1
|
Naciri I, Andrade-Ludena MD, Yang Y, Kong M, Sun S. An emerging link between lncRNAs and cancer sex dimorphism. Hum Genet 2024; 143:831-842. [PMID: 38095719 PMCID: PMC11176266 DOI: 10.1007/s00439-023-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/05/2023] [Indexed: 06/15/2024]
Abstract
The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Maria D Andrade-Ludena
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Abe H, Yeh YH, Munakata Y, Ishiguro KI, Andreassen PR, Namekawa SH. Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation. Nat Commun 2022; 13:7212. [PMID: 36443288 PMCID: PMC9705562 DOI: 10.1038/s41467-022-34295-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential process in the male germline. While genetic experiments have established that the DNA damage response (DDR) pathway directs MSCI, due to limitations to the experimental systems available, mechanisms underlying MSCI remain largely unknown. Here we establish a system to study MSCI ex vivo, based on a short-term culture method, and demonstrate that active DDR signaling is required both to initiate and maintain MSCI via a dynamic and reversible process. DDR-directed MSCI follows two layers of modifications: active DDR-dependent reversible processes and irreversible histone post-translational modifications. Further, the DDR initiates MSCI independent of the downstream repressive histone mark H3K9 trimethylation (H3K9me3), thereby demonstrating that active DDR signaling is the primary mechanism of silencing in MSCI. By unveiling the dynamic nature of MSCI, and its governance by active DDR signals, our study highlights the sex chromosomes as an active signaling hub in meiosis.
Collapse
Affiliation(s)
- Hironori Abe
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Yu-Han Yeh
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Verma A, Sinha A, Datta D. Modulation of DNA/RNA Methylation by Small-Molecule Modulators and Their Implications in Cancer. Subcell Biochem 2022; 100:557-579. [PMID: 36301506 DOI: 10.1007/978-3-031-07634-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatin is an organized complex of DNA, histone proteins, and RNA. Chromatin modifications include DNA methylation, RNA methylation, and histone acetylation and methylation. The methylation of chromatin complexes predominantly alters the regulation of gene expression, and its deregulation is associated with several human diseases including cancer. Cancer is a disease characterized by dynamic changes in the genetic and epigenetic architecture of a cell. Altered DNA methylation by DNA methyltransferases (DNMTs) and m6A RNA methylation facilitate tumor initiation and progression and thus serve as critical targets for cancer therapy. Small-molecule modulators of these epigenetic targets are at the hotspots of current cancer drug discovery research. Indeed, recent studies have led to the discovery of several chemical modulators against these targets, some of which have already gained approval for cancer therapy while others are undergoing clinical trials. In this chapter, we will focus on the role of small-molecule modulators in regulating DNA/RNA methylation and their implications in cancer.
Collapse
Affiliation(s)
- Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Abhipsa Sinha
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India.
| |
Collapse
|
4
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
5
|
Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development 2020; 147:147/1/dev183095. [PMID: 31900287 DOI: 10.1242/dev.183095] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
X chromosome inactivation (XCI) is a key developmental process taking place in female mammals to compensate for the imbalance in the dosage of X-chromosomal genes between sexes. It is a formidable example of concerted gene regulation and a paradigm for epigenetic processes. Although XCI has been substantially deciphered in the mouse model, how this process is initiated in humans has long remained unexplored. However, recent advances in the experimental capacity to access human embryonic-derived material and in the laws governing ethical considerations of human embryonic research have allowed us to enlighten this black box. Here, we will summarize the current knowledge of human XCI, mainly based on the analyses of embryos derived from in vitro fertilization and of pluripotent stem cells, and highlight any unanswered questions.
Collapse
Affiliation(s)
- Catherine Patrat
- Université de Paris, UMR 1016, Institut Cochin, 75014 Paris, France .,Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP.centre, 75014 Paris, France
| | | | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France
| |
Collapse
|
6
|
Kime C, Kiyonari H, Ohtsuka S, Kohbayashi E, Asahi M, Yamanaka S, Takahashi M, Tomoda K. Induced 2C Expression and Implantation-Competent Blastocyst-like Cysts from Primed Pluripotent Stem Cells. Stem Cell Reports 2019; 13:485-498. [PMID: 31402336 PMCID: PMC6739768 DOI: 10.1016/j.stemcr.2019.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Soon after fertilization, the few totipotent cells of mammalian embryos diverge to form a structure called the blastocyst (BC). Although numerous cell types, including germ cells and extended-pluripotency stem cells, have been developed from pluripotent stem cells (PSCs) in vitro, generating functional BCs only from PSCs remains elusive. Here, we describe induced self-organizing 3D BC-like cysts (iBLCs) generated from mouse PSC culture. Resembling natural BCs, iBLCs have a blastocoel-like cavity and were formed with outer cells expressing trophectoderm lineage markers and with inner cells expressing pluripotency markers. iBLCs transplanted to pseudopregnant mice uteruses implanted, induced decidualization, and exhibited growth and development before resorption, demonstrating that iBLCs are implantation competent. iBLC precursor intermediates required the transcription factor Prdm14 and concomitantly activated the totipotency-related cleavage-stage MERVL reporter and 2C genes. Thus, our system may contribute to the understanding of molecular mechanisms underpinning totipotency, embryogenesis, and implantation.
Collapse
Affiliation(s)
- Cody Kime
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Lab of Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Satoshi Ohtsuka
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Eiko Kohbayashi
- Second Department of Internal Medicine, Osaka Medical College, Osaka 569-8686, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka 569-8686, Japan
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Masayo Takahashi
- Lab of Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka 569-8686, Japan.
| |
Collapse
|
7
|
Signatures of replication timing, recombination, and sex in the spectrum of rare variants on the human X chromosome and autosomes. Proc Natl Acad Sci U S A 2019; 116:17916-17924. [PMID: 31427530 PMCID: PMC6731651 DOI: 10.1073/pnas.1900714116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sources of human germline mutations are poorly understood. Part of the difficulty is that mutations occur very rarely, and so direct pedigree-based approaches remain limited in the numbers that they can examine. To address this problem, we consider the spectrum of low-frequency variants in a dataset (Genome Aggregation Database, gnomAD) of 13,860 human X chromosomes and autosomes. X-autosome differences are reflective of germline sex differences and have been used extensively to learn about male versus female mutational processes; what is less appreciated is that they also reflect chromosome-level biochemical features that differ between the X and autosomes. We tease these components apart by comparing the mutation spectrum in multiple genomic compartments on the autosomes and between the X and autosomes. In so doing, we are able to ascribe specific mutation patterns to replication timing and recombination and to identify differences in the types of mutations that accrue in males and females. In particular, we identify C > G as a mutagenic signature of male meiotic double-strand breaks on the X, which may result from late repair. Our results show how biochemical processes of damage and repair in the germline interact with sex-specific life history traits to shape mutation patterns on both the X chromosome and autosomes.
Collapse
|
8
|
Lobo J, Gillis AJM, Jerónimo C, Henrique R, Looijenga LHJ. Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic. Int J Mol Sci 2019; 20:E258. [PMID: 30634670 PMCID: PMC6359418 DOI: 10.3390/ijms20020258] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 02/03/2023] Open
Abstract
Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as 'genvironment'. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DNA fragments (i.e., XIST promotor) as well as embryonic microRNAs as molecular biomarkers for cancer detection in liquid biopsies will be presented.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Ad J M Gillis
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Leendert H J Looijenga
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| |
Collapse
|
9
|
Takahashi S, Kobayashi S, Hiratani I. Epigenetic differences between naïve and primed pluripotent stem cells. Cell Mol Life Sci 2018; 75:1191-1203. [PMID: 29134247 PMCID: PMC5843680 DOI: 10.1007/s00018-017-2703-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
It has been 8 years since the concept of naïve and primed pluripotent stem cell states was first proposed. Both are states of pluripotency, but exhibit slightly different properties. The naïve state represents the cellular state of the preimplantation mouse blastocyst inner cell mass, while the primed state is representative of the post-implantation epiblast cells. These two cell types exhibit clearly distinct developmental potential, as evidenced by the fact that naïve cells are able to contribute to blastocyst chimeras, while primed cells cannot. However, the epigenetic differences that underlie the distinct developmental potential of these cell types remain unclear, which is rather surprising given the large amount of active investigation over the years. Elucidating such epigenetic differences should lead to a better understanding of the fundamental properties of these states of pluripotency and the means by which the naïve-to-primed transition occurs, which may provide insights into the essence of stem cell commitment.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Shin Kobayashi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan.
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
10
|
Deb A, Sarkar A, Ghosh Z. Dissecting the variation in transcriptional circuits between naive and primed pluripotent states. FEBS Lett 2017. [DOI: 10.1002/1873-3468.12732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aritra Deb
- Bioinformatics Centre; Bose Institute; Kolkata India
| | | | - Zhumur Ghosh
- Bioinformatics Centre; Bose Institute; Kolkata India
| |
Collapse
|
11
|
Lessing D, Dial TO, Wei C, Payer B, Carrette LLG, Kesner B, Szanto A, Jadhav A, Maloney DJ, Simeonov A, Theriault J, Hasaka T, Bedalov A, Bartolomei MS, Lee JT. A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation. Proc Natl Acad Sci U S A 2016; 113:14366-14371. [PMID: 28182563 PMCID: PMC5167172 DOI: 10.1073/pnas.1617597113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
X-chromosome inactivation is a mechanism of dosage compensation in which one of the two X chromosomes in female mammals is transcriptionally silenced. Once established, silencing of the inactive X (Xi) is robust and difficult to reverse pharmacologically. However, the Xi is a reservoir of >1,000 functional genes that could be potentially tapped to treat X-linked disease. To identify compounds that could reactivate the Xi, here we screened ∼367,000 small molecules in an automated high-content screen using an Xi-linked GFP reporter in mouse fibroblasts. Given the robust nature of silencing, we sensitized the screen by "priming" cells with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5azadC). Compounds that elicited GFP activity include VX680, MLN8237, and 5azadC, which are known to target the Aurora kinase and DNA methylation pathways. We demonstrate that the combinations of VX680 and 5azadC, as well as MLN8237 and 5azadC, synergistically up-regulate genes on the Xi. Thus, our work identifies a synergism between the DNA methylation and Aurora kinase pathways as being one of interest for possible pharmacological reactivation of the Xi.
Collapse
Affiliation(s)
- Derek Lessing
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Thomas O Dial
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chunyao Wei
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Lieselot L G Carrette
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Barry Kesner
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Attila Szanto
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - David J Maloney
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | | | | | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
13
|
Lazarus J, Mather KA, Thalamuthu A, Kwok JBJ. Genetic factors and epigenetic mechanisms of longevity: current perspectives. Epigenomics 2015; 7:1339-49. [PMID: 26639084 DOI: 10.2217/epi.15.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The exceptional longevity phenotype, defined as living beyond the age of 95, results from complex interactions between environmental and genetic factors. Epigenetic mechanisms, such as DNA methylation and histone modifications, mediate the interaction of these factors. This review will provide an overview of animal model studies used to examine age-related epigenetic modifications. Key human studies will be used to illustrate the progress made in the identification of the genetic loci associated with exceptional longevity, including APOE and FOXO3 and genes/loci that are also differentially methylated between long-lived individuals and younger controls. Future studies should focus on elucidating whether identified longevity genetic loci directly influence epigenetic mechanisms, especially on differentially methylated regions associated with longevity.
Collapse
Affiliation(s)
- Jessica Lazarus
- Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW 2031, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - John B J Kwok
- Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW 2031, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Whitworth DJ, Frith JE, Frith TJR, Ovchinnikov DA, Cooper-White JJ, Wolvetang EJ. Derivation of mesenchymal stromal cells from canine induced pluripotent stem cells by inhibition of the TGFβ/activin signaling pathway. Stem Cells Dev 2015; 23:3021-33. [PMID: 25055193 DOI: 10.1089/scd.2013.0634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study we have generated canine mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, from canine induced pluripotent stem cells (ciPSCs) by small-molecule inhibition of the transforming growth factor beta (TGFβ)/activin signaling pathway. These ciPSC-derived MSCs (ciPSC-MSCs) express the MSC markers CD73, CD90, CD105, STRO1, cPDGFRβ and cKDR, in addition to the pluripotency factors OCT4, NANOG and REX1. ciPSC-MSCs lack immunostaining for H3K27me3, suggesting that they possess two active X chromosomes. ciPSC-MSCs are highly proliferative and undergo robust differentiation along the osteo-, chondro- and adipogenic pathways, but do not form teratoma-like tissues in vitro. Of further significance for the translational potential of ciPSC-MSCs, we show that these cells can be encapsulated and maintained within injectable hydrogel matrices that, when functionalized with bound pentosan polysulfate, dramatically enhance chondrogenesis and inhibit osteogenesis. The ability to efficiently derive large numbers of highly proliferative canine MSCs from ciPSCs that can be incorporated into injectable, functionalized hydrogels that enhance their differentiation along a desired lineage constitutes an important milestone towards developing an effective MSC-based therapy for osteoarthritis in dogs, but equally provides a model system for assessing the efficacy and safety of analogous approaches for treating human degenerative joint diseases.
Collapse
Affiliation(s)
- Deanne J Whitworth
- 1 School of Veterinary Science, University of Queensland , Gatton, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proc Natl Acad Sci U S A 2015; 112:14415-22. [PMID: 26489649 DOI: 10.1073/pnas.1519528112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The long noncoding X-inactivation-specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line.
Collapse
|
16
|
Allouba MH, ElGuindy AM, Krishnamoorthy N, Yacoub MH, Aguib YE. NaNog: A pluripotency homeobox (master) molecule. Glob Cardiol Sci Pract 2015; 2015:36. [PMID: 26566529 PMCID: PMC4625207 DOI: 10.5339/gcsp.2015.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/30/2015] [Indexed: 01/06/2023] Open
Abstract
One of the most intriguing aspects of cell biology is the state of pluripotency, where the cell is capable of self-renewal for as many times as deemed “necessary”, then at a specified time can differentiate into any type of cell. This fundamental process is required during organogenesis in foetal life and importantly during tissue repair in health and disease. Pluripotency is very tightly regulated, as any dysregulation can result in congenital defects, inability to repair damage, or cancer. Fuelled by the relatively recent interest in stem cell biology and tissue regeneration, the molecules implicated in regulating pluripotency have been the subject of extensive research. One of the important molecules involved in pluripotency, is NaNog, the subject of this article.
Collapse
Affiliation(s)
| | | | - Navaneethakrishnan Krishnamoorthy
- Qatar Cardiovascular Research Centre, Doha, Qatar ; Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
17
|
Baird A, Barsby T, Guest DJ. Derivation of Canine Induced Pluripotent Stem Cells. Reprod Domest Anim 2015; 50:669-76. [PMID: 26074059 DOI: 10.1111/rda.12562] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/23/2015] [Indexed: 12/31/2022]
Abstract
Dogs and humans have many inherited genetic diseases in common and conditions that are increasingly prevalent in humans also occur naturally in dogs. The use of dogs for the experimental and clinical testing of stem cell and regenerative medicine products would benefit canine health and welfare and provide relevant animal models for the translation of therapies to the human field. Induced pluripotent stem cells (iPSCs) have the capacity to turn into all cells of the body and therefore have the potential to provide cells for therapeutic use and for disease modelling. The objective of this study was to derive and characterize iPSCs from karyotypically abnormal adult canine cells. Aneuploid adipose-derived mesenchymal stromal cells (AdMSCs) from an adult female Weimeraner were re-programmed into iPSCs via overexpression of four human pluripotency factors (Oct 4, Sox2, Klf4 and c-myc) using retroviral vectors. The iPSCs showed similarity to human ESCs with regard to morphology, pluripotency marker expression and the ability to differentiate into derivatives of all three germ layers in vitro (endoderm, ectoderm and mesoderm). The iPSCs also demonstrated silencing of the viral transgenes and re-activation of the silent X chromosome, suggesting full reprogramming had occurred. The levels of aneuploidy observed in the AdMSCs were maintained in the iPSCs. This finding demonstrates the potential for generating canine induced pluripotent stem cells for use as disease models in addition to regenerative medicine and pharmaceutical testing.
Collapse
Affiliation(s)
- Aeg Baird
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| | - T Barsby
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| | - D J Guest
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| |
Collapse
|
18
|
Rijlaarsdam MA, Tax DMJ, Gillis AJM, Dorssers LCJ, Koestler DC, de Ridder J, Looijenga LHJ. Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors. PLoS One 2015; 10:e0122146. [PMID: 25859847 PMCID: PMC4479500 DOI: 10.1371/journal.pone.0122146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/07/2015] [Indexed: 12/18/2022] Open
Abstract
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809).
Collapse
Affiliation(s)
- Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M. J. Tax
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeroen de Ridder
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Di KQ, Gao S, Cui LF, Chang G, Wu FJ, Ren LK, An L, Miao K, Tan K, Tao L, Chen H, Wang ZL, Wang SM, Wu ZH, Gao S, Li XY, Tian JH. Generation of fully pluripotent female murine-induced pluripotent stem cells. Biol Reprod 2015; 92:123. [PMID: 25788660 DOI: 10.1095/biolreprod.114.124958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/03/2015] [Indexed: 02/05/2023] Open
Abstract
The high quality of induced pluripotent stem cells (iPSCs) has been determined to be high-grade chimeras that are competent for germline transmission, and viable mice can be generated through tetraploid complementation. Most of the high-quality iPSCs described to date have been male. Female iPSCs, especially fully pluripotent female iPSCs, are also essential for clinical applications and scientific research. Here, we show, for the first time, that a gender-mixed induction strategy could lead to a skewed sex ratio of iPSCs. After reprogramming, 50%, 70%, and 90% female initiating mouse embryonic fibroblasts at different male ratios resulted in 14.1 ± 6.8% (P < 0.05), 31.8 ± 5.4% (P < 0.05), and 80.1 ± 2.8% (P < 0.05) female iPSCs, respectively. Furthermore, these female iPSCs had pluripotent properties typical of embryonic stem cells. Importantly, these fully pluripotent female iPSCs could generate viable mice by tetraploid complementation. These findings indicate that high-quality female iPSCs could be derived effectively, and suggest that clinical application of female iPSCs is feasible.
Collapse
Affiliation(s)
- Ke-Qian Di
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China Health Science Center, Hebei University, Baoding, Hebei, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Li-Fang Cui
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Gang Chang
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Fu-Jia Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Li-Kun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Li Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Hui Chen
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China
| | - Zhi-Long Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Shu-Min Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Zhong-Hong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Shaorong Gao
- National Institute of Biological Sciences, Beijing, People's Republic of China The School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xiang-Yun Li
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China
| | - Jian-Hui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
20
|
D'Amico F, Skarmoutsou E, Mazzarino MC. The sex bias in systemic sclerosis: on the possible mechanisms underlying the female disease preponderance. Clin Rev Allergy Immunol 2014; 47:334-43. [PMID: 24126759 DOI: 10.1007/s12016-013-8392-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis is a multifactorial and heterogeneous disease. Genetic and environmental factors are known to interplay in the onset and progression of systemic sclerosis. Sex plays an important and determinant role in the development of such a disorder. Systemic sclerosis shows a significant female preponderance. However, the reason for this female preponderance is incompletely understood. Hormonal status, genetic and epigenetic differences, and lifestyle have been considered in order to explain female preponderance in systemic sclerosis. Sex chromosomes play a determinant role in contributing to systemic sclerosis onset and progression, as well as in its sex-biased prevalence. It is known, in fact, that X chromosome contains many sex- and immuno-related genes, thus contributing to immuno tolerance and sex hormone status. This review focuses mainly on the recent progress on epigenetic mechanisms--exclusively linked to the X chromosome--which would contribute to the development of systemic sclerosis. Furthermore, we report also some hypotheses (dealing with skewed X chromosome inactivation, X gene reactivation, acquired monosomy) that have been proposed in order to justify the female preponderance in autoimmune diseases. However, despite the intensive efforts in elucidating the mechanisms involved in the pathogenesis of systemic sclerosis, many questions remain still unanswered.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Bio-medical Sciences, University of Catania, via Androne 83, 95124, Catania, Italy,
| | | | | |
Collapse
|
21
|
Payer B, Lee JT. Coupling of X-chromosome reactivation with the pluripotent stem cell state. RNA Biol 2014; 11:798-807. [PMID: 25137047 DOI: 10.4161/rna.29779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
X-chromosome inactivation (XCI) in female mammals is a dramatic example of epigenetic gene regulation, which entails the silencing of an entire chromosome through a wide range of mechanisms involving noncoding RNAs, chromatin-modifications, and DNA-methylation. While XCI is associated with the differentiated cell state, it is reversed by X-chromosome reactivation (XCR) ex vivo in pluripotent stem cells and in vivo in the early mouse embryo and the germline. Critical in the regulation of XCI vs. XCR is the X-inactivation center, a multigene locus on the X-chromosome harboring several long noncoding RNA genes including, most prominently, Xist and Tsix. These genes, which sit at the top of the XCI hierarchy, are by themselves controlled by pluripotency factors, coupling XCR with the naïve pluripotent stem cell state. In this point-of-view article we review the latest findings regarding this intricate relationship between cell differentiation state and epigenetic control of the X-chromosome. In particular, we discuss the emerging picture of complex multifactorial regulatory mechanisms, ensuring both a fine-tuned and robust X-reactivation process.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute; Department of Molecular Biology; Massachusetts General Hospital; Department of Genetics; Harvard Medical School; Boston, MA USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology; Massachusetts General Hospital; Department of Genetics; Harvard Medical School; Boston, MA USA
| |
Collapse
|
22
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat Commun 2014; 5:4209. [PMID: 24979243 PMCID: PMC4086345 DOI: 10.1038/ncomms5209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/26/2014] [Indexed: 01/01/2023] Open
Abstract
Imprinted X-inactivation is a paradigm of mammalian transgenerational epigenetic regulation resulting in silencing of genes on the paternally inherited X-chromosome. The preprogrammed fate of the X-chromosomes is thought to be controlled in cis by the parent-of-origin-specific expression of two opposing long non-coding RNAs, Tsix and Xist, in mice. Exclusive expression of Tsix from the maternal-X has implicated it as the instrument through which the maternal germline prevents inactivation of the maternal-X in the offspring. Here, we show that Tsix is dispensable for inhibiting Xist and X-inactivation in the early embryo and in cultured stem cells of extra-embryonic lineages. Tsix is instead required to prevent Xist expression as trophectodermal progenitor cells differentiate. Despite induction of wild-type Xist RNA and accumulation of histone H3-K27me3, many Tsix-mutant X-chromosomes fail to undergo ectopic X-inactivation. We propose a novel model of lncRNA function in imprinted X-inactivation that may also apply to other genomically imprinted loci.
Collapse
|
24
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|
25
|
Human active X-specific DNA methylation events showing stability across time and tissues. Eur J Hum Genet 2014; 22:1376-81. [PMID: 24713664 DOI: 10.1038/ejhg.2014.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 01/29/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a 'patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena.
Collapse
|
26
|
Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PRJ, Wolvetang EJ. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 2014; 23:1515-23. [PMID: 24555755 DOI: 10.1089/scd.2013.0461] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.
Collapse
Affiliation(s)
- Deanne J Whitworth
- 1 School of Veterinary Science, University of Queensland , Gatton, Queensland, Australia
| | | | | | | | | |
Collapse
|
27
|
Dynamics of the two heterochromatin types during imprinted X chromosome inactivation in vole Microtus levis. PLoS One 2014; 9:e88256. [PMID: 24505450 PMCID: PMC3913780 DOI: 10.1371/journal.pone.0088256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022] Open
Abstract
In rodent female mammals, there are two forms of X-inactivation – imprinted and random which take place in extraembryonic and embryonic tissues, respectively. The inactive X-chromosome during random X-inactivation was shown to contain two types of facultative heterochromatin that alternate and do not overlap. However, chromatin structure of the inactive X-chromosome during imprinted X-inactivation, especially at early stages, is still not well understood. In this work, we studied chromatin modifications associated with the inactive X-chromosome at different stages of imprinted X-inactivation in a rodent, Microtus levis. It has been found that imprinted X-inactivation in vole occurs in a species-specific manner in two steps. The inactive X-chromosome at early stages of imprinted X-inactivation is characterized by accumulation of H3K9me3, HP1, H4K20me3, and uH2A, resembling to some extent the pattern of repressive chromatin modifications of meiotic sex chromatin. Later, the inactive X-chromosome recruits trimethylated H3K27 and acquires the two types of heterochromatin associated with random X-inactivation.
Collapse
|
28
|
Payer B, Rosenberg M, Yamaji M, Yabuta Y, Koyanagi-Aoi M, Hayashi K, Yamanaka S, Saitou M, Lee JT. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol Cell 2013; 52:805-18. [PMID: 24268575 DOI: 10.1016/j.molcel.2013.10.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 09/05/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Transitions between pluripotent and differentiated states are marked by dramatic epigenetic changes. Cellular differentiation is tightly linked to X chromosome inactivation (XCI), whereas reprogramming to induced pluripotent stem cells (iPSCs) is associated with X chromosome reactivation (XCR). XCR reverses the silent state of the inactive X, occurring in mouse blastocysts and germ cells. In spite of its importance, little is known about underlying mechanisms. Here, we examine the role of the long noncoding Tsix RNA and the germline factor, PRDM14. In blastocysts, XCR is perturbed by mutation of either Tsix or Prdm14. In iPSCs, XCR is disrupted only by PRDM14 deficiency, which also affects iPSC derivation and maintenance. We show that Tsix and PRDM14 directly link XCR to pluripotency: first, PRDM14 represses Rnf12 by recruiting polycomb repressive complex 2; second, Tsix enables PRDM14 to bind Xist. Thus, our study provides functional and mechanistic links between cellular and X chromosome reprogramming.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Rosenberg
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Masashi Yamaji
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michiyo Koyanagi-Aoi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; JST, PRESTO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
30
|
Zhang B, Krawetz R, Rancourt DE. Would the real human embryonic stem cell please stand up? Bioessays 2013; 35:632-8. [PMID: 23653435 DOI: 10.1002/bies.201200162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic stem cells (ESCs) are now classified into two types of pluripotency: "naïve" and "primed" based upon their differing characteristics. Conventional human ESCs have much more in common with mouse epiblast stem cells and are now deemed to be primed. Naïve human ESCs that resemble mouse ESCs have recently been generated from their primed counterpart by cellular reprogramming. Isolation of naïve hESCs from human embryos has proven to be difficult. Is the inability to capture naïve hESCs the result of suboptimal derivation conditions or because they are so transient they cannot be "captured" in vitro? Prevailing evidence surrounding this issue are inconclusive and require additional human embryo research. However, negative public opinion regarding human embryo research, may make this an uphill battle. The solution may come from cellular reprogramming.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
31
|
Lessing D, Anguera MC, Lee JT. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 2013; 14:85-110. [PMID: 23662665 DOI: 10.1146/annurev-genom-091212-153530] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reprogramming somatic cells to derive induced pluripotent stem cells (iPSCs) has provided a new method to model disease and holds great promise for regenerative medicine. Although genetically identical to their donor somatic cells, iPSCs undergo substantial changes in the epigenetic landscape during reprogramming. One such epigenetic process, X chromosome inactivation (XCI), has recently been shown to vary widely in human female iPSCs and embryonic stem cells (ESCs). XCI is a form of dosage compensation whose chief regulator is the noncoding RNA Xist. In mouse iPSCs and ESCs, Xist expression and XCI strictly correlate with the pluripotent state, but no such correlation exists in humans. Lack of XIST expression in human cells is linked to reduced developmental potential and an altered transcriptional profile, including upregulation of genes associated with cancer, which has therefore led to concerns about the safety of pluripotent stem cells for use in regenerative medicine. In this review, we describe how different states of XIST expression define three classes of female human pluripotent stem cells and explore progress in discovering the reasons for these variations and how they might be countered.
Collapse
Affiliation(s)
- Derek Lessing
- Howard Hughes Medical Institute, Department of Molecular Biology, and Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
32
|
Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120292. [PMID: 23166402 DOI: 10.1098/rstb.2012.0292] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process.
Collapse
Affiliation(s)
- Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University
| | | | | |
Collapse
|
33
|
Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A, Chen J, Andreassen PR, Namekawa SH. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev 2013; 26:2737-48. [PMID: 23249736 DOI: 10.1101/gad.202713.112] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex chromosomes are uniquely subject to chromosome-wide silencing during male meiosis, and silencing persists into post-meiotic spermatids. Against this background, a select set of sex chromosome-linked genes escapes silencing and is activated in post-meiotic spermatids. Here, we identify a novel mechanism that regulates escape gene activation in an environment of chromosome-wide silencing in murine germ cells. We show that RNF8-dependent ubiquitination of histone H2A during meiosis establishes active epigenetic modifications, including dimethylation of H3K4 on the sex chromosomes. RNF8-dependent active epigenetic memory, defined by dimethylation of H3K4, persists throughout meiotic division. Various active epigenetic modifications are subsequently established on the sex chromosomes in post-meiotic spermatids. These RNF8-dependent modifications include trimethylation of H3K4, histone lysine crotonylation (Kcr), and incorporation of the histone variant H2AFZ. RNF8-dependent epigenetic programming regulates escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Kcr accumulates at transcriptional start sites of sex-linked genes activated in an RNF8-dependent manner, and a chromatin conformational change is associated with RNF8-dependent epigenetic programming. Furthermore, we demonstrate that this RNF8-dependent pathway is distinct from that which recognizes DNA double-strand breaks. Our results establish a novel connection between a DNA damage response factor (RNF8) and epigenetic programming, specifically in establishing active epigenetic modifications and gene activation.
Collapse
Affiliation(s)
- Ho-Su Sin
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110337. [PMID: 23166398 PMCID: PMC3539363 DOI: 10.1098/rstb.2011.0337] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These discoveries will aid the clinician through increasing our understanding of the inheritance, development and treatment of obesity. However, they are also of great value for epigenetic researchers, as they have revealed mechanisms of environmental interactions with epigenetics that can produce or perpetuate a disease state. Here, we will review the evidence for four mechanisms through which epigenetics contributes to obesity: as downstream effectors of environmental signals; through abnormal global epigenetic state driving obesogenic expression patterns; through facilitating developmental programming and through transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
35
|
Van Wynsberghe PM, Maine EM. Epigenetic control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:373-403. [PMID: 22872484 DOI: 10.1007/978-1-4614-4015-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dynamic regulation of histone modifications and small noncoding RNAs is observed throughout the development of the C. elegans germ line. Histone modifications are differentially regulated in the mitotic vs meiotic germ line, on X chromosomes vs autosomes and on paired chromosomes vs unpaired chromosomes. Small RNAs function in transposon silencing and developmental gene regulation. Histone modifications and small RNAs produced in the germ line can be inherited and impact embryonic development. Disruption of histone-modifying enzymes or small RNA machinery in the germ line can result in sterility due to degeneration of the germ line and/or an inability to produce functional gametes.
Collapse
|
36
|
Tomoda K, Takahashi K, Leung K, Okada A, Narita M, Yamada NA, Eilertson KE, Tsang P, Baba S, White MP, Sami S, Srivastava D, Conklin BR, Panning B, Yamanaka S. Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell 2012; 11:91-9. [PMID: 22770243 DOI: 10.1016/j.stem.2012.05.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/19/2012] [Accepted: 05/15/2012] [Indexed: 11/19/2022]
Abstract
Female human induced pluripotent stem cell (hiPSC) lines exhibit variability in X-inactivation status. The majority of hiPSC lines maintain one transcriptionally active X (Xa) and one inactive X (Xi) chromosome from donor cells. However, at low frequency, hiPSC lines with two Xas are produced, suggesting that epigenetic alterations of the Xi occur sporadically during reprogramming. We show here that X-inactivation status in female hiPSC lines depends on derivation conditions. hiPSC lines generated by the Kyoto method (retroviral or episomal reprogramming), which uses leukemia inhibitory factor (LIF)-expressing SNL feeders, frequently had two Xas. Early passage Xa/Xi hiPSC lines generated on non-SNL feeders were converted into Xa/Xa hiPSC lines after several passages on SNL feeders, and supplementation with recombinant LIF caused reactivation of some of X-linked genes. Thus, feeders are a significant factor affecting X-inactivation status. The efficient production of Xa/Xa hiPSC lines provides unprecedented opportunities to understand human X-reactivation and -inactivation.
Collapse
Affiliation(s)
- Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.
Collapse
|
38
|
Abstract
Various studies have demonstrated that somatic differentiated cells can be reprogrammed into other differentiated states or into pluripotency, thus showing that the differentiated cellular state is not irreversible. These findings have generated intense interest in the process of reprogramming and in mechanisms that govern the pluripotent state. However, the realization that differentiated cells can be triggered to switch to considerably different lineages also emphasizes that we need to understand how the identity of mature cells is normally maintained. Here we review recent studies on how the differentiated state is controlled at the transcriptional level and discuss how new insights have begun to elucidate mechanisms underlying the stable maintenance of mature cell identities.
Collapse
Affiliation(s)
- Johan Holmberg
- Ludwig Institute for Cancer Research Ltd, BOX 240, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
39
|
Jeon Y, Sarma K, Lee JT. New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 2012; 22:62-71. [PMID: 22424802 PMCID: PMC3361064 DOI: 10.1016/j.gde.2012.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 01/30/2023]
Abstract
Equalization of X linked gene expression is necessary in mammalian cells due to the presence of two X chromosomes in females and one in males. To achieve this, all female cells inactivate one of the two X chromosomes during development. This process, termed X chromosome inactivation (XCI), is a quintessential epigenetic phenomenon and involves a complex interplay between noncoding RNAs and protein factors. Progress in this area of study has consequently resulted in new approaches to study epigenetics and regulatory RNA function. Here we will discuss recent developments in the field that have advanced our understanding of XCI and its regulatory mechanisms.
Collapse
Affiliation(s)
- Yesu Jeon
- Howard Hughes Medical Institute, Dept. of Molecular Biology, Massachusetts General Hospital, Dept. of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
40
|
Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res 2012; 22:1258-69. [PMID: 22453236 DOI: 10.1038/cr.2012.48] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations of the CUL4B ubiquitin ligase gene are causally linked to syndromic X-linked mental retardation (XLMR). However, the pathogenic role of CUL4B mutations in neuronal and developmental defects is not understood. We have generated mice with targeted disruption of Cul4b, and observed embryonic lethality with pronounced growth inhibition and increased apoptosis in extra-embryonic tissues. Cul4b, but not its paralog Cul4a, is expressed at high levels in extra-embryonic tissues post implantation. Silencing of CUL4B expression in an extra-embryonic cell line resulted in the robust accumulation of the CUL4 substrate p21(Cip1/WAF) and G2/M cell cycle arrest, which could be partially rescued by silencing of p21(Cip1/WAF). Epiblast-specific deletion of Cul4b prevented embryonic lethality and gave rise to viable Cul4b null mice. Therefore, while dispensable in the embryo proper, Cul4b performs an essential developmental role in the extra-embryonic tissues. Our study offers a strategy to generate viable Cul4b-deficient mice to model the potential neuronal and behavioral deficiencies of human CUL4B XLMR patients.
Collapse
|
41
|
Bermejo-Alvarez P, Ramos-Ibeas P, Gutierrez-Adan A. Solving the "X" in embryos and stem cells. Stem Cells Dev 2012; 21:1215-24. [PMID: 22309156 DOI: 10.1089/scd.2011.0685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
X-chromosome inactivation (XCI) is a complex epigenetic process that ensures that most X-linked genes are expressed equally for both sexes. Female eutherian mammals inactivate randomly the maternal or paternal inherited X-chromosome early in embryogenesis, whereas the extra-embryonic tissues experience an imprinting XCI that results in the inactivation of the paternal X-chromosome in mice. Although the phenomenon was initially described 40 years ago, many aspects remain obscure. In the last 2 years, some trademark publications have shed new light on the ongoing debate regarding the timing and mechanism of imprinted or random XCI. It has been observed that XCI is not accomplished at the blastocyst stage in bovines, rabbits, and humans, contrasting with the situation reported in mice, the standard model. All the species present 2 active X-chromosomes (Xa) in the early epiblast of the blastocyst, the cellular source for embryonic stem cells (ESCs). In this perspective, it would make sense to expect an absence of XCI in undifferentiated ESCs, but human ESCs are highly heterogeneous for this parameter and the presence of 2 Xa has been proposed as a true hallmark of ground-state pluripotency and a quality marker for female ESCs. Similarly, XCI reversal in female induced pluripotent stem cells is a key reprogramming event on the path to achieve the naïve pluripotency, and key pluripotency regulators can interact directly or indirectly with Xist. Finally, the presence of 2 Xa may lead to a sex-specific transcriptional regulation resulting in sexual dimorphism in reprogramming and differentiation.
Collapse
|
42
|
Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cell Mol Life Sci 2012; 69:2559-72. [PMID: 22382926 DOI: 10.1007/s00018-012-0941-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR pathway recognizing DNA replication stress in the S phase. Additionally, it is likely to be distinct from the DDR pathway that recognizes meiosis-specific double-strand breaks. This review article extensively discusses the underlying mechanism of sex chromosome inactivation.
Collapse
|
43
|
Sin HS, Ichijima Y, Koh E, Namiki M, Namekawa SH. Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Res 2012; 22:827-36. [PMID: 22375025 PMCID: PMC3337429 DOI: 10.1101/gr.135046.111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals.
Collapse
Affiliation(s)
- Ho-Su Sin
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
44
|
Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 2012; 21:2288-97. [PMID: 22221227 DOI: 10.1089/scd.2011.0608] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.
Collapse
Affiliation(s)
- Deanne J Whitworth
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia.
| | | | | |
Collapse
|
45
|
Abstract
The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. While the field is racing ahead, some researchers are pausing to evaluate whether induced pluripotent stem cells are indeed the true equivalents of embryonic stem cells and whether subtle differences between these types of cell might affect their research applications and therapeutic potential.
Collapse
|
46
|
Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012; 481:295-305. [PMID: 22258608 DOI: 10.1038/nature10761] [Citation(s) in RCA: 788] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. While the field is racing ahead, some researchers are pausing to evaluate whether induced pluripotent stem cells are indeed the true equivalents of embryonic stem cells and whether subtle differences between these types of cell might affect their research applications and therapeutic potential.
Collapse
Affiliation(s)
- Daisy A Robinton
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
47
|
Lee JT. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 2011; 12:815-26. [DOI: 10.1038/nrm3231] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Abstract
The 50th anniversary of Mary Lyon's 1961 Nature paper, proposing random inactivation in early embryonic life of one of the two X chromosomes in the cells of mammalian females, provides an opportunity to remember and celebrate the work of those involved. While the hypothesis was initially put forward by Lyon based on findings in the mouse, it was founded on earlier studies, notably the work of Susumu Ohno; it was also suggested independently by Beutler and colleagues using experimental evidence from a human X-linked disorder, glucose-6-phosphate dehydrogenase deficiency, and has proved to be of as great importance for human and medical genetics as it has for general mammalian genetics. Alongside the hypothesis itself, previous cytological studies of mouse and human chromosomes, and the observations on X-linked mutants in both species deserve recognition for their essential role in underpinning the hypothesis of random X-inactivation, while subsequent research on the X-inactivation centre and the molecular mechanisms underlying the inactivation process represent some of the most outstanding contributions to human and wider mammalian genetics over the past 50 years.
Collapse
Affiliation(s)
- Peter S Harper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|