1
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Abstract
Leprosy is a chronic infectious disease of the skin and peripheral nerves that presents a strong link with the host genetic background. Different approaches in genetic studies have been applied to leprosy and today leprosy is among the infectious diseases with the greatest number of genetic risk variants identified. Several leprosy genes have been implicated in host immune response to pathogens and point to specific pathways that are relevant for host defense to infection. In addition, host genetic factors are also involved in the heterogeneity of leprosy clinical manifestations and in excessive inflammatory responses that occur in some leprosy patients. Finally, genetic studies in leprosy have provided strong evidence of pleiotropic effects between leprosy and other complex diseases, such as immune-mediated or neurodegenerative diseases. These findings not only impact on the field of leprosy and infectious diseases but also make leprosy a good model for the study of complex immune-mediated diseases. Here, we summarize recent genetic findings in leprosy susceptibility and discuss the overlap of the genetic control in leprosy with Parkinson's disease and inflammatory bowel disease. Moreover, some limitations, challenges, and potential new avenues for future genetics studies of leprosy are also discussed in this review.
Collapse
|
3
|
de Camargo RM, da Silva WL, Medeiros P, Belone ADFF, Latini ACP. Polymorphisms in the TGFB1 and IL2RA genes are associated with clinical forms of leprosy in Brazilian population. Mem Inst Oswaldo Cruz 2018; 113:e180274. [PMID: 30540075 PMCID: PMC6287188 DOI: 10.1590/0074-02760180274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Leprosy is a chronic infectious disease caused by Mycobacterium leprae, and compromises the skin and peripheral nerves. This disease has been classified as multibacillary (MB) or paucibacillary (PB) depending on the host immune response. Genetic epidemiology studies in leprosy have shown the influence of human genetic components on the disease outcomes. OBJECTIVES We conducted an association study for IL2RA and TGFB1 genes with clinical forms of leprosy based on two case-control samples. These genes encode important molecules for the immunosuppressive activity of Treg cells and present differential expressions according to the clinical forms of leprosy. Furthermore, IL2RA is a positional candidate gene because it is located near the 10p13 chromosome region, presenting a linkage peak for PB leprosy. METHODS A total of 885 leprosy cases were included in the study; 406 cases from Rondonópolis County (start population), a hyperendemic region for leprosy in Brazil, and 479 cases from São Paulo state (replication population), which has lower epidemiological indexes for the disease. We tested 11 polymorphisms in the IL2RA gene and the missense variant rs1800470 in the TGFB1 gene. FINDINGS The AA genotype of rs2386841 in IL2RA was associated with the PB form in the start population. The AA genotype of rs1800470 in TGFB1 was associated with the MB form in the start population, and this association was confirmed for the replication population. MAIN CONCLUSIONS We demonstrated, for the first time, an association data with the PB form for a gene located on chromosome 10. In addition, we reported the association of TGFB1 gene with the MB form. Our results place these genes as candidates for validation and replication studies in leprosy polarisation.
Collapse
Affiliation(s)
- Rodrigo Mendes de Camargo
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| | - Weber Laurentino da Silva
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| | - Priscila Medeiros
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| | | | - Ana Carla Pereira Latini
- Instituto Lauro de Souza Lima, Bauru, SP, Brasil
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Doenças Tropicais e Diagnóstico por Imagem, Botucatu, SP, Brasil
| |
Collapse
|
4
|
Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome 2018; 29:523-538. [PMID: 30116885 PMCID: PMC6132723 DOI: 10.1007/s00335-018-9765-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Mycobacterial diseases are caused by members of the genus Mycobacterium, acid-fast bacteria characterized by the presence of mycolic acids within their cell walls. Claiming almost 2 million lives every year, tuberculosis (TB) is the most common mycobacterial disease and is caused by infection with M. tuberculosis and, in rare cases, by M. bovis or M. africanum. The second and third most common mycobacterial diseases are leprosy and buruli ulcer (BU), respectively. Both diseases affect the skin and can lead to permanent sequelae and deformities. Leprosy is caused by the uncultivable M. leprae while the etiological agent of BU is the environmental bacterium M. ulcerans. After exposure to these mycobacterial species, a majority of individuals will not progress to clinical disease and, among those who do, inter-individual variability in disease manifestation and outcome can be observed. Susceptibility to mycobacterial diseases carries a human genetic component and intense efforts have been applied over the past decades to decipher the exact nature of the genetic factors controlling disease susceptibility. While for BU this search was mostly conducted on the basis of candidate genes association studies, genome-wide approaches have been widely applied for TB and leprosy. In this review, we summarize some of the findings achieved by genome-wide linkage, association and transcriptome analyses in TB disease and leprosy and the recent genetic findings for BU susceptibility.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,The McGill International TB Centre, McGill University, Montreal, QC, Canada. .,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Yuan Y, You Y, Wen Y, Liu J, Li H, Zhang Y, Wu N, Liu S, Zhang S, Chen J, Ai J, Zhang W, Zhang Y. Identification of novel genetic loci GAL3ST4 and CHGB involved in susceptibility to leprosy. Sci Rep 2017; 7:16352. [PMID: 29180661 PMCID: PMC5703986 DOI: 10.1038/s41598-017-16422-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023] Open
Abstract
Leprosy has long been thought to have a strong genetic component, and so far, only positional cloning and genomewide association studies have been used to study the genetic susceptibility to leprosy,while whole exome sequencing (WES) approach has not yet been applied. In this study, we used WES approach on four leprosy patients and four healthy control relatives from two leprosy families. We found three new susceptible loci of leprosy, one in GAL3ST4 and two in CHGB. We went on to validate the findings of WES using 151 leprosy cases and 226 healthy controls by Sanger sequencing. Stratified by gender, GAL3ST4 was found to be the susceptible gene only for the female population, and CHGB48 and CHGB23 were susceptibile to leprosy for the male population, respectively). Moreover, the gene expression levels of the three susceptible loci were measured by real-time PCR after the stimulation by M. leprae antigens in the PBMC (peripheral blood mononuclear cells) of 69 healthy people. The results showed that the female subjects with high frequent genotype in GAL3ST4 had a fivefold elevated expression. We suggest the polymorphisms in GAL3ST4 in different population are associated with increased risk of leprosy.
Collapse
Affiliation(s)
- Youhua Yuan
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Clinical laboratory, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuangang You
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yan Wen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Liu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huanying Li
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yumeng Zhang
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan Wu
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuang Liu
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanshan Zhang
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwen Ai
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Key Laboratory of Medical Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Manry J, Nédélec Y, Fava VM, Cobat A, Orlova M, Thuc NV, Thai VH, Laval G, Barreiro LB, Schurr E. Deciphering the genetic control of gene expression following Mycobacterium leprae antigen stimulation. PLoS Genet 2017; 13:e1006952. [PMID: 28793313 PMCID: PMC5565194 DOI: 10.1371/journal.pgen.1006952] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/21/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022] Open
Abstract
Leprosy is a human infectious disease caused by Mycobacterium leprae. A strong host genetic contribution to leprosy susceptibility is well established. However, the modulation of the transcriptional response to infection and the mechanism(s) of disease control are poorly understood. To address this gap in knowledge of leprosy pathogenicity, we conducted a genome-wide search for expression quantitative trait loci (eQTL) that are associated with transcript variation before and after stimulation with M. leprae sonicate in whole blood cells. We show that M. leprae antigen stimulation mainly triggered the upregulation of immune related genes and that a substantial proportion of the differential gene expression is genetically controlled. Indeed, using stringent criteria, we identified 318 genes displaying cis-eQTL at an FDR of 0.01, including 66 genes displaying response-eQTL (reQTL), i.e. cis-eQTL that showed significant evidence for interaction with the M. leprae stimulus. Such reQTL correspond to regulatory variations that affect the interaction between human whole blood cells and M. leprae sonicate and, thus, likely between the human host and M. leprae bacilli. We found that reQTL were significantly enriched among binding sites of transcription factors that are activated in response to infection, and that they were enriched among single nucleotide polymorphisms (SNPs) associated with susceptibility to leprosy per se and Type-I Reaction, and seven of them have been targeted by recent positive selection. Our study suggested that natural selection shaped our genomic diversity to face pathogen exposure including M. leprae infection. Each year, 200,000 new leprosy cases are reported worldwide. While there is unambiguous evidence for a role of host genetics in leprosy pathogenesis, the mechanisms by which the human host fights the infection are poorly understood. Here, we highlight the search for naturally occurring genetic variations that modulate gene expression levels following exposure to sonicate of Mycobacterium leprae, the bacterium causing the disease. Because M. leprae is not cultivable and the genuine immune cells involved in the host response during infection are still unknown, we performed a genome-wide search for such genetic variations after stimulation of whole-blood from leprosy patients with M. leprae sonicate. This design allowed to provide a general framework for the genetic control of host responses to M. leprae and outlined the contribution of host genetics to leprosy pathogenesis. Among the M. leprae-dependent genetic regulators of gene expression levels there was an enrichment of variants (i) associated with leprosy, (ii) located in transcription factor binding sites and (iii) targeted by recent positive selection.
Collapse
Affiliation(s)
- Jérémy Manry
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (JM)
| | - Yohann Nédélec
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Guillaume Laval
- Institut Pasteur, Unit of Human Evolutionary Genetics, Department of Genomes and Genetics, Paris, France
- Centre National de la Recherche Scientifique, URA3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Luis B. Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (JM)
| |
Collapse
|
7
|
Gaschignard J, Grant AV, Thuc NV, Orlova M, Cobat A, Huong NT, Ba NN, Thai VH, Abel L, Schurr E, Alcaïs A. Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases. PLoS Negl Trop Dis 2016; 10:e0004345. [PMID: 27219008 PMCID: PMC4878860 DOI: 10.1371/journal.pntd.0004345] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
After sustained exposure to Mycobacterium leprae, only a subset of exposed individuals develops clinical leprosy. Moreover, leprosy patients show a wide spectrum of clinical manifestations that extend from the paucibacillary (PB) to the multibacillary (MB) form of the disease. This "polarization" of leprosy has long been a major focus of investigation for immunologists because of the different immune response in these two forms. But while leprosy per se has been shown to be under tight human genetic control, few epidemiological or genetic studies have focused on leprosy subtypes. Using PubMed, we collected available data in English on the epidemiology of leprosy polarization and the possible role of human genetics in its pathophysiology until September 2015. At the genetic level, we assembled a list of 28 genes from the literature that are associated with leprosy subtypes or implicated in the polarization process. Our bibliographical search revealed that improved study designs are needed to identify genes associated with leprosy polarization. Future investigations should not be restricted to a subanalysis of leprosy per se studies but should instead contrast MB to PB individuals. We show the latter approach to be the most powerful design for the identification of genetic polarization determinants. Finally, we bring to light the important resource represented by the nine-banded armadillo model, a unique animal model for leprosy.
Collapse
Affiliation(s)
- Jean Gaschignard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | - Audrey Virginia Grant
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- Unité de Génétique fonctionnelle des maladies infectieuses, Institut Pasteur, Paris, France, EU
| | | | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- URC, CIC, Necker and Cochin Hospitals, Paris, France, EU
| |
Collapse
|