1
|
Ramakrishna NB, Mohamad Sahari UB, Johmura Y, Ali NA, Alghamdi M, Bauer P, Khan S, Ordoñez N, Ferreira M, Pinto Basto J, Alkuraya FS, Faqeih EA, Mori M, Almontashiri NAM, Al Shamsi A, ElGhazali G, Abu Subieh H, Al Ojaimi M, El-Hattab AW, Said Al-Kindi SA, Alhashmi N, Alhabshan F, Al Saman A, Tfayli H, Arabi M, Khalifeh S, Taylor A, Alfadhel M, Jain R, Sinha S, Shenbagam S, Ramachandran R, Altunoğlu U, Jacob A, Thalange N, El Bejjani M, Perrin A, Shin JW, Al-Maawali A, Al-Shidhani A, Al-Futaisi A, Rabea F, Chekroun I, Almarri MA, Ohta T, Nakanishi M, Alsheikh-Ali A, Ali FR, Bertoli-Avella AM, Reversade B, Abou Tayoun A. FBXO22 deficiency defines a pleiotropic syndrome of growth restriction and multi-system anomalies associated with a unique epigenetic signature. Am J Hum Genet 2025; 112:1233-1246. [PMID: 40215970 PMCID: PMC12120182 DOI: 10.1016/j.ajhg.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/04/2025] Open
Abstract
FBXO22 encodes an F-box protein, which acts as a substrate-recognition component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. Despite its known roles in the post-translational ubiquitination and degradation of specific substrates, including histone demethylases, the impact of FBXO22 on human development remains unknown. Here, we characterize a pleiotropic syndrome with prominent prenatal onset growth restriction and notable neurodevelopmental delay across 16 cases from 14 families. Through exome and genome sequencing, we identify four distinct homozygous FBXO22 variants with loss-of-function effects segregating with the disease: three predicted to lead to premature translation termination due to frameshift effects and a single-amino-acid-deletion variant, which, we show, impacts protein stability in vitro. We confirm that affected primary fibroblasts with a frameshift mutation are bereft of endogenous FBXO22 and show increased levels of the known substrate histone H3K9 demethylase KDM4B. Accordingly, we delineate a unique epigenetic signature for this disease in peripheral blood via long-read sequencing. Altogether, we identify and demonstrate that FBXO22 deficiency leads to a pleiotropic syndrome in humans, encompassing growth restriction and neurodevelopmental delay, the pathogenesis of which may be explained by broad chromatin alterations.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Umar Bin Mohamad Sahari
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Nur Ain Ali
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Malak Alghamdi
- Unit of Medical Genetics, Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Mari Mori
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia; Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Aisha Al Shamsi
- Paediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Gehad ElGhazali
- HQ Medical Operations Division, Union 71, Abu Dhabi, United Arab Emirates
| | - Hala Abu Subieh
- Maternal Fetal Medicine Department, Kanad Hospital, Al Ain, United Arab Emirates
| | - Mode Al Ojaimi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Fahad Alhabshan
- Department of Cardiac Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulaziz Al Saman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hala Tfayli
- Pediatric Endocrinology and Diabetes, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, Pediatric Cardiology Division, Children's Heart Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Simone Khalifeh
- Pediatric Neurology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alan Taylor
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; Medical Genomic Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ruchi Jain
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Sinha
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Shenbagam
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Umut Altunoğlu
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul 34010, Turkey
| | - Anju Jacob
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Nandu Thalange
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Mireille El Bejjani
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Arnaud Perrin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore
| | - Almundher Al-Maawali
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Azza Al-Shidhani
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amna Al-Futaisi
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fatma Rabea
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Genome Center, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | | | - Bruno Reversade
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul 34010, Turkey; NUS Cardiovascular-Metabolic Disease Translational Research Programme (CVMD-TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Laboratory of Human Genetics & Therapeutics, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Ahmad Abou Tayoun
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
3
|
Muhar MF, Farnung J, Cernakova M, Hofmann R, Henneberg LT, Pfleiderer MM, Denoth-Lippuner A, Kalčic F, Nievergelt AS, Peters Al-Bayati M, Sidiropoulos ND, Beier V, Mann M, Jessberger S, Jinek M, Schulman BA, Bode JW, Corn JE. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 2025; 638:519-527. [PMID: 39880951 PMCID: PMC11821526 DOI: 10.1038/s41586-024-08475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts1. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites2,3. Such modifications have been proposed to trigger the selective removal of chemically marked proteins3-6; however, identifying modifications that are sufficient to induce protein degradation has remained challenging. Here, using a semi-synthetic chemical biology approach coupled to cellular assays, we found that C-terminal amide-bearing proteins (CTAPs) are rapidly cleared from human cells. A CRISPR screen identified FBXO31 as a reader of C-terminal amides. FBXO31 is a substrate receptor for the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase SCF-FBXO31, which ubiquitylates CTAPs for subsequent proteasomal degradation. A conserved binding pocket enables FBXO31 to bind to almost any C-terminal peptide bearing an amide while retaining exquisite selectivity over non-modified clients. This mechanism facilitates binding and turnover of endogenous CTAPs that are formed after oxidative stress. A dominant human mutation found in neurodevelopmental disorders reverses CTAP recognition, such that non-amidated neosubstrates are now degraded and FBXO31 becomes markedly toxic. We propose that CTAPs may represent the vanguard of a largely unexplored class of modified amino acid degrons that could provide a general strategy for selective yet broad surveillance of chemically damaged proteins.
Collapse
Affiliation(s)
- Matthias F Muhar
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Jakob Farnung
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Raphael Hofmann
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Filip Kalčic
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ajse S Nievergelt
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marwa Peters Al-Bayati
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nikolaos D Sidiropoulos
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeffrey W Bode
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Zhang Y, He Z, Hu Q, Liu H, Wen R, Ru N, Yu J, Lv S, Tao R. MiR-3571 modulates traumatic brain injury by regulating the PI3K/AKT signaling pathway via Fbxo31. Cell Biochem Biophys 2024; 82:3629-3643. [PMID: 39080190 DOI: 10.1007/s12013-024-01452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
To investigate the effect of miR-3571 on traumatic brain injury (TBI) via the regulation of neuronal apoptosis through F-box-only protein 31/phosphoinositide 3-kinase/protein kinase B (Fbxo31/PI3K/AKT). We established TBI rat and cell models. Hematoxylin‒eosin (HE) and Nissl staining were used to observe brain injury and the number of Nissl bodies, respectively. Cell proliferation and apoptosis were assessed by 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and flow cytometry. Gene and protein expression was measured via reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). In this study, miR-3571 was highly expressed in TBI models. Inhibition of miR-3571 expression can suppress autophagy, reduce the expression of proinflammatory cytokines, and reduce neuronal apoptosis, thus alleviating the pathological conditions of tissue congestion, edema and structural damage after TBI. These experiments demonstrated that miR-3571 could target and regulate the level of Fbxo31. Knockdown of Fbxo31 weakened the remission effect of the miR-3571 inhibitor on TBI and promoted neurological damage; moreover, overexpression of Fbxo31 enhanced the protective effect on neural function, whereas the PI3K/AKT pathway inhibitor LY294002 increased the damage caused by miR-3571 on neural function and weakened the protective effect of Fbxo31. In conclusion, miR-3571 regulates the PI3K/AKT signaling pathway by reducing Fbxo31 expression, promotes neuronal apoptosis and exacerbates TBI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Zongying He
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Qiongfang Hu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Huali Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rongai Wen
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Na Ru
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Jinghua Yu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Shaokun Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rui Tao
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China.
| |
Collapse
|
5
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
6
|
Castel P. Defective protein degradation in genetic disorders. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166366. [PMID: 35158019 PMCID: PMC8977116 DOI: 10.1016/j.bbadis.2022.166366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.
Collapse
Affiliation(s)
- Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, 10016, United States of America.
| |
Collapse
|
7
|
Michelson M, Lidzbarsky G, Nishri D, Israel-Elgali I, Berger R, Gafner M, Shomron N, Lev D, Goldberg Y. Microdeletion of 16q24.1-q24.2-A unique etiology of Lymphedema-Distichiasis syndrome and neurodevelopmental disorder. Am J Med Genet A 2022; 188:1990-1996. [PMID: 35312147 PMCID: PMC9314700 DOI: 10.1002/ajmg.a.62730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Interstitial deletions of 16q24.1–q24.2 are associated with alveolar capillary dysplasia, congenital renal malformations, neurodevelopmental disorders, and congenital abnormalities. Lymphedema–Distichiasis syndrome (LDS; OMIM # 153400) is a dominant condition caused by heterozygous pathogenic variants in FOXC2. Usually, lymphedema and distichiasis occur in puberty or later on, and affected individuals typically achieve normal developmental milestones. Here, we describe a boy with congenital lymphedema, distichiasis, bilateral hydronephrosis, and global developmental delay, with a de novo microdeletion of 894 kb at 16q24.1–q24.2. This report extends the phenotype of both 16q24.1–q24.2 microdeletion syndrome and of LDS. Interestingly, the deletion involves only the 3′‐UTR part of FOXC2.
Collapse
Affiliation(s)
- Marina Michelson
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Daniella Nishri
- Child Developmental Center of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Ifat Israel-Elgali
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Michal Gafner
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
8
|
Moudi M, Vahidi Mehrjardi MY, Hozhabri H, Metanat Z, Kalantar SM, Taheri M, Ghasemi N, Dehghani M. Novel variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability in Iranian consanguineous families. J Clin Lab Anal 2022; 36:e24241. [PMID: 35019165 PMCID: PMC8842163 DOI: 10.1002/jcla.24241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Intellectual disability (ID) is a heterogeneous group of neurodevelopmental disorders that is characterized by significant impairment in intellectual and adaptive functioning with onset during the developmental period. Whole‐exome sequencing (WES)‐based studies in the consanguineous families with individuals affected with ID have shown a high burden of relevant variants. So far, over 700 genes have been reported in syndromic and non‐syndromic ID. However, genetic causes in more than 50% of ID patients still remain unclear. Methods Whole‐exome sequencing was applied for investigation of various variants of ID, then Sanger sequencing and in silico analysis in ten patients from five Iranian consanguineous families diagnosed with autosomal recessive neurodevelopmental disorders, intellectual disability, performed for confirming the causative mutation within the probands. The most patients presented moderate‐to‐severe intellectual disability, developmental delay, seizure, speech problem, high level of lactate, and onset before 10 years. Results Filtering the data identified by WES, two novel homozygous missense variants in FBXO31 and TIMM50 genes and one previously reported mutation in the CEP290 gene in the probands were found. Sanger sequencing confirmed the homozygote variant's presence of TIMM50 and FBXO31 genes in six patients and two affected siblings in their respective families. Our computational results predicted that the variants are located in the conserved regions across different species and have the impacts on the protein stability. Conclusion Hence, we provide evidence for the pathogenicity of two novel variants in the patients which will expand our knowledge about potential mutation involved in the heterogeneous disease.
Collapse
Affiliation(s)
- Mahdiyeh Moudi
- Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | | | - Zahra Metanat
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Gregor A, Meerbrei T, Gerstner T, Toutain A, Lynch SA, Stals K, Maxton C, Lemke JR, Bernat JA, Bombei HM, Foulds N, Hunt D, Kuechler A, Beygo J, Stöbe P, Bouman A, Palomares-Bralo M, Santos-Simarro F, Garcia-Minaur S, Pacio-Miguez M, Popp B, Vasileiou G, Hebebrand M, Reis A, Schuhmann S, Krumbiegel M, Brown NJ, Sparber P, Melikyan L, Bessonova L, Cherevatova T, Sharkov A, Shcherbakova N, Dabir T, Kini U, Schwaibold EMC, Haack TB, Bertoli M, Hoffjan S, Falb R, Shinawi M, Sticht H, Zweier C. De novo missense variants in FBXO11 alter its protein expression and subcellular localization. Hum Mol Genet 2021; 31:440-454. [PMID: 34505148 PMCID: PMC8825234 DOI: 10.1093/hmg/ddab265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022] Open
Abstract
Recently, others and we identified de novo FBXO11 (F-Box only protein 11) variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data, our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs.
Collapse
Affiliation(s)
- Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.,Department of Human Genetics, Inselspital Bern, University of Bern, 3010, Bern, Switzerland
| | - Tanja Meerbrei
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | | | - Annick Toutain
- Service de Génétique, CHU de Tours, 37044, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sally Ann Lynch
- Dept of Clinical Genetics, Temple Street Children's Hospital Dublin 1, D01 YC67, Dublin, Ireland
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK
| | | | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany
| | - John A Bernat
- Division of Medical Genetics & Genomics, Stead Family Department of Pediatrics, University of Iowa Hospital and Clinics, 52242, Iowa City, IA, USA
| | - Hannah M Bombei
- Division of Medical Genetics & Genomics, Stead Family Department of Pediatrics, University of Iowa Hospital and Clinics, 52242, Iowa City, IA, USA
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton, Southampton, SO16 5YA, UK
| | - David Hunt
- Wessex Clinical Genetics Services, University Hospital Southampton, Southampton, SO16 5YA, UK.,Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, SO16 5YA, UK
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147, Essen, Germany
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147, Essen, Germany
| | - Petra Stöbe
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Maria Palomares-Bralo
- Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Sixto Garcia-Minaur
- Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Marta Pacio-Miguez
- Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Moritz Hebebrand
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Sarah Schuhmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Natasha J Brown
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3010, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Peter Sparber
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Lyusya Melikyan
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | | | | | - Artem Sharkov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Genomed Ltd., Moscow, 117997, Russia
| | - Natalia Shcherbakova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Genomed Ltd., Moscow, 117997, Russia.,Independent Clinical Bioinformatics Laboratory, Moscow, 117997, Russia
| | - Tabib Dabir
- Department of Genetic Medicine, Belfast City Hospital, Belfast, BT9 7AB, Northern Ireland, United Kingdom
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford and Spires Cleft Centre, Oxford, OX3 9DU, UK
| | - Eva M C Schwaibold
- Institute of Human Genetics, Heidelberg University, 69120, Heidelberg, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Marta Bertoli
- Northern Genetics Service, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University, 44801, Bochum, Germany
| | - Ruth Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.,Department of Human Genetics, Inselspital Bern, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
11
|
Lescouzères L, Bomont P. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy. Front Physiol 2020; 11:1022. [PMID: 33192535 PMCID: PMC7642974 DOI: 10.3389/fphys.2020.01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
Collapse
Affiliation(s)
- Léa Lescouzères
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
13
|
Lee CG, Seol CA, Ki CS. The first familial case of inherited intellectual developmental disorder with dysmorphic facies and behavioral abnormalities (IDDFBA) with a novel FBXO11 variant. Am J Med Genet A 2020; 182:2788-2792. [PMID: 32902151 DOI: 10.1002/ajmg.a.61828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022]
Abstract
Intellectual developmental disorder with dysmorphic facies and behavioral abnormalities (IDDFBA) caused by germline de novo variants in FBXO11 was recently recognized as a novel intellectual disability (ID) syndrome through reverse phenotyping after whole-exome sequencing (WES). Fewer than 50 disease-causing de novo FBXO11 variants in IDDFBA are reported thus far. Here, we present the first report of a family showing autosomal dominantly inherited IDDFBA, harboring a novel heterozygous variant in FBXO11 (c.2401_2405dup;p. Gly803Leufs*6) identified by WES. In this family, the mother and two daughters showed mild ID and mild facial dysmorphism. This finding is expected to increase our understanding of the genotype-phenotype of IDDFBA and to facilitate genetic counseling for the disorder caused by FBXO11.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Chang Ahn Seol
- GC Genome, Yongin, Gyeonggi-do, Republic of Korea.,GC Labs, Yongin, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
14
|
Ansar M, Paracha SA, Serretti A, Sarwar MT, Khan J, Ranza E, Falconnet E, Iwaszkiewicz J, Shah SF, Qaisar AA, Santoni FA, Zoete V, Megarbane A, Ahmed J, Colombo R, Makrythanasis P, Antonarakis SE. Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Hum Mol Genet 2020; 28:972-979. [PMID: 30481285 DOI: 10.1093/hmg/ddy406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs*25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149*)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jamshed Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, Kohat, Pakistan
| | | | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland.,Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, Epalinges, Switzerland
| | | | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University IRCCS Policlinico Gemelli, Rome, Italy.,Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
16
|
Jansen S, van der Werf IM, Innes AM, Afenjar A, Agrawal PB, Anderson IJ, Atwal PS, van Binsbergen E, van den Boogaard MJ, Castiglia L, Coban-Akdemir ZH, van Dijck A, Doummar D, van Eerde AM, van Essen AJ, van Gassen KL, Guillen Sacoto MJ, van Haelst MM, Iossifov I, Jackson JL, Judd E, Kaiwar C, Keren B, Klee EW, Klein Wassink-Ruiter JS, Meuwissen ME, Monaghan KG, de Munnik SA, Nava C, Ockeloen CW, Pettinato R, Racher H, Rinne T, Romano C, Sanders VR, Schnur RE, Smeets EJ, Stegmann APA, Stray-Pedersen A, Sweetser DA, Terhal PA, Tveten K, VanNoy GE, de Vries PF, Waxler JL, Willing M, Pfundt R, Veltman JA, Kooy RF, Vissers LELM, de Vries BBA. De novo variants in FBXO11 cause a syndromic form of intellectual disability with behavioral problems and dysmorphisms. Eur J Hum Genet 2019; 27:738-746. [PMID: 30679813 DOI: 10.1038/s41431-018-0292-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.
Collapse
Affiliation(s)
- Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ilse M van der Werf
- Department of Medical Genetics, University Hospital and University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - A Micheil Innes
- Alberta Children's Hospital Research Institute and Department of Medical Genetics, Cumming School of Medicine, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, T3B 6A8, Canada
| | - Alexandra Afenjar
- Centre de Référence Déficiences Intellectuelles de Causes Rares, 75013, Paris, France.,APHP, GHUEP, Hôpital Armand Trousseau, Centre de Référence 'Malformations et maladies congénitales du cervelet', 75012, Paris, France
| | - Pankaj B Agrawal
- Divisions of Genetics and Genomics and Newborn Medicine, Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ilse J Anderson
- The University of Tennessee Genetics Center, Knoxville, TN, 37920, USA
| | - Paldeep S Atwal
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marie-José van den Boogaard
- Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Lucia Castiglia
- Laboratory of Medical Genetics, Oasi Research Institute, 94018, Troina, Italy
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anke van Dijck
- Department of Medical Genetics, University Hospital and University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Diane Doummar
- APHP, Service de Neurologie pédiatrique, Hôpital Armand Trousseau, Paris, France.,Sorbonne Université,GRC ConCer-LD, AP-HP, Hôpital Trousseau, Paris, France.,Service de neuropediatrie, Hôpital Trousseau, 26 avenue du dr Arnold Netter, 75012, Paris, France
| | - Albertien M van Eerde
- Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Anthonie J van Essen
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), 9700 RB, Groningen, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | - Mieke M van Haelst
- Department of Clinical Genetics, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.,New York Genome Center, New York, NY, 10013, USA
| | - Jessica L Jackson
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Elizabeth Judd
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Charu Kaiwar
- Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA.,Invitae, 1400 16th Street, San Francisco, CA, 94103, USA
| | - Boris Keren
- Département de Génétique, APHP, GH Pitié-Salpêtrière, Paris, 75013, France
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jolien S Klein Wassink-Ruiter
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), 9700 RB, Groningen, The Netherlands
| | - Marije E Meuwissen
- Department of Medical Genetics, University Hospital and University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | | - Sonja A de Munnik
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline Nava
- Département de Génétique, APHP, GH Pitié-Salpêtrière, Paris, 75013, France.,INSERM, U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Universités, UPMC Université de Paris 06, 75013, Paris, France
| | - Charlotte W Ockeloen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rosa Pettinato
- Pediatrics and Medical Genetics, Oasi Research Institute - IRCCS, 94018, Troina, Italy
| | - Hilary Racher
- Alberta Children's Hospital Research Institute and Department of Medical Genetics, Cumming School of Medicine, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, T3B 6A8, Canada.,Impact Genetics, 1100 Bennett Road, Bowmanville, ON, L1C 3K5, Canada
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corrado Romano
- Pediatrics and Medical Genetics, Oasi Research Institute - IRCCS, 94018, Troina, Italy
| | - Victoria R Sanders
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Ann and Robert H Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL, 60611, USA
| | | | - Eric J Smeets
- Department of Clinical Genetics, Maastricht University Medical Centre, Universiteitssingel 50, 9229 ER, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Centre, Universiteitssingel 50, 9229 ER, Maastricht, The Netherlands
| | - Asbjørg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, 77030, USA.,Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Pb 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - David A Sweetser
- Division of Medical Genetics, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710, Skien, Norway
| | - Grace E VanNoy
- Divisions of Genetics and Genomics and Newborn Medicine, Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Petra F de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jessica L Waxler
- Division of Medical Genetics, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Marcia Willing
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - R Frank Kooy
- Department of Medical Genetics, University Hospital and University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Gregor A, Sadleir LG, Asadollahi R, Azzarello-Burri S, Battaglia A, Ousager LB, Boonsawat P, Bruel AL, Buchert R, Calpena E, Cogné B, Dallapiccola B, Distelmaier F, Elmslie F, Faivre L, Haack TB, Harrison V, Henderson A, Hunt D, Isidor B, Joset P, Kumada S, Lachmeijer AM, Lees M, Lynch SA, Martinez F, Matsumoto N, McDougall C, Mefford HC, Miyake N, Myers CT, Moutton S, Nesbitt A, Novelli A, Orellana C, Rauch A, Rosello M, Saida K, Santani AB, Sarkar A, Scheffer IE, Shinawi M, Steindl K, Symonds JD, Zackai EH, Reis A, Sticht H, Zweier C, Sticht H, Zweier C. De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. Am J Hum Genet 2018; 103:305-316. [PMID: 30057029 DOI: 10.1016/j.ajhg.2018.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
18
|
Balak C, Belnap N, Ramsey K, Joss S, Devriendt K, Naymik M, Jepsen W, Siniard AL, Szelinger S, Parker ME, Richholt R, Izatt T, LaFleur M, Terraf P, Llaci L, De Both M, Piras IS, Rangasamy S, Schrauwen I, Craig DW, Huentelman M, Narayanan V. A novel
FBXO28
frameshift mutation in a child with developmental delay, dysmorphic features, and intractable epilepsy: A second gene that may contribute to the 1q41‐q42 deletion phenotype. Am J Med Genet A 2018; 176:1549-1558. [DOI: 10.1002/ajmg.a.38712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Chris Balak
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Newell Belnap
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Keri Ramsey
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Shelagh Joss
- West of Scotland Genetics ServiceQueen Elizabeth University HospitalGlasgow United Kingdom
| | - Koen Devriendt
- Center for Human Genetics (Centrum Menselijke Erfelijkheid)University of LeuvenLeuven Belgium
| | - Marcus Naymik
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Wayne Jepsen
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Ashley L. Siniard
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Szabolcs Szelinger
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- UCLA Pathology & Laboratory MedicineUCLA Center for the Health SciencesLos Angeles California
| | - Mary E. Parker
- Department of Physical TherapyTexas State UniversitySan Marcos Texas
- U.R. Our Hope, Undiagnosed and Rare Disorder OrganizationAustin Texas
| | - Ryan Richholt
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Tyler Izatt
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Madison LaFleur
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Panieh Terraf
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Lorida Llaci
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Matt De Both
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Ignazio S. Piras
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Isabelle Schrauwen
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- Department of Molecular and Human Genetics, Center for Statistical GeneticsBaylor College of MedicineHouston Texas
| | - David W. Craig
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- Department of Translational GenomicsKeck School of Medicine of USCLos Angeles California
| | - Matt Huentelman
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Vinodh Narayanan
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| |
Collapse
|
19
|
Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry 2018; 23:973-984. [PMID: 28397838 DOI: 10.1038/mp.2017.60] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.
Collapse
|
20
|
Tan Y, Liu D, Gong J, Liu J, Huo J. The role of F-box only protein 31 in cancer. Oncol Lett 2018; 15:4047-4052. [PMID: 29556284 PMCID: PMC5844145 DOI: 10.3892/ol.2018.7816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
F-box only protein 31 (FBXO31), initially identified in 2005, is a novel subunit of the S-phase kinase associated protein 1-Cullin 1-F-box ubiquitin ligase. As with other F-box proteins, FBXO31 may interact with several proteins to promote their ubquitination and subsequent degradation in an F-box-dependent manner. It has been revealed that FBXO31 serves a crucial role in DNA damage response and tumorigenesis. However, the expression and function of FBXO31 varies in different types of human cancer. To the best of our knowledge, the present review is the first to summarize the role of FBXO31 in different types of human cancer and determine its underlying mechanisms, thereby paving the road for the design of FBXO31-targeted anticancer therapies.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jia Liu
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
21
|
Khan MA, Khan S, Windpassinger C, Badar M, Nawaz Z, Mohammad RM. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet 2017; 80:342-368. [PMID: 27870114 DOI: 10.1111/ahg.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) is a clinical manifestation of the central nervous system without any major dysmorphologies of the brain. Biologically it affects learning capabilities, memory, and cognitive functioning. The basic defining features of ID are characterized by IQ<70, age of onset before 18 years, and impairment of at least two of the adaptive skills. Clinically it is classified in a syndromic (with additional abnormalities) and a nonsyndromic form (with only cognitive impairment). The study of nonsyndromic intellectual disability (NSID) can best explain the pathophysiology of cognition, intelligence and memory. Genetic analysis in autosomal recessive nonsyndrmic ID (ARNSID) has mapped 51 disease loci, 34 of which have revealed their defective genes. These genes play diverse physiological roles in various molecular processes, including methylation, proteolysis, glycosylation, signal transduction, transcription regulation, lipid metabolism, ion homeostasis, tRNA modification, ubiquitination and neuromorphogenesis. High-density SNP array and whole exome sequencing has increased the pace of gene discoveries and many new mutations are being published every month. The lack of uniform criteria has assigned multiple identifiers (or accession numbers) to the same MRT locus (e.g. MRT7 and MRT22). Here in this review we describe the molecular genetics of ARNSID, prioritize the candidate genes in uncharacterized loci, and propose a new nomenclature to reorganize the mutation data that will avoid the confusion of assigning duplicate accession numbers to the same ID locus and to make the data manageable in the future as well.
Collapse
Affiliation(s)
- Muzammil Ahmad Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Saadullah Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | | | - Muhammad Badar
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Zafar Nawaz
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ramzi M Mohammad
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
22
|
Mittal K, Rafiq MA, Rafiullah R, Harripaul R, Ali H, Ayaz M, Aslam M, Naeem F, Amin-ud-din M, Waqas A, So J, Rappold GA, Vincent JB, Ayub M. Mutations in the genes for thyroglobulin and thyroid peroxidase cause thyroid dyshormonogenesis and autosomal-recessive intellectual disability. J Hum Genet 2016; 61:867-872. [DOI: 10.1038/jhg.2016.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/26/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022]
|
23
|
Morgan A, Gandin I, Belcaro C, Palumbo P, Palumbo O, Biamino E, Dal Col V, Laurini E, Pricl S, Bosco P, Carella M, Ferrero GB, Romano C, d'Adamo AP, Faletra F, Vozzi D. Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutat Res 2015; 781:32-6. [PMID: 26411299 DOI: 10.1016/j.mrfmmm.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 09/07/2015] [Indexed: 02/02/2023]
Abstract
The technological improvements over the last years made considerable progresses in the knowledge of the etiology of intellectual Disability (ID). However, at present very little is known about the genetic heterogeneity underlying the non-syndromic form of ID (NS-ID). To investigate the genetic basis of NS-ID we analyzed 43 trios and 22 isolated NS-ID patients using a targeted sequencing (TS) approach. 71 NS-ID genes have been selected and sequenced in all subjects. We found putative pathogenic mutations in 7 out of 65 patients. The pathogenic role of mutations was evaluated through sequence comparison and structural analysis was performed to predict the effect of alterations in a 3D computational model through molecular dynamics simulations. Additionally, a deep patient clinical re-evaluation has been performed after the molecular results. This approach allowed us to find novel pathogenic mutations with a detection rate close to 11% in our cohort of patients. This result supports the hypothesis that many NS-ID related genes still remain to be discovered and that NS-ID is a more complex phenotype compared to syndromic form, likely caused by a complex and broad interaction between genes alterations and environment factors.
Collapse
Affiliation(s)
- Anna Morgan
- Department of Medical Sciences, University of Trieste, Italy
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Italy
| | - Chiara Belcaro
- Department of Medical Sciences, University of Trieste, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Elisa Biamino
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Valentina Dal Col
- MOSE-DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Erik Laurini
- MOSE-DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Sabrina Pricl
- MOSE-DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Paolo Bosco
- UOC Laboratory of Medical Genetics, IRCCS Associazione Oasi Maria Santissima, 94018 Troina, EN, Italy
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | | | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, IRCCS Associazione Oasi Maria Santissima, 94018 Troina, EN, Italy
| | | | - Flavio Faletra
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Diego Vozzi
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.
| |
Collapse
|
24
|
Ahmed I, Buchert R, Zhou M, Jiao X, Mittal K, Sheikh TI, Scheller U, Vasli N, Rafiq MA, Brohi MQ, Mikhailov A, Ayaz M, Bhatti A, Sticht H, Nasr T, Carter MT, Uebe S, Reis A, Ayub M, John P, Kiledjian M, Vincent JB, Jamra RA. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet 2015; 24:3172-80. [PMID: 25701870 DOI: 10.1093/hmg/ddv069] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects.
Collapse
Affiliation(s)
- Iltaf Ahmed
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8 Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kirti Mittal
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Taimoor I Sheikh
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | | | - Nasim Vasli
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Muhammad Arshad Rafiq
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - M Qasim Brohi
- Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Muhammad Ayaz
- Lahore Institute of Research and Development, Lahore 51000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tanveer Nasr
- Department of Psychiatry, Mayo Hospital, Lahore 54000, Pakistan Department of Psychiatry, Chaudhary Hospital, Gujranwala 52250, Pakistan
| | - Melissa T Carter
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada M5G1X8
| | | | | | - Muhammad Ayub
- Lahore Institute of Research and Development, Lahore 51000, Pakistan Division of Developmental Disabilities, Department of Psychiatry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - John B Vincent
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8 Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 2J7
| | | |
Collapse
|
25
|
Abstract
The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Julia K Pagan
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Michele Pagano
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2] Howard Hughes Medical Institute
| |
Collapse
|