored. Genomic medicine has great potential for diagnoses or disease prediction, disease prevention and, targeted treatment. However, many of the promising tools of genomic medicine are still in their infancy and their application may be limited because of the limited knowledge we have that precludes its use in many clinical settings. In this review article, we have reviewed the evolution of genomic methodologies/tools, their limitations, and scope, for current and future clinical application.
Collapse
Affiliation(s)
- Vishwanath Pattan
- Division of Endocrinology, Wyoming Medical Center, Casper, WY 82601, United States
| | - Rahul Kashyap
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Vikas Bansal
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Narsimha Candula
- Hospital Medicine, University Florida Health, Jacksonville, FL 32209, United States
| | - Thoyaja Koritala
- Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Salim Surani
- Department of Internal Medicine, Texas A&M University, Corpus Christi, TX 78405, United States
| |
Collapse
|
8
|
Nephroplex: a kidney-focused NGS panel highlights the challenges of PKD1 sequencing and identifies a founder BBS4 mutation. J Nephrol 2021; 34:1855-1874. [PMID: 33964006 PMCID: PMC8610957 DOI: 10.1007/s40620-021-01048-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/04/2021] [Indexed: 12/02/2022]
Abstract
Background Genetic testing of patients with inherited kidney diseases has emerged as a tool of clinical utility by improving the patients’ diagnosis, prognosis, surveillance and therapy. Methods The present study applied a Next Generation Sequencing (NGS)-based panel, named NephroPlex, testing 115 genes causing renal diseases, to 119 individuals, including 107 probands and 12 relatives. Thirty-five (poly)cystic and 72 non (poly)cystic individuals were enrolled. The latter subgroup of patients included Bardet-Biedl syndrome (BBS) patients, as major components. Results Disease-causing mutations were identified in 51.5 and 40% of polycystic and non-polycystic individuals, respectively. Autosomal dominant polycystic kidney disease (ADPKD) patients with truncating PKD1 variants showed a trend towards a greater slope of the age-estimated glomerular filtration rate (eGFR) regression line than patients with (i) missense variants, (ii) any PKD2 mutations and (iii) no detected mutations, according to previous findings. The analysis of BBS individuals showed a similar frequency of BBS4,9,10 and 12 mutations. Of note, all BBS4-mutated patients harbored the novel c.332+1G>GTT variant, which was absent in public databases, however, in our internal database, an additional heterozygote carrier was found. All BBS4-mutated individuals originated from the same geographical area encompassing the coastal provinces of Naples. Discussion In conclusion, these findings indicate the potential for a genetic panel to provide useful information at both clinical and epidemiological levels. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40620-021-01048-4.
Collapse
|
9
|
Roberts R, Chang CC. A Journey through Genetic Architecture and Predisposition of Coronary Artery Disease. Curr Genomics 2020; 21:382-398. [PMID: 33093801 PMCID: PMC7536803 DOI: 10.2174/1389202921999200630145241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/14/2023] Open
Abstract
Introduction To halt the spread of coronary artery disease (CAD), the number one killer in the world, requires primary prevention. Fifty percent of all Americans are expected to experience a cardiac event; the challenge is identifying those at risk. 40 to 60% of predisposition to CAD is genetic. The first genetic risk variant, 9p21, was discovered in 2007. Genome-Wide Association Studies has since discovered hundreds of genetic risk variants. The genetic burden for CAD can be expressed as a single number, Genetic Risk Score (GRS). Assessment of GRS to risk stratify for CAD was superior to conventional risk factors in several large clinical trials assessing statin therapy, and more recently in a population of nearly 500,000 (UK Biobank). Studies were performed based on prospective genetic risk stratification for CAD. These studies showed that a favorable lifestyle was associated with a 46% reduction in cardiac events and programmed exercise, a 50% reduction in cardiac events. Genetic risk score is superior to conventional risk factors, and is markedly attenuated by lifestyle changes and drug therapy. Genetic risk can be determined at birth or any time thereafter. Conclusion Utilizing the GRS to risk stratify young, asymptomatic individuals could provide a paradigm shift in the primary prevention of CAD and significantly halt its spread.
Collapse
Affiliation(s)
- Robert Roberts
- 1Cardiovascular Genomics & Genetics, University of Arizona, College of Medicine, Phoenix, AZ, USA; 2Cardiovascular Genomics & Genetics, Phoenix, AZ, USA
| | - Chih Chao Chang
- 1Cardiovascular Genomics & Genetics, University of Arizona, College of Medicine, Phoenix, AZ, USA; 2Cardiovascular Genomics & Genetics, Phoenix, AZ, USA
| |
Collapse
|
10
|
Chiu FPC, Doolan BJ, McGrath JA, Onoufriadis A. A decade of next-generation sequencing in genodermatoses: the impact on gene discovery and clinical diagnostics. Br J Dermatol 2020; 184:606-616. [PMID: 32628274 DOI: 10.1111/bjd.19384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Discovering the genetic basis of inherited skin diseases is fundamental to improving diagnostic accuracy and genetic counselling. In the 1990s and 2000s, genetic linkage and candidate gene approaches led to the molecular characterization of several dozen genodermatoses, but over the past decade the advent of next-generation sequencing (NGS) technologies has accelerated diagnostic discovery and precision. OBJECTIVES This review examines the application of NGS technologies from 2009 to 2019 that have (i) led to the initial discovery of gene mutations in known or new genodermatoses and (ii) identified involvement of more than one contributing pathogenic gene in individuals with complex Mendelian skin disorder phenotypes. METHODS A comprehensive review of the PubMed database and dermatology conference abstracts was undertaken between January 2009 and December 2019. The results were collated and cross-referenced with OMIM. RESULTS We identified 166 new disease-gene associations in inherited skin diseases discovered by NGS. Of these, 131 were previously recognized, while 35 were brand new disorders. Eighty-five were autosomal dominant (with 43 of 85 mutations occurring de novo), 78 were autosomal recessive and three were X-linked. We also identified 63 cases harbouring multiple pathogenic mutations, either involving two coexisting genodermatoses (n = 13) or an inherited skin disorder in conjunction with other organ system phenotypes (n = 50). CONCLUSIONS NGS technologies have accelerated disease-gene discoveries in dermatology over the last decade. Moreover, the era of NGS has enabled clinicians to split complex Mendelian phenotypes into separate diseases. These genetic data improve diagnostic precision and make feasible accurate prenatal testing and better-targeted translational research.
Collapse
Affiliation(s)
- F P-C Chiu
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - B J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
11
|
Cao P, Miao B, Xu Y, Fan Q, Zhang Q, Zhang G, Zhou C, Xu Y. Role of gene polymorphisms related to progesterone elevation in women undergoing long GnRH agonist protocols. Reprod Biomed Online 2020; 40:381-392. [PMID: 32204850 DOI: 10.1016/j.rbmo.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Can single-nucleotide polymorphisms (SNP) of genes related to progesterone synthesis predict the risk of premature serum progesterone elevation in women undergoing gonadotrophin-releasing hormone agonist protocols for ovarian stimulation? DESIGN A total of 765 women were divided into high progesterone and normal progesterone groups according to progesterone concentration on the day of human chorionic gonadotrophin (HCG) administration, with the 75th percentile as the threshold between the group. Associations were analysed of genetic information from whole exome sequencing and the clinical characteristics of the two groups to identify the relationship between SNP, haplotypes and serum progesterone elevation. RESULTS Among 40 common SNP of eight genes (FSHR, LHCGR, ESR1, ESR2, PGR, HSD3B1, CYP11A1 and CYP17A1), no statistical significance between the high and normal progesterone groups was identified in the distribution of genotypes and allele frequencies after multiple test correction to adjust the false discovery rate (PFDR > 0.05). When compared with the most common haplotypes of each gene, haplotype GAAG in CYP17A1 was associated with a 1.44-fold increased risk of progesterone elevation (95% confidence interval [CI] 1.22-1.69, PFDR < 0.001), while haplotypes of the following genes showed a decreased risk of progesterone elevation: haplotype CC in FSHR and LHCGR (0.66-fold, PFDR = 0.020, and 0.64-fold, PFDR < 0.001, respectively), CA in ESR1 (0.90-fold, PFDR < 0.001), TCTGG in ESR2 (0.92-fold, PFDR = 0.007) and GAACC in HSD3B1 (0.42-fold, PFDR < 0.001). CONCLUSIONS Polymorphism in genes involved in enzymes or hormone receptors in the progesterone synthesis pathway may have a role in modifying risk of serum progesterone elevation.
Collapse
Affiliation(s)
- Ping Cao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Benyu Miao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yan Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Qi Fan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Qian Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Guirong Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Canquan Zhou
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yanwen Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Feng J, Zuo X, Gui L, Qi J, Guo X, Lv Q, Zhang Y, Fang L, Zhang X, Gu J, Lin Z. Genetic basis of relapsing polychondritis revealed by family‐based whole‐exome sequencing. Int J Rheum Dis 2020; 23:641-646. [PMID: 32107856 DOI: 10.1111/1756-185x.13809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Junmei Feng
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Xiaoyu Zuo
- State Key Laboratory of Oncology in South China Cancer Center Sun Yat‐Sen University Guangzhou China
| | - Lian Gui
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Jun Qi
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Xinghua Guo
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Qing Lv
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Yanli Zhang
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Linkai Fang
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Xi Zhang
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Jieruo Gu
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Zhiming Lin
- Department of Rheumatology Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
13
|
Akgun-Dogan O, Simsek-Kiper PO, Taskiran E, Lissewski C, Brinkmann J, Schanze D, Göçmen R, Cagdas D, Bilginer Y, Utine GE, Zenker M, Ozen S, Tezcan İ, Alikasifoglu M, Boduroğlu K. ADA2 deficiency in a patient with Noonan syndrome-like disorder with loose anagen hair: The co-occurrence of two rare syndromes. Am J Med Genet A 2019; 179:2474-2480. [PMID: 31584751 DOI: 10.1002/ajmg.a.61363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
Noonan syndrome-like disorder with loose anagen hair (NS/LAH) is one of the RASopathies, a group of clinically related developmental disorders caused by germline mutations in genes that encode components acting in the RAS/MAPK pathway. Among RASopathies, NS/LAH (OMIM 607721) is an extremely rare, multiple anomaly syndrome characterized by dysmorphic facial features similar to those observed in Noonan syndrome along with some distinctive ectodermal findings including easily pluckable, sparse, thin, and slow-growing hair. ADA2 deficiency (DADA2, OMIM 615688) is a monogenic autoinflammatory disorder caused by homozygous or compound heterozygous mutations in ADA2, with clinical features including recurrent fever, livedo racemosa, hepatosplenomegaly, and strokes as well as immune dysregulation. This is the first report of NS/LAH and ADA2 deficiency in the same individual. We report on a patient presenting with facial features, recurrent infections and ectodermal findings in whom both the clinical and molecular diagnoses of NS/LAH and ADA2 deficiency were established, respectively.
Collapse
Affiliation(s)
- Ozlem Akgun-Dogan
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Division of Pediatric Genetics, Department of Pediatrics, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Pelin O Simsek-Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Rahşan Göçmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yelda Bilginer
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen E Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Seza Ozen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İlhan Tezcan
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroğlu
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Shibano M, Watanabe A, Takano N, Mishima H, Kinoshita A, Yoshiura KI, Shibahara T. Target Capture/Next-Generation Sequencing for Nonsyndromic Cleft Lip and Palate in the Japanese Population. Cleft Palate Craniofac J 2019; 57:80-87. [PMID: 31337262 DOI: 10.1177/1055665619857650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE The pathogenesis of nonsyndromic cleft lip with or without cleft palate (NSCL ± P) and nonsyndromic cleft palate only (NSCP) may be associated with genetic factors. Although some predisposing genes/loci have been reported, their attributable risk is too small to be clinically meaningful. To clarify the genetic causes and mechanisms of NSCL±P or NSCP, we conducted mutation analysis of target genes using a next-generation sequencing (NGS) approach. METHODS The target genes, IRF6, WNT5A, WNT9B, TP63, MSX1, TFAP2A, PAX9, DLX3, DLX4, and MN1, were selected based on previous reports of potential associations with the development of NSCL±P or NSCP from genome-wide association studies and candidate gene analyses. Mutation analysis was conducted using NGS on 74 Japanese trios (patient and parents) and 18 Japanese patients only families. RESULTS We detected single-nucleotide variants (SNVs) for 7 genes: IRF6, DLX4, WNT5A, TFAP2A, WNT9B, TP63, and PAX9. The SNVs found on IRF6 and DLX4 were missense mutations, whereas those identified on WNT5A, TFAP2A, WNT9B, TP63, and PAX9 were rare variants in the noncoding region; no de novo mutation was identified in the trio samples. The amino acid change on DLX4 was detected within the highly conserved homeodomain and was predicted to have a deleterious impact on the protein function by in silico analysis. CONCLUSIONS The DLX4 missense mutation c.359C>T (Pro120Leu) was found in 1 Japanese patient with NSCL±P and was located in the homeodomain region. This mutation likely plays a role in the development of NSCL±P in the Japanese population.
Collapse
Affiliation(s)
- Masayasu Shibano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Akira Watanabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Nobuo Takano
- Oral Cancer Center, Tokyo Dental College, Chiba, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
15
|
Yang S, Shi Z, OU X, LIU G. Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens. J Genet 2019. [DOI: 10.1007/s12041-019-1083-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Kiryluk K, Goldstein DB, Rowe JW, Gharavi AG, Wapner R, Chung WK. Precision Medicine in Internal Medicine. Ann Intern Med 2019; 170:635-642. [PMID: 31035290 PMCID: PMC7437606 DOI: 10.7326/m18-0425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicine has long sought to match diagnostic and treatment approaches to the particular needs and risks of individual patients. The decreasing cost and increasing ease of genetic sequencing have propelled the rise of precision medicine. Precision medicine aims to use genetic and other information to provide care tailored to the individual patient, with the goal of improving clinical outcomes and minimizing unnecessary diagnostic and therapeutic interventions. Although developments in genetic sequencing have the potential to transform clinical care, there are important limitations, including uncertainty in the clinical interpretation of many genetic variants and concerns about privacy, discrimination, and cost. To help clinicians understand the basics of genetic sequencing and how to apply it in clinical practice, Annals of Internal Medicine is launching a new "Precision Medicine" series. This introduction provides a general overview of clinical sequencing, with a focus on germline variation. Subsequent articles will use a case-based format to provide concise summaries of specific clinical precision medicine scenarios that are relevant to the practice of internal medicine. These cases will highlight specific clinical indications; interpretation of genetic test results; and ethical, legal, cost, and privacy issues related to genetic testing. The goal is to provide practical information on the appropriate application and interpretation of genomics in routine clinical practice.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- College of Physicians and Surgeons, Columbia University, New York, New York (K.K., D.B.G., A.G.G., R.W., W.K.C.)
| | - David B Goldstein
- College of Physicians and Surgeons, Columbia University, New York, New York (K.K., D.B.G., A.G.G., R.W., W.K.C.)
| | - John W Rowe
- Mailman School of Public Health, Columbia University, New York, New York (J.W.R.)
| | - Ali G Gharavi
- College of Physicians and Surgeons, Columbia University, New York, New York (K.K., D.B.G., A.G.G., R.W., W.K.C.)
| | - Ronald Wapner
- College of Physicians and Surgeons, Columbia University, New York, New York (K.K., D.B.G., A.G.G., R.W., W.K.C.)
| | - Wendy K Chung
- College of Physicians and Surgeons, Columbia University, New York, New York (K.K., D.B.G., A.G.G., R.W., W.K.C.)
| |
Collapse
|
17
|
Capriotti E, Ozturk K, Carter H. Integrating molecular networks with genetic variant interpretation for precision medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1443. [PMID: 30548534 PMCID: PMC6450710 DOI: 10.1002/wsbm.1443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 02/01/2023]
Abstract
More reliable and cheaper sequencing technologies have revealed the vast mutational landscapes characteristic of many phenotypes. The analysis of such genetic variants has led to successful identification of altered proteins underlying many Mendelian disorders. Nevertheless the simple one‐variant one‐phenotype model valid for many monogenic diseases does not capture the complexity of polygenic traits and disorders. Although experimental and computational approaches have improved detection of functionally deleterious variants and important interactions between gene products, the development of comprehensive models relating genotype and phenotypes remains a challenge in the field of genomic medicine. In this context, a new view of the pathologic state as significant perturbation of the network of interactions between biomolecules is crucial for the identification of biochemical pathways associated with complex phenotypes. Seminal studies in systems biology combined the analysis of genetic variation with protein–protein interaction networks to demonstrate that even as biological systems evolve to be robust to genetic variation, their topologies create disease vulnerabilities. More recent analyses model the impact of genetic variants as changes to the “wiring” of the interactome to better capture heterogeneity in genotype–phenotype relationships. These studies lay the foundation for using networks to predict variant effects at scale using machine‐learning or algorithmic approaches. A wealth of databases and resources for the annotation of genotype–phenotype relationships have been developed to support developments in this area. This overview describes how study of the molecular interactome has generated insights linking the organization of biological systems to disease mechanism, and how this information can enable precision medicine. This article is categorized under:
Translational, Genomic, and Systems Medicine > Translational Medicine Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods
Collapse
Affiliation(s)
- Emidio Capriotti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Kivilcim Ozturk
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California
| | - Hannah Carter
- Department of Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Wang J, Zhao L, Wang X, Chen Y, Xu M, Soens ZT, Ge Z, Wang PR, Wang F, Chen R. GRIPT: a novel case-control analysis method for Mendelian disease gene discovery. Genome Biol 2018; 19:203. [PMID: 30477545 PMCID: PMC6258408 DOI: 10.1186/s13059-018-1579-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022] Open
Abstract
Despite rapid progress of next-generation sequencing (NGS) technologies, the disease-causing genes underpinning about half of all Mendelian diseases remain elusive. One main challenge is the high genetic heterogeneity of Mendelian diseases in which similar phenotypes are caused by different genes and each gene only accounts for a small proportion of the patients. To overcome this gap, we developed a novel method, the Gene Ranking, Identification and Prediction Tool (GRIPT), for performing case-control analysis of NGS data. Analyses of simulated and real datasets show that GRIPT is well-powered for disease gene discovery, especially for diseases with high locus heterogeneity.
Collapse
Affiliation(s)
- Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Li Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Miraca Genetics Laboratories, Houston, TX 77030 USA
| | - Yong Chen
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science and Technology, Fudan University, Shanghai, China
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zachry T. Soens
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zhongqi Ge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Peter Ronghan Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fei Wang
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science and Technology, Fudan University, Shanghai, China
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
19
|
Persani L, de Filippis T, Colombo C, Gentilini D. GENETICS IN ENDOCRINOLOGY: Genetic diagnosis of endocrine diseases by NGS: novel scenarios and unpredictable results and risks. Eur J Endocrinol 2018; 179:R111-R123. [PMID: 29880707 DOI: 10.1530/eje-18-0379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
The technological advancements in genetics produced a profound impact on the research and diagnostics of non-communicable diseases. The availability of next-generation sequencing (NGS) allowed the identification of novel candidate genes but also an in-depth modification of the understanding of the architecture of several endocrine diseases. Several different NGS approaches are available allowing the sequencing of several regions of interest or the whole exome or genome (WGS, WES or targeted NGS), with highly variable costs, potentials and limitations that should be clearly known before designing the experiment. Here, we illustrate the NGS scenario, describe the advantages and limitations of the different protocols and review some of the NGS results obtained in different endocrine conditions. We finally give insights on the terminology and requirements for the implementation of NGS in research and diagnostic labs.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Tiziana de Filippis
- Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carla Colombo
- Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Labs of Molecular Biology Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Labs of University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Cambri G, Mira MT. Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol 2018; 9:1674. [PMID: 30079069 PMCID: PMC6062607 DOI: 10.3389/fimmu.2018.01674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023] Open
Abstract
Genetics plays a crucial role in controlling susceptibility to infectious diseases by modulating the interplay between humans and pathogens. This is particularly evident in leprosy, since the etiological agent, Mycobacterium leprae, displays semiclonal characteristics not compatible with the wide spectrum of disease phenotypes. Over the past decades, genetic studies have unraveled several gene variants as risk factors for leprosy per se, disease clinical forms and the occurrence of leprosy reactions. As expected, several of these genes are immune-related; yet, hypothesis-free approaches have led to genes not classically linked to immune response. The PARK2, originally described as a Parkinson's disease gene, illustrates the case: Parkin-the protein coded by PARK2-was defined as an important player regulating innate and adaptive immune responses only years after its description as a leprosy susceptibility gene. Interestingly, even with the use of powerful hypothesis-free study designs such as genome-wide association studies, most of the major gene effect controlling leprosy susceptibility remains elusive. One hypothesis to explain this "hidden heritability" is that rare variants not captured by classic association studies are of critical importance. To address this question, massively parallel sequencing of large segments of the human genome-even whole exomes/genomes-is an alternative to properly identify rare, disease-causing mutations. These mutations may then be investigated through sophisticated approaches such as cell reprogramming and genome editing applied to create in vitro models for functional leprosy studies.
Collapse
Affiliation(s)
- Geison Cambri
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Marcelo Távora Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Mutation of IPO13 causes recessive ocular coloboma, microphthalmia, and cataract. Exp Mol Med 2018; 50:1-11. [PMID: 29700284 PMCID: PMC5938035 DOI: 10.1038/s12276-018-0079-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 11/12/2022] Open
Abstract
Ocular coloboma is a developmental structural defect of the eye that often occurs as complex ocular anomalies. However, its genetic etiology remains largely unexplored. Here we report the identification of mutation (c.331C>T, p.R111C) in the IPO13 gene in a consanguineous family with ocular coloboma, microphthalmia, and cataract by a combination of whole-exome sequencing and homozygosity mapping. IPO13 encodes an importin-B family protein and has been proven to be associated with the pathogenesis of coloboma and microphthalmia. We found that Ipo13 was expressed in the cornea, sclera, lens, and retina in mice. Additionally, the mRNA expression level of Ipo13 decreased significantly in the patient compared with its expression in a healthy individual. Morpholino-oligonucleotide-induced knockdown of ipo13 in zebrafish caused dose-dependent microphthalmia and coloboma, which is highly similar to the ocular phenotypes in the patient. Moreover, both visual motor response and optokinetic response were impaired severely. Notably, these ocular phenotypes in ipo13-deficient zebrafish could be rescued remarkably by full-length ipo13 mRNA, suggesting that the phenotypes observed in zebrafish were due to insufficient ipo13 function. Altogether, our findings demonstrate, for the first time, a new role of IPO13 in eye morphogenesis and that loss of function of IPO13 could lead to ocular coloboma, microphthalmia, and cataract in humans and zebrafish. In-depth genomic analysis of the family of a young man with severe visual impairment reveals a new gene involved in eye development. Ocular coloboma encompasses various hereditary disorders in which the eyes form improperly. Many of the underlying genetic factors remain unidentified. Researchers led by Zi-Bing Jin at Wenzhou Medical University in China sequenced the genes of 28-year-old man with a recessive form of ocular coloboma. By comparing these genetic data against equivalent genome sequences from his healthy parents, Jin’s team identified a gene called IPO13 as the culprit. IPO13 has not been linked to human disease before, but the researchers demonstrated that switching off IPO13 expression in zebrafish embryos gave rise to underdeveloped eyes with defects in the iris and cornea. These findings give clinicians another potential indicator for early diagnosis of ocular coloboma.
Collapse
|
22
|
Semeraro R, Orlandini V, Magi A. Xome-Blender: A novel cancer genome simulator. PLoS One 2018; 13:e0194472. [PMID: 29621252 PMCID: PMC5886411 DOI: 10.1371/journal.pone.0194472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/05/2018] [Indexed: 11/18/2022] Open
Abstract
The adoption of next generation sequencing based methods in cancer research allowed for the investigation of the complex genetic structure of tumor samples. In the last few years, considerable importance was given to the research of somatic variants and several computational approaches were developed for this purpose. Despite continuous improvements to these programs, the validation of their results it’s a hard challenge due to multiple sources of error. To overcome this drawback different simulation approaches are used to generate synthetic samples but they are often based on the addition of artificial mutations that mimic the complexity of genomic variations. For these reasons, we developed a novel software, Xome-Blender, that generates synthetic cancer genomes with user defined features such as the number of subclones, the number of somatic variants and the presence of copy number alterations (CNAs), without the addition of any synthetic element. The singularity of our method is the “morphological approach” used to generate mutation events. To demonstrate the power of our tool we used it to address the hard challenge of evaluating the performance of nine state-of-the-art somatic variant calling methods for small and large variants (VarScan2, MuTect, Shimmer, BCFtools, Strelka, EXCAVATOR2, Control-FREEC and CopywriteR). Through these analyses we observed that by using Xome-Blender data it is possible to appraise small differences between their performance and we have designated VarScan2 and EXCAVATOR2 as best tool for this kind of applications. Xome-Blender is unix-based, licensed under the GPLv3 and freely available at https://github.com/rsemeraro/XomeBlender.
Collapse
Affiliation(s)
- Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- * E-mail:
| | - Valerio Orlandini
- Medical Genetics Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Abstract
Technologies such as next-generation sequencing and chromosomal microarray have advanced the understanding of the molecular pathogenesis of a variety of renal disorders. Genetic findings are increasingly used to inform the clinical management of many nephropathies, enabling targeted disease surveillance, choice of therapy, and family counselling. Genetic analysis has excellent diagnostic utility in paediatric nephrology, as illustrated by sequencing studies of patients with congenital anomalies of the kidney and urinary tract and steroid-resistant nephrotic syndrome. Although additional investigation is needed, pilot studies suggest that genetic testing can also provide similar diagnostic insight among adult patients. Reaching a genetic diagnosis first involves choosing the appropriate testing modality, as guided by the clinical presentation of the patient and the number of potential genes associated with the suspected nephropathy. Genome-wide sequencing increases diagnostic sensitivity relative to targeted panels, but holds the challenges of identifying causal variants in the vast amount of data generated and interpreting secondary findings. In order to realize the promise of genomic medicine for kidney disease, many technical, logistical, and ethical questions that accompany the implementation of genetic testing in nephrology must be addressed. The creation of evidence-based guidelines for the utilization and implementation of genetic testing in nephrology will help to translate genetic knowledge into improved clinical outcomes for patients with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Pavilion #412C, New York, New York 10032, USA
| |
Collapse
|
24
|
Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M, Yee IM, de Lemos M, Greenwood T, Lee JD, Wright G, Ross CJ, Zhang S, Song W, Vilariño-Güell C. Case-Control Studies Are Not Familial Studies. Neuron 2017; 92:339-341. [PMID: 27764669 DOI: 10.1016/j.neuron.2016.09.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 09/25/2016] [Indexed: 01/22/2023]
Abstract
Identifying rare genetic variants that drive the onset of disease is challenging, even before considering the additional genetic and environmental influences that likely exist in complex diseases. We recently published a study proposing a rare variant in the NR1H3 gene (p.R415Q, rs61731956) as responsible for the onset of multiple sclerosis (MS) in two multi-incident families (Wang et al., 2016). This publication has generated much discussion, and fortunately the possibility to validate a finding or prove it spurious can occur rapidly in genetic studies. All novel discoveries must be replicated, and best efforts should be made to ensure that these replications use the appropriate samples and approach, and provide the correct interpretation of the results. This Matters Arising Response paper addresses the Minikel and MacArthur (2016) and The International Multiple Sclerosis Genetics Consortium (2016) Matters Arising papers, published concurrently in Neuron.
Collapse
Affiliation(s)
- Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony L Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jay P Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cecily Q Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Irene M Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Madonna de Lemos
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Talitha Greenwood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joshua D Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Galen Wright
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
25
|
Agrebi N, Ben-Mustapha I, Matoussi N, Dhouib N, Ben-Ali M, Mekki N, Ben-Ahmed M, Larguèche B, Ben Becher S, Béjaoui M, Barbouche MR. Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome. Clin Immunol 2017; 183:17-23. [PMID: 28668589 DOI: 10.1016/j.clim.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations.
Collapse
Affiliation(s)
- N Agrebi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; The University of Carthage, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - I Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia.
| | - N Matoussi
- Faculty of Medicine, 1007 Tunis, Tunisia; Department of Pediatric Care, Emergency and Out Patient Children's Hospital of Tunis, 1029 Tunis, Tunisia
| | - N Dhouib
- Faculty of Medicine, 1007 Tunis, Tunisia; National Bone Marrow Transplantation Center, 1006 Tunis, Tunisia
| | - M Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia
| | - N Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| | - M Ben-Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| | - B Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia
| | - S Ben Becher
- Faculty of Medicine, 1007 Tunis, Tunisia; Department of Pediatric Care, Emergency and Out Patient Children's Hospital of Tunis, 1029 Tunis, Tunisia
| | - M Béjaoui
- Faculty of Medicine, 1007 Tunis, Tunisia; National Bone Marrow Transplantation Center, 1006 Tunis, Tunisia
| | - M R Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| |
Collapse
|
26
|
Touma M, Reemtsen B, Halnon N, Alejos J, Finn JP, Nelson SF, Wang Y. A Path to Implement Precision Child Health Cardiovascular Medicine. Front Cardiovasc Med 2017; 4:36. [PMID: 28620608 PMCID: PMC5451507 DOI: 10.3389/fcvm.2017.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene–environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine.
Collapse
Affiliation(s)
- Marlin Touma
- Department of Pediatrics, Children's Discovery and Innovation Institute, University of California at Los Angeles, Los Angeles, CA, United States.,Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, University of California at Los Angeles, Los Angeles, CA, United States
| | - Nancy Halnon
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Juan Alejos
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - J Paul Finn
- Department of Radiology, Cardiovascular Imaging, University of California at Los Angeles, Los Angeles, CA, United States
| | - Stanley F Nelson
- Department of Human Genetics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Yibin Wang
- Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States.,Department of Anesthesiology, Physiology and Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
Whole-exome sequencing in Tricho-rhino-phalangeal syndrome (TRPS) type I in a Korean family. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Gershoni M, Hauser R, Yogev L, Lehavi O, Azem F, Yavetz H, Pietrokovski S, Kleiman SE. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med 2017; 19:998-1006. [PMID: 28206990 DOI: 10.1038/gim.2016.225] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/15/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Up to 1% of all men experience azoospermia, a condition of complete absence of sperm in the semen. The mechanisms and genes involved in spermatogenesis are mainly studied in model organisms, and their relevance to humans is unclear because human genetic studies are very scarce. Our objective was to uncover novel human mutations and genes causing azoospermia due to testicular meiotic maturation arrest. METHODS Affected and unaffected siblings from three families were subjected to whole-exome or whole-genome sequencing, followed by comprehensive bioinformatics analyses to identify mutations suspected to cause azoospermia. These likely mutations were further screened in azoospermic and normozoospermic men and in men proven to be fertile, as well as in a reference database of local populations. RESULTS We identified three novel likely causative mutations of azoospermia in three genes: MEIOB, TEX14, and DNAH6. These genes are associated with different meiotic processes: meiotic crossovers, daughter cell abscission, and possibly rapid prophase movements. CONCLUSION The genes and pathways we identified are fundamental for delineating common causes of azoospermia originating in mutations affecting diverse meiotic processes and have great potential for accelerating approaches to diagnose, treat, and prevent infertility.Genet Med advance online publication 16 February 2017.
Collapse
Affiliation(s)
- Moran Gershoni
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hauser
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Yogev
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Foad Azem
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haim Yavetz
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra E Kleiman
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Nishio SY, Usami SI. The Clinical Next-Generation Sequencing Database: A Tool for the Unified Management of Clinical Information and Genetic Variants to Accelerate Variant Pathogenicity Classification. Hum Mutat 2017; 38:252-259. [PMID: 28008688 PMCID: PMC5324660 DOI: 10.1002/humu.23160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in next‐generation sequencing (NGS) have given rise to new challenges due to the difficulties in variant pathogenicity interpretation and large dataset management, including many kinds of public population databases as well as public or commercial disease‐specific databases. Here, we report a new database development tool, named the “Clinical NGS Database,” for improving clinical NGS workflow through the unified management of variant information and clinical information. This database software offers a two‐feature approach to variant pathogenicity classification. The first of these approaches is a phenotype similarity‐based approach. This database allows the easy comparison of the detailed phenotype of each patient with the average phenotype of the same gene mutation at the variant or gene level. It is also possible to browse patients with the same gene mutation quickly. The other approach is a statistical approach to variant pathogenicity classification based on the use of the odds ratio for comparisons between the case and the control for each inheritance mode (families with apparently autosomal dominant inheritance vs. control, and families with apparently autosomal recessive inheritance vs. control). A number of case studies are also presented to illustrate the utility of this database.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto City, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto City, Japan
| |
Collapse
|
30
|
Abstract
Leptin is an adipose tissue hormone that functions as an afferent signal in a negative feedback loop that maintains homeostatic control of adipose tissue mass. This endocrine system thus serves a critical evolutionary function by protecting individuals from the risks associated with being too thin (starvation) or too obese (predation and temperature dysregulation). Mutations in leptin or its receptor cause massive obesity in mice and humans, and leptin can effectively treat obesity in leptin-deficient patients. Leptin acts on neurons in the hypothalamus and elsewhere to elicit its effects, and mutations that affect the function of this neural circuit cause Mendelian forms of obesity. Leptin levels fall during starvation and elicit adaptive responses in many other physiologic systems, the net effect of which is to reduce energy expenditure. These effects include cessation of menstruation, insulin resistance, alterations of immune function, and neuroendocrine dysfunction, among others. Some or all of these effects are also seen in patients with constitutively low leptin levels, such as occur in lipodystrophy. Leptin is an approved treatment for generalized lipodystrophy, a condition associated with severe metabolic disease, and has also shown potential for the treatment of other types of diabetes. In addition, leptin restores reproductive capacity and increases bone mineral density in patients with hypothalamic amenorrhea, an infertility syndrome in females. Most obese patients have high endogenous levels of leptin, in some instances as a result of mutations in the neural circuit on which leptin acts, though in most cases, the pathogenesis of leptin resistance is not known. Obese patients with leptin resistance show a variable response to exogenous leptin but may respond to a combination of leptin plus amylin. Overall, the identification of leptin has provided a framework for studying the pathogenesis of obesity in the general population, clarified the nature of the biologic response to starvation, and helped to advance our understanding of the neural mechanisms that control feeding.
Collapse
|
31
|
Ku CS, Cooper DN, Patrinos GP. The Rise and Rise of Exome Sequencing. Public Health Genomics 2016; 19:315-324. [DOI: 10.1159/000450991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022] Open
|
32
|
Johnston-Cox H, Björkegren JL, Kovacic JC. Genetics and Pharmacogenetics in Interventional Cardiology. Interv Cardiol 2016. [DOI: 10.1002/9781118983652.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Chokoshvili D, Janssens S, Vears D, Borry P. Designing expanded carrier screening panels: results of a qualitative study with European geneticists. Per Med 2016; 13:553-562. [DOI: 10.2217/pme-2016-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aim: To explore the views of clinical and molecular geneticists on the inclusion of disorders and specific pathogenic mutations into expanded carrier screening (ECS) tests for reproductive purposes. Materials & methods: In-depth semistructured interviews were conducted with 16 European geneticists between April and September 2014. Results: All participants supported carrier screening for severe, childhood-onset autosomal recessive disorders with known natural history. Some participants were also in favor of screening for late-onset and X-linked disorders. Regarding selection of specific pathogenic mutations, our participants argued that ECS should include highly penetrant pathogenic mutations with known genotype–phenotype associations. Conclusion: This study highlights main challenges surrounding the development of ECS panels and offers suggestions for future research in this rapidly advancing field.
Collapse
Affiliation(s)
- Davit Chokoshvili
- Centre for Biomedical Ethics & Law, Department of Public Health and Primary Care, University of Leuven, Kapucijnenvoer 35, Box 7001, 3000 Leuven, Belgium
| | - Sandra Janssens
- Centre for Medical Genetics Ghent, University Hospital Ghent. De Pintelaan 185, 9000 Ghent, Belgium
| | - Danya Vears
- Centre for Biomedical Ethics & Law, Department of Public Health and Primary Care, University of Leuven, Kapucijnenvoer 35, Box 7001, 3000 Leuven, Belgium
| | - Pascal Borry
- Centre for Biomedical Ethics & Law, Department of Public Health and Primary Care, University of Leuven, Kapucijnenvoer 35, Box 7001, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype. Eur J Med Genet 2016; 59:590-595. [DOI: 10.1016/j.ejmg.2016.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
|
35
|
Cai XZ, Li Y, Xia L, Peng Y, He CF, Jiang L, Feng Y, Xia K, Liu XZ, Mei LY, Hu ZM. Exome sequencing identifies POU4F3 as the causative gene for a large Chinese family with non-syndromic hearing loss. J Hum Genet 2016; 62:317-320. [PMID: 27535032 DOI: 10.1038/jhg.2016.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Hearing impairment, or deafness (in its most severe form), is one of the most common human sensory disorders. There have been several reports of autosomal dominant mutations in the POU4F3 gene, which is associated with non-syndromic hearing loss. In this study, we identified a novel heterozygous mutation (c.602delT, p.L201fs) in the gene POU4F3 by taking advantage of whole-exome sequencing, which was validated by Sanger sequencing and completely co-segregated within a large hearing impaired Chinese family. We have focused on this pedigree since 2002, and we have mapped a deafness locus named DFNA42 (which has been renamed DFNA52, OMIM entry 607683) via a genome-wide scan. Furthermore, we analyzed this mutational variant and found that it was located at the beginning of the first functional domain of POU4F3, which could theoretically impair the function of POU4F3. We have identified a novel frameshift mutation in the POU4F3 gene. Further functional studies of variants of this specific gene are needed to illustrate the pathogenic mechanism(s) that underlie hearing impairment.
Collapse
Affiliation(s)
- Xin Zhang Cai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Ying Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Lu Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yu Peng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Chu Feng He
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China.,School of Biological Science and Technology, Central South University, Changsha, China
| | - Xue Zhong Liu
- Department of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ling Yun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Mao Hu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China.,School of Biological Science and Technology, Central South University, Changsha, China
| |
Collapse
|
36
|
Chandler MR, Bilgili EP, Merner ND. A Review of Whole-Exome Sequencing Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery. Hum Mutat 2016; 37:835-46. [PMID: 27226120 DOI: 10.1002/humu.23017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 05/18/2016] [Indexed: 01/08/2023]
Abstract
Inherited genetic risk factors contribute toward breast cancer (BC) onset. BC risk variants can be divided into three categories of penetrance (high, moderate, and low) that reflect the probability of developing the disease. Traditional BC susceptibility gene discovery approaches that searched for high- and moderate-risk variants in familial BC cases have had limited success; to date, these risk variants explain only ∼30% of familial BC cases. Next-generation sequencing technologies can be used to search for novel high and moderate BC risk variants, and this manuscript reviews 12 familial BC whole-exome sequencing efforts. Study design, filtering strategies, and segregation and validation analyses are discussed. Overall, only a modest number of novel BC risk genes were identified, and 90% and 97% of the exome-sequenced families and cases, respectively, had no BC risk variants reported. It is important to learn from these studies and consider alternate strategies in order to make further advances. The discovery of new BC susceptibility genes is critical for improved risk assessment and to provide insight toward disease mechanisms for the development of more effective therapies.
Collapse
Affiliation(s)
- Madison R Chandler
- Auburn University, Harrison School of Pharmacy, Department of Drug Discovery and Development, Auburn, Alabama, 36849
| | - Erin P Bilgili
- Auburn University, Harrison School of Pharmacy, Department of Drug Discovery and Development, Auburn, Alabama, 36849
| | - Nancy D Merner
- Auburn University, Harrison School of Pharmacy, Department of Drug Discovery and Development, Auburn, Alabama, 36849
| |
Collapse
|
37
|
Fujikura K. Global Carrier Rates of Rare Inherited Disorders Using Population Exome Sequences. PLoS One 2016; 11:e0155552. [PMID: 27219052 PMCID: PMC4878778 DOI: 10.1371/journal.pone.0155552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
Exome sequencing has revealed the causative mutations behind numerous rare, inherited disorders, but it is challenging to find reliable epidemiological values for rare disorders. Here, I provide a genetic epidemiology method to identify the causative mutations behind rare, inherited disorders using two population exome sequences (1000 Genomes and NHLBI). I created global maps of carrier rate distribution for 18 recessive disorders in 16 diverse ethnic populations. Out of a total of 161 mutations associated with 18 recessive disorders, I detected 24 mutations in either or both exome studies. The genetic mapping revealed strong international spatial heterogeneities in the carrier patterns of the inherited disorders. I next validated this methodology by statistically evaluating the carrier rate of one well-understood disorder, sickle cell anemia (SCA). The population exome-based epidemiology of SCA [African (allele frequency (AF) = 0.0454, N = 2447), Asian (AF = 0, N = 286), European (AF = 0.000214, N = 4677), and Hispanic (AF = 0.0111, N = 362)] was not significantly different from that obtained from a clinical prevalence survey. A pair-wise proportion test revealed no significant differences between the two exome projects in terms of AF (46/48 cases; P > 0.05). I conclude that population exome-based carrier rates can form the foundation for a prospectively maintained database of use to clinical geneticists. Similar modeling methods can be applied to many inherited disorders.
Collapse
Affiliation(s)
- Kohei Fujikura
- Kobe University School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- * E-mail:
| |
Collapse
|
38
|
|
39
|
Sener EF, Canatan H, Ozkul Y. Recent Advances in Autism Spectrum Disorders: Applications of Whole Exome Sequencing Technology. Psychiatry Investig 2016; 13:255-64. [PMID: 27247591 PMCID: PMC4878959 DOI: 10.4306/pi.2016.13.3.255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/22/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) is characterized by three core symptoms with impaired reciprocal social interaction and communication, a pattern of repetitive behavior and/or restricted interests in early childhood. The prevalence is higher in male children than in female children. As a complex neurodevelopmental disorder, the phenotype and severity of autism are extremely heterogeneous with differences from one patient to another. Genetics has a key role in the etiology of autism. Environmental factors are also interacting with the genetic profile and cause abnormal changes in neuronal development, brain growth, and functional connectivity. The term of exome represents less than 1% of the human genome, but contains 85% of known disease-causing variants. Whole-exome sequencing (WES) is an application of the next generation sequencing technology to determine the variations of all coding regions, or exons of known genes. For this reason, WES has been extensively used for clinical studies in the recent years. WES has achieved great success in the past years for identifying Mendelian disease genes. This review evaluates the potential of current findings in ASD for application in next generation sequencing technology, particularly WES. WES and whole-genome sequencing (WGS) approaches may lead to the discovery of underlying genetic factors for ASD and may thereby identify novel therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center, Kayseri, Turkey
| | - Halit Canatan
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Medical Faculty, Kayseri, Turkey
| |
Collapse
|
40
|
Bhartiya D, Scaria V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics 2016; 107:59-68. [DOI: 10.1016/j.ygeno.2016.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 01/05/2023]
|
41
|
Bramble MS, Goldstein EH, Lipson A, Ngun T, Eskin A, Gosschalk JE, Roach L, Vashist N, Barseghyan H, Lee E, Arboleda VA, Vaiman D, Yuksel Z, Fellous M, Vilain E. A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure: a fertility application of whole exome sequencing. Hum Reprod 2016; 31:905-14. [PMID: 26911863 DOI: 10.1093/humrep/dew025] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can whole exome sequencing (WES) and in vitro validation studies be used to find the causative genetic etiology in a patient with primary ovarian failure and infertility? SUMMARY ANSWER A novel follicle-stimulating hormone receptor (FSHR) mutation was found by WES and shown, via in vitro flow cytometry studies, to affect membrane trafficking. WHAT IS KNOWN ALREADY WES may diagnose up to 25-35% of patients with suspected disorders of sex development (DSD). FSHR mutations are an extremely rare cause of 46, XX gonadal dysgenesis with primary amenorrhea due to hypergonadotropic ovarian failure. STUDY DESIGN, SIZE, DURATION A WES study was followed by flow cytometry studies of mutant protein function. PARTICIPANTS/MATERIALS, SETTING, METHODS The study subjects were two Turkish sisters with hypergonadotropic primary amenorrhea, their parents and two unaffected sisters. The affected siblings and both parents were sequenced (trio-WES). Transient transfection of HEK 293T cells was performed with a vector containing wild-type FSHR as well as the novel FSHR variant that was discovered by WES. Cellular localization of FSHR protein as well as FSH-stimulated cyclic AMP (cAMP) production was evaluated using flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE Both affected sisters were homozygous for a previously unreported missense mutation (c.1222G>T, p.Asp408Tyr) in the second transmembrane domain of FSHR. Modeling predicted disrupted secondary structure. Flow cytometry demonstrated an average of 48% reduction in cell-surface signal detection (P < 0.01). The mean fluorescent signal for cAMP (second messenger of FSHR), stimulated by FSH, was reduced by 50% in the mutant-transfected cells (P < 0.01). LIMITATIONS, REASONS FOR CAUTION This is an in vitro validation. All novel purported genetic variants can be clinically reported only as 'variants of uncertain significance' until more patients with a similar phenotype are discovered with the same variant. WIDER IMPLICATIONS OF THE FINDINGS We report the first WES-discovered FSHR mutation, validated by quantitative flow cytometry. WES is a valuable tool for diagnosis of rare genetic diseases, and flow cytometry allows for quantitative characterization of purported variants. WES-assisted diagnosis allows for treatments aimed at the underlying molecular etiology of disease. Future studies should focus on pharmacological and assisted reproductive treatments aimed at the disrupted FSHR, so that patients with FSH resistance can be treated by personalized medicine. STUDY FUNDING/COMPETING INTERESTS E.V. is partially funded by the DSD Translational Research Network (NICHD 1R01HD068138). M.S.B. is funded by the Neuroendocrinology, Sex Differences and Reproduction training grant (NICHD 5T32HD007228). The authors have no competing interests to disclose.
Collapse
Affiliation(s)
- Matthew S Bramble
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Ellen H Goldstein
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of California Los Angeles, 10833 Le Conte Avenue, Room 24-130 CHS, Los Angeles, CA 90095, USA
| | - Allen Lipson
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Tuck Ngun
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Jason E Gosschalk
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Lara Roach
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Neerja Vashist
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Eric Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Daniel Vaiman
- Department of Development, Reproduction, and Cancer, Institut Cochin, U1016 Inserm, University Sorbonne Paris, CNRS UMR8104, Paris, France
| | - Zafer Yuksel
- Department of Medical Genetics, Women and Children Hospital, Halkkent Mh. Fatih Sultan Mehmet Boulevard No. 23, Mersin 33240, Turkey
| | - Marc Fellous
- Department of Development, Reproduction, and Cancer, Institut Cochin, U1016 Inserm, University Sorbonne Paris, CNRS UMR8104, Paris, France
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project. Eur J Hum Genet 2016; 24:1181-7. [PMID: 26757982 DOI: 10.1038/ejhg.2015.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023] Open
Abstract
Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10(-8)) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10(-4)) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response.
Collapse
|
43
|
Franić S, Groen-Blokhuis MM, Dolan CV, Kattenberg MV, Pool R, Xiao X, Scheet PA, Ehli EA, Davies GE, van der Sluis S, Abdellaoui A, Hansell NK, Martin NG, Hudziak JJ, van Beijsterveldt CEM, Swagerman SC, Hulshoff Pol HE, de Geus EJC, Bartels M, Ropers HH, Hottenga JJ, Boomsma DI. Intelligence: shared genetic basis between Mendelian disorders and a polygenic trait. Eur J Hum Genet 2015; 23:1378-83. [PMID: 25712083 PMCID: PMC4592100 DOI: 10.1038/ejhg.2015.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 12/16/2014] [Accepted: 12/25/2014] [Indexed: 11/09/2022] Open
Abstract
Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders (eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the idea of a shared genetic basis between a Mendelian disorder and a classic polygenic trait, we performed an association study to examine the effect of 43 genes implicated in autosomal recessive cognitive disorders on intelligence in an unselected Dutch population (N=1316). Using both single-nucleotide polymorphism (SNP)- and gene-based association testing, we detected an association between intelligence and the genes of interest, with genes ELP2, TMEM135, PRMT10, and RGS7 showing the strongest associations. This is a demonstration of the relevance of genes implicated in monogenic disorders of intelligence to normal-range intelligence, and a corroboration of the utility of employing knowledge on monogenic disorders in identifying the genetic variability underlying complex traits.
Collapse
Affiliation(s)
- Sanja Franić
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maria M Groen-Blokhuis
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathijs V Kattenberg
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Xiangjun Xiao
- Division of OVP, Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul A Scheet
- Division of OVP, Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics,Avera McKennan Hospital, University Health Center, Sioux Falls, SD, USA
| | - Gareth E Davies
- Avera Institute for Human Genetics,Avera McKennan Hospital, University Health Center, Sioux Falls, SD, USA
| | - Sophie van der Sluis
- Section Functional Genomics, Department of Clinical Genetics, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Abdel Abdellaoui
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Narelle K Hansell
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, Queensland Institute of Medical Research, Brisbane, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, Queensland Institute of Medical Research, Brisbane, Australia
| | - James J Hudziak
- Department of Psychiatry and Medicine, University of Vermont, Burlington, VT, USA
| | | | - Suzanne C Swagerman
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Hilleke E Hulshoff Pol
- Neuroimaging Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - H Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
SHEN TONY, LEE ARIEL, SHEN CAROL, LIN C. The long tail and rare disease research: the impact of next-generation sequencing for rare Mendelian disorders. Genet Res (Camb) 2015; 97:e15. [PMID: 26365496 PMCID: PMC6863629 DOI: 10.1017/s0016672315000166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022] Open
Abstract
There are an estimated 6000-8000 rare Mendelian diseases that collectively affect 30 million individuals in the United States. The low incidence and prevalence of these diseases present significant challenges to improving diagnostics and treatments. Next-generation sequencing (NGS) technologies have revolutionized research of rare diseases. This article will first comment on the effectiveness of NGS through the lens of long-tailed economics. We then provide an overview of recent developments and challenges of NGS-based research on rare diseases. As the quality of NGS studies improve and the cost of sequencing decreases, NGS will continue to make a significant impact on the study of rare diseases moving forward.
Collapse
Affiliation(s)
- TONY SHEN
- Rare Genomics Institute, 5225 Pooks Hills Road, Suite 1701N, Bethesda, MD 20814, USA
- Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - ARIEL LEE
- Rare Genomics Institute, 5225 Pooks Hills Road, Suite 1701N, Bethesda, MD 20814, USA
- Nova Southeastern University, College of Osteopathic Medicine, 3301 College Avenue, Ft. Lauderdale, FL 333314-796, USA
| | - CAROL SHEN
- Rare Genomics Institute, 5225 Pooks Hills Road, Suite 1701N, Bethesda, MD 20814, USA
- Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - C.JIMMY LIN
- Rare Genomics Institute, 5225 Pooks Hills Road, Suite 1701N, Bethesda, MD 20814, USA
| |
Collapse
|
45
|
Clinical and Counseling Experiences of Early Adopters of Whole Exome Sequencing. J Genet Couns 2015; 25:337-43. [DOI: 10.1007/s10897-015-9876-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
46
|
Tallapragada DSP, Bhaskar S, Chandak GR. New insights from monogenic diabetes for "common" type 2 diabetes. Front Genet 2015; 6:251. [PMID: 26300908 PMCID: PMC4528293 DOI: 10.3389/fgene.2015.00251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023] Open
Abstract
Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes.
Collapse
Affiliation(s)
| | | | - Giriraj R. Chandak
- Genomic Research on Complex Diseases Laboratory, Council of Scientific and Industrial Research-Centre for Cellular and Molecular BiologyHyderabad, India
| |
Collapse
|
47
|
Liu JJ, Fan LL, Chen JL, Tan ZP, Yang YF. A novel variant in TBX20 (p.D176N) identified by whole-exome sequencing in combination with a congenital heart disease related gene filter is associated with familial atrial septal defect. J Zhejiang Univ Sci B 2015; 15:830-7. [PMID: 25183037 DOI: 10.1631/jzus.b1400062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defects, and its etiology is not completely understood. Atrial septal defect (ASD) is one of the most common defects of CHD. Previous studies have demonstrated that mutations in the transcription factor T-box 20 (TBX20) contribute to congenital ASD. Whole-exome sequencing in combination with a CHD-related gene filter was used to detect a family of three generations with ASD. A novel TBX20 mutation, c.526G>A (p.D176N), was identified and co-segregated in all affected members in this family. This mutation was predicted to be deleterious by bioinformatics programs (SIFT, Polyphen2, and MutationTaster). This mutation was also not presented in the current Single Nucleotide Polymorphism Database (dbSNP) or National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). In conclusion, our finding expands the spectrum of TBX20 mutations and provides additional support that TBX20 plays important roles in cardiac development. Our study also provided a new and cost-effective analysis strategy for the genetic study in small CHD pedigree.
Collapse
Affiliation(s)
- Ji-jia Liu
- Department of Cardiothoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Center of Clinical Gene Diagnosis and Therapy, the State Key Laboratory of Medical Genetics, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | | | | | | | | |
Collapse
|
48
|
Jamuar SS, Tan EC. Clinical application of next-generation sequencing for Mendelian diseases. Hum Genomics 2015; 9:10. [PMID: 26076878 PMCID: PMC4482154 DOI: 10.1186/s40246-015-0031-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/01/2015] [Indexed: 01/25/2023] Open
Abstract
Over the past decade, next-generation sequencing (NGS) has led to an exponential increase in our understanding of the genetic basis of Mendelian diseases. NGS allows for the analysis of multiple regions of the genome in one single reaction and has been shown to be a cost-effective and efficient tool in investigating patients with Mendelian diseases. More recently, NGS has been successfully deployed in the clinics, with a reported diagnostic yield of ~25 %. However, recommendations on clinical implementation of NGS are still evolving with numerous key challenges that impede the widespread use of genetics in everyday medicine. These challenges include when to order, on whom to order, what type of test to order, and how to interpret and communicate the results, including incidental findings, to the patient and family. In this review, we discuss these challenges and suggest guidelines on implementing NGS in the routine clinical workflow.
Collapse
Affiliation(s)
- Saumya Shekhar Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ene-Choo Tan
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore. .,KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore, Singapore.
| |
Collapse
|
49
|
Tetreault M, Bareke E, Nadaf J, Alirezaie N, Majewski J. Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn 2015; 15:749-60. [PMID: 25959410 DOI: 10.1586/14737159.2015.1039516] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Whole-exome sequencing (WES) represents a significant breakthrough in the field of human genetics. This technology has largely contributed to the identification of new disease-causing genes and is now entering clinical laboratories. WES represents a powerful tool for diagnosis and could reduce the 'diagnostic odyssey' for many patients. In this review, we present a technical overview of WES analysis, variants annotation and interpretation in a clinical setting. We evaluate the usefulness of clinical WES in different clinical indications, such as rare diseases, cancer and complex diseases. Finally, we discuss the efficacy of WES as a diagnostic tool and the impact on patient management.
Collapse
Affiliation(s)
- Martine Tetreault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
50
|
Björkegren JLM, Kovacic JC, Dudley JT, Schadt EE. Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol 2015; 65:830-845. [PMID: 25720628 DOI: 10.1016/j.jacc.2014.12.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies (GWAS) have been extensively used to study common complex diseases such as coronary artery disease (CAD), revealing 153 suggestive CAD loci, of which at least 46 have been validated as having genome-wide significance. However, these loci collectively explain <10% of the genetic variance in CAD. Thus, we must address the key question of what factors constitute the remaining 90% of CAD heritability. We review possible limitations of GWAS, and contextually consider some candidate CAD loci identified by this method. Looking ahead, we propose systems genetics as a complementary approach to unlocking the CAD heritability and etiology. Systems genetics builds network models of relevant molecular processes by combining genetic and genomic datasets to ultimately identify key "drivers" of disease. By leveraging systems-based genetic approaches, we can help reveal the full genetic basis of common complex disorders, enabling novel diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia.
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|