1
|
Horinouchi T, Nozu K, Iijima K. Genetic aspects of pediatric nephrotic syndrome and anti-nephrin antibodies. Clin Exp Nephrol 2025; 29:534-540. [PMID: 40085383 PMCID: PMC12049277 DOI: 10.1007/s10157-025-02645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Nephrotic syndrome is the most common glomerular disease in children, and various hypotheses regarding its etiology have been proposed, primarily focusing on immune-related mechanisms. Nephrotic syndrome can manifest as a monogenic disease caused by deleterious variants in genes such as NPHS1, which encodes nephrin. In steroid-sensitive nephrotic syndrome, HLA class II and immune-related genes have been identified as susceptibility genes. Moreover, NPHS1 is a susceptibility gene for steroid-sensitive nephrotic syndrome in patients from East Asian populations. Anti-nephrin antibodies have been identified as a significant factor in the pathogenesis of nephrotic syndrome. These discoveries have substantially advanced our understanding of nephrotic syndrome. However, the mechanisms underlying the production of anti-nephrin antibodies and their association with genetic backgrounds have remained unclear and warrant further investigation.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kono M, Sugihara M, Kawai Y, Kawashima M, Khor SS, Sugi K, Kouno H, Kohno H, Naganuma A, Iwamoto S, Katsushima S, Furuta K, Nikami T, Mannami T, Yamashita T, Ario K, Komatsu T, Makita F, Shimada M, Hirashima N, Yokohama S, Nishimura H, Sugimoto R, Komura T, Ota H, Kojima M, Nakamuta M, Fujimori N, Yoshizawa K, Mano Y, Takahashi H, Hirooka K, Tsuruta S, Sato T, Yamasaki K, Kugiyama Y, Motoyoshi Y, Suehiro T, Saeki A, Matsumoto K, Nagaoka S, Abiru S, Yatsuhashi H, Ito M, Kawata K, Takaki A, Arai K, Arinaga-Hino T, Abe M, Harada M, Taniai M, Zeniya M, Ohira H, Shimoda S, Komori A, Tanaka A, Ishigaki K, Nagasaki M, Tokunaga K, Nakamura M. A genome-wide association study identified PTPN2 as a population-specific susceptibility gene locus for primary biliary cholangitis. Hepatology 2024; 80:776-790. [PMID: 38652555 DOI: 10.1097/hep.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Previous genome-wide association studies (GWAS) have indicated the involvement of shared (population-nonspecific) and nonshared (population-specific) susceptibility genes in the pathogenesis of primary biliary cholangitis (PBC) among European and East-Asian populations. Although a meta-analysis of these distinct populations has recently identified more than 20 novel PBC susceptibility loci, analyses of population-specific genetic architecture are still needed for a more comprehensive search for genetic factors in PBC. APPROACH AND RESULTS Protein tyrosine phosphatase nonreceptor type 2 ( PTPN2) was identified as a novel PBC susceptibility gene locus through GWAS and subsequent genome-wide meta-analysis involving 2181 cases and 2699 controls from the Japanese population (GWAS-lead variant: rs8098858, p = 2.6 × 10 -8 ). In silico and in vitro functional analyses indicated that the risk allele of rs2292758, which is a primary functional variant, decreases PTPN2 expression by disrupting Sp1 binding to the PTPN2 promoter in T follicular helper cells and plasmacytoid dendritic cells. Infiltration of PTPN2-positive T-cells and plasmacytoid dendritic cells was confirmed in the portal area of the PBC liver by immunohistochemistry. Furthermore, transcriptomic analysis of PBC-liver samples indicated the presence of a compromised negative feedback loop in vivo between PTPN2 and IFNG in patients carrying the risk allele of rs2292758. CONCLUSIONS PTPN2 , a novel susceptibility gene for PBC in the Japanese population, may be involved in the pathogenesis of PBC through an insufficient negative feedback loop caused by the risk allele of rs2292758 in IFN-γ signaling. This suggests that PTPN2 could be a potential molecular target for PBC treatment.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michihiro Kono
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitsuki Sugihara
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kohno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Iwamoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiko Mannami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shiro Yokohama
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takuya Komura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kojima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naoyuki Fujimori
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kana Hirooka
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Tsuruta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kosuke Matsumoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Masahiro Ito
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Shinji Shimoda
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| |
Collapse
|
3
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kawai Y, Kawashima M, Khor SS, Takada S, Iwabuchi C, Nagasaki M, Tokunaga K, Nakamura M. rs10924104 in the expression enhancer motif of CD58 confers susceptibility to human autoimmune diseases. Hum Genet 2024; 143:19-33. [PMID: 37994973 DOI: 10.1007/s00439-023-02617-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/28/2023] [Indexed: 11/24/2023]
Abstract
CD58 plays roles in cell adhesion and co-stimulation with antigen presentation from major histocompatibility complex class II on antigen-presenting cells to T-cell antigen receptors on naïve T cells. CD58 reportedly contributes to the development of various human autoimmune diseases. Recently, genome-wide association studies (GWASs) identified CD58 as a susceptibility locus for autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), and primary biliary cholangitis (PBC). However, the primary functional variant and molecular mechanisms of susceptibility to autoimmune diseases in the CD58 locus were not clarified. Here, rs10924104, located in the ZNF35-binding motif within the gene expression regulatory motif, was identified as the primary functional variant for SLE, MS, and PBC among genetic variants showing stronger linkage disequilibrium (LD) with GWAS-lead variants in the CD58 locus. Expression-quantitative trait locus (e-QTL) data for each distinct blood cell type and in vitro functional analysis using the CRISPR/Cas9 system corroborated the functional role of rs10924104 in the upregulation of CD58 transcription by the disease-risk allele. Additionally, the strength of disease susceptibility observed in the CD58 locus could be accounted for by the strength of LD between rs10924104 and each GWAS-lead variant. In conclusion, the present study demonstrated for the first time the existence of a shared autoimmune disease-related primary functional variant (i.e., rs10924104) that regulates the expression of CD58. Clarifying the molecular mechanism of disease susceptibility derived from such a shared genetic background is important for understanding human autoimmune diseases and human immunology.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minae Kawashima
- Database Center for Life Science, Research Organization of Information and Systems, Kashiwa, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanami Takada
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Chisato Iwabuchi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| |
Collapse
|
4
|
Hitomi Y, Nakamura M. The Genetics of Primary Biliary Cholangitis: A GWAS and Post-GWAS Update. Genes (Basel) 2023; 14:405. [PMID: 36833332 PMCID: PMC9957238 DOI: 10.3390/genes14020405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which the small intrahepatic bile ducts are destroyed by autoimmune reactions. Among autoimmune diseases, which are polygenic complex traits caused by the combined contribution of genetic and environmental factors, PBC exhibits the strongest involvement of genetic heritability in disease development. As at December 2022, genome-wide association studies (GWASs) and associated meta-analyses identified approximately 70 PBC susceptibility gene loci in various populations, including those of European and East Asian descent. However, the molecular mechanisms through which these susceptibility loci affect the pathogenesis of PBC are not fully understood. This study provides an overview of current data regarding the genetic factors of PBC as well as post-GWAS approaches to identifying primary functional variants and effector genes in disease-susceptibility loci. Possible mechanisms of these genetic factors in the development of PBC are also discussed, focusing on four major disease pathways identified by in silico gene set analyses, namely, (1) antigen presentation by human leukocyte antigens, (2) interleukin-12-related pathways, (3) cellular responses to tumor necrosis factor, and (4) B cell activation, maturation, and differentiation pathways.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 2-1001-1 Kubara, Omura 856-8562, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
| |
Collapse
|
5
|
rs2013278 in the multiple immunological-trait susceptibility locus CD28 regulates the production of non-functional splicing isoforms. Hum Genomics 2022; 16:46. [PMID: 36271469 PMCID: PMC9585755 DOI: 10.1186/s40246-022-00419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Ligation of CD28 with ligands such as CD80 or CD86 provides a critical second signal alongside antigen presentation by class II major histocompatibility complex expressed on antigen-presenting cells through the T cell antigen receptor for naïve T cell activation. A number of studies suggested that CD28 plays an important role in the pathogenesis of various human diseases. Recent genome-wide association studies (GWASs) identified CD28 as a susceptibility locus for lymphocyte and eosinophil counts, multiple sclerosis, ulcerative colitis, celiac disease, rheumatoid arthritis, asthma, and primary biliary cholangitis. However, the primary functional variant and molecular mechanisms of disease susceptibility in this locus remain to be elucidated. This study aimed to identify the primary functional variant from thousands of genetic variants in the CD28 locus and elucidate its functional effect on the CD28 molecule. Results Among the genetic variants exhibiting stronger linkage disequilibrium (LD) with all GWAS-lead variants in the CD28 locus, rs2013278, located in the Rbfox binding motif related to splicing regulation, was identified as a primary functional variant related to multiple immunological traits. Relative endogenous expression levels of CD28 splicing isoforms (CD28i and CD28Δex2) compared with full-length CD28 in allele knock-in cell lines generated using CRISPR/Cas9 were directly regulated by rs2013278 (P < 0.05). Although full-length CD28 protein expressed on Jurkat T cells showed higher binding affinity for CD80/CD86, both CD28i and CD28Δex2 encoded loss-of-function isoforms. Conclusion The present study demonstrated for the first time that CD28 has a shared disease-related primary functional variant (i.e., rs2013278) that regulates the CD28 alternative splicing that generates loss-of-function isoforms. They reduce disease risk by inducing anergy of effector T cells that over-react to autoantigens and allergens. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00419-7.
Collapse
|
6
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
7
|
Horinouchi T, Nozu K, Iijima K. An updated view of the pathogenesis of steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2022; 37:1957-1965. [PMID: 35006356 PMCID: PMC9307535 DOI: 10.1007/s00467-021-05401-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Idiopathic nephrotic syndrome is the most common childhood glomerular disease. Most forms of this syndrome respond to corticosteroids at standard doses and are, therefore, defined as steroid-sensitive nephrotic syndrome (SSNS). Immunological mechanisms and subsequent podocyte disorders play a pivotal role in SSNS and have been studied for years; however, the precise pathogenesis remains unclear. With recent advances in genetic techniques, an exhaustive hypothesis-free approach called a genome-wide association study (GWAS) has been conducted in various populations. GWASs in pediatric SSNS peaked in the human leukocyte antigen class II region in various populations. Additionally, an association of immune-related CALHM6/FAM26F, PARM1, BTNL2, and TNFSF15 genes, as well as NPHS1, which encodes nephrin expressed in podocytes, has been identified as a locus that achieves genome-wide significance in pediatric SSNS. However, the specific mechanism of SSNS development requires elucidation. This review describes an updated view of SSNS pathogenesis from immunological and genetic aspects, including interactions with infections or allergies, production of circulating factors, and an autoantibody hypothesis.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- grid.31432.370000 0001 1092 3077Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- grid.31432.370000 0001 1092 3077Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan. .,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Minatojimaminami-machi 1-6-7, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
8
|
rs9459874 and rs1012656 in CCR6/FGFR1OP confer susceptibility to primary biliary cholangitis. J Autoimmun 2021; 126:102775. [PMID: 34864633 DOI: 10.1016/j.jaut.2021.102775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic autoimmune liver disease that appears to be strongly influenced by genetic factors. Recently, an international meta-analysis of genome-wide association studies (GWAS) identified CC-Motif Chemokine Receptor-6 (CCR6) and FGFR1 Oncogene-Partner (FGFR1OP) as PBC-susceptibility genes. However, the lead single nucleotide polymorphisms (SNPs) of CCR6/FGFR1OP showed low linkage disequilibrium with each other in East Asian and European populations. Additionally, the primary functional variants and the molecular mechanisms responsible for PBC-susceptibility remain unclear. Here, among the PBC-susceptibility SNPs identified by high-density association mapping in our previous meta-GWAS (Patients: n = 10,516; healthy controls: n = 20,772) within the CCR6/FGFR1OP locus, rs9459874 and rs1012656 were identified as primary functional variants. These functional variants accounted for the effects of GWAS-identified lead SNPs in CCR6/FGFR1OP. Additionally, the roles of rs9459874 and rs1012656 in regulating FGFR1OP transcription and CCR6 translation, respectively, were supported by expression quantitative trait loci (eQTL) analysis and gene editing technology using the CRISPR/Cas9 system. Immunohistochemistry showed higher expression of CCR6 protein in the livers of patients with PBC than in those of a non-diseased control. In conclusion, we identified primary functional variants in CCR6/FGFR1OP and revealed the molecular mechanisms by which these variants confer PBC-susceptibility in an eQTL-dependent or -independent manner. The approach in this study is applicable for the elucidation of the pathogenesis of other autoimmune disorders in which CCR6/FGFR1OP is known as a susceptibility locus, as well as PBC.
Collapse
|
9
|
Novel insights in the genetics of steroid-sensitive nephrotic syndrome in childhood. Pediatr Nephrol 2021; 36:2165-2175. [PMID: 33084934 DOI: 10.1007/s00467-020-04780-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of nephrotic syndrome in childhood and there is growing evidence that genetics play a role in the susceptibility for the disease. Familial clustering has been observed and has led to several studies on familial SSNS trying to identify a monogenic cause of the disease. Until now, however, none of these have provided convincing evidence for Mendelian inheritance. This and the phenotypic variability within SSNS suggest a complex inheritance pattern, where multiple variants and interactions between those and the environment play roles in disease development. Genome-wide association studies (GWASs) have been used to investigate this complex disease. We herein highlight new insights in the genetics of the disease provided by GWAS and identify how these insights fit into our understanding of the pathogenesis of SSNS.
Collapse
|
10
|
Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, Hitomi Y, Lee D, Aiba Y, Khor SS, Ueno K, Kawai Y, Nagasaki M, Noiri E, Horinouchi T, Kaito H, Hamada R, Okamoto T, Kamei K, Kaku Y, Fujimaru R, Tanaka R, Shima Y, Baek J, Kang HG, Ha IS, Han KH, Yang EM, Abeyagunawardena A, Lane B, Chryst-Stangl M, Esezobor C, Solarin A, Dossier C, Deschênes G, Vivarelli M, Debiec H, Ishikura K, Matsuo M, Nozu K, Ronco P, Cheong HI, Sampson MG, Tokunaga K, Iijima K. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int 2020; 98:1308-1322. [PMID: 32554042 DOI: 10.1016/j.kint.2020.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
To understand the genetics of steroid-sensitive nephrotic syndrome (SSNS), we conducted a genome-wide association study in 987 childhood SSNS patients and 3,206 healthy controls with Japanese ancestry. Beyond known associations in the HLA-DR/DQ region, common variants in NPHS1-KIRREL2 (rs56117924, P=4.94E-20, odds ratio (OR) =1.90) and TNFSF15 (rs6478109, P=2.54E-8, OR=0.72) regions achieved genome-wide significance and were replicated in Korean, South Asian and African populations. Trans-ethnic meta-analyses including Japanese, Korean, South Asian, African, European, Hispanic and Maghrebian populations confirmed the significant associations of variants in NPHS1-KIRREL2 (Pmeta=6.71E-28, OR=1.88) and TNFSF15 (Pmeta=5.40E-11, OR=1.33) loci. Analysis of the NPHS1 risk alleles with glomerular NPHS1 mRNA expression from the same person revealed allele specific expression with significantly lower expression of the transcript derived from the risk haplotype (Wilcox test p=9.3E-4). Because rare pathogenic variants in NPHS1 cause congenital nephrotic syndrome of the Finnish type (CNSF), the present study provides further evidence that variation along the allele frequency spectrum in the same gene can cause or contribute to both a rare monogenic disease (CNSF) and a more complex, polygenic disease (SSNS).
Collapse
Affiliation(s)
- Xiaoyuan Jia
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rasheed Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michelle T McNulty
- Department of Medicine-Nephrology, Boston Children's Hospital, Boston, Massachussetts, USA; Medical and Population Genetics, Broad Institute, Cambridge, Massachussetts, USA
| | - Kyuyong Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Dongwon Lee
- Department of Medicine-Nephrology, Boston Children's Hospital, Boston, Massachussetts, USA; Medical and Population Genetics, Broad Institute, Cambridge, Massachussetts, USA; Harvard Medical School, Boston, Massachussetts, USA
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuko Ueno
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Eisei Noiri
- Department of Hemodialysis and Apheresis, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshitsugu Kaku
- Department of Nephrology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Rika Fujimaru
- Department of Pediatrics, Osaka City General Hospital, Osaka, Japan
| | - Ryojiro Tanaka
- Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | | | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Eun Mi Yang
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
| | | | - Asiri Abeyagunawardena
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brandon Lane
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Megan Chryst-Stangl
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher Esezobor
- Department of Paediatrics, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Adaobi Solarin
- Department of Pediatrics, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | | | - Claire Dossier
- Department of Paediatric Nephrology, Public Assistance Hospital of Paris, Robert-Debré Hospital, Paris, France
| | - Georges Deschênes
- Center of Research on Inflammation, Institut National de la Santé et de la Recherche Médicale UMR 1149, University Sorbonne-Paris, Paris, France
| | | | - Marina Vivarelli
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Hanna Debiec
- Sorbonne University, INSERM UMR_S1155, and Nephrology Day Hospital, Department of Nephrology, Hôpital Tenon, Paris France
| | - Kenji Ishikura
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan; KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S1155, and Nephrology Day Hospital, Department of Nephrology, Hôpital Tenon, Paris France
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Matthew G Sampson
- Department of Medicine-Nephrology, Boston Children's Hospital, Boston, Massachussetts, USA; Medical and Population Genetics, Broad Institute, Cambridge, Massachussetts, USA; Harvard Medical School, Boston, Massachussetts, USA
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
11
|
Hitomi Y, Ueno K, Kawai Y, Nishida N, Kojima K, Kawashima M, Aiba Y, Nakamura H, Kouno H, Kouno H, Ohta H, Sugi K, Nikami T, Yamashita T, Katsushima S, Komeda T, Ario K, Naganuma A, Shimada M, Hirashima N, Yoshizawa K, Makita F, Furuta K, Kikuchi M, Naeshiro N, Takahashi H, Mano Y, Yamashita H, Matsushita K, Tsunematsu S, Yabuuchi I, Nishimura H, Shimada Y, Yamauchi K, Komatsu T, Sugimoto R, Sakai H, Mita E, Koda M, Nakamura Y, Kamitsukasa H, Sato T, Nakamuta M, Masaki N, Takikawa H, Tanaka A, Ohira H, Zeniya M, Abe M, Kaneko S, Honda M, Arai K, Arinaga-Hino T, Hashimoto E, Taniai M, Umemura T, Joshita S, Nakao K, Ichikawa T, Shibata H, Takaki A, Yamagiwa S, Seike M, Sakisaka S, Takeyama Y, Harada M, Senju M, Yokosuka O, Kanda T, Ueno Y, Ebinuma H, Himoto T, Murata K, Shimoda S, Nagaoka S, Abiru S, Komori A, Migita K, Ito M, Yatsuhashi H, Maehara Y, Uemoto S, Kokudo N, Nagasaki M, Tokunaga K, Nakamura M. POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33. Sci Rep 2019; 9:102. [PMID: 30643196 PMCID: PMC6331557 DOI: 10.1038/s41598-018-36490-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4,045 Japanese individuals (2,060 cases and 1,985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10-9). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10-8). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kazuko Ueno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Hitomi Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ohta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Komeda
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masahiro Kikuchi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noriaki Naeshiro
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Haruhiro Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kouki Matsushita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seiji Tsunematsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Iwao Yabuuchi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yusuke Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiko Yamauchi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironori Sakai
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Eiji Mita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaharu Koda
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yoko Nakamura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kamitsukasa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naohiko Masaki
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Rheumatic Diseases, Fukushima Medical University of Medicine, Fukushima, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Etsuko Hashimoto
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuki Ichikawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yasuaki Takeyama
- Department of Gastroenterology and Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Michio Senju
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Osamu Yokosuka
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuo Kanda
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio Graduate School of Medicine, Tokyo, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Kazumoto Murata
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinya Nagaoka
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Kiyoshi Migita
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Masahiro Ito
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan.
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.
- Headquaters of PBC-GWAS study group in Japan, Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan.
| |
Collapse
|
12
|
Hitomi Y, Nakatani K, Kojima K, Nishida N, Kawai Y, Kawashima M, Aiba Y, Nagasaki M, Nakamura M, Tokunaga K. NFKB1 and MANBA Confer Disease Susceptibility to Primary Biliary Cholangitis via Independent Putative Primary Functional Variants. Cell Mol Gastroenterol Hepatol 2018; 7:515-532. [PMID: 30528300 PMCID: PMC6396435 DOI: 10.1016/j.jcmgh.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is a chronic and cholestatic liver disease that eventually leads to cirrhosis and hepatic failure. We recently identified several susceptibility genes included NFKB1 and MANBA for PBC in the Japanese population by genome-wide association study. However, the primary functional variants in the NFKB1/MANBA region and the molecular mechanism for conferring disease susceptibility to PBC have not yet been clarified. METHODS We performed high-density association mapping based on a single-nucleotide polymorphism (SNP) imputation analysis, using data from a whole-genome sequence reference panel of 1070 Japanese individuals and the previous genome-wide association study (1389 PBC patients, 1508 healthy controls). Among SNPs (P < 5.0 × 10-7) in the NFKB1/MANBA region, putative primary functional variants and the molecular mechanism for conferring disease susceptibility to PBC were identified by in silico/in vitro functional analysis. RESULTS Among the SNPs in the NFKB1/MANBA region, rs17032850 and rs227361, which changed the binding of transcription factors lymphoid enhancer-binding factor 1 (LEF-1) and retinoid X receptor α (RXRα), respectively, were identified as putative primary functional variants that regulate gene expression. In addition, expression-quantitative trait locus data and gene editing using a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system supported the potential role of rs17032850 and rs227361 in regulating NFKB1 and MANBA expression, respectively. CONCLUSIONS We identified independent putative primary functional variants in NFKB1/MANBA and showed the distinct molecular mechanism by which each putative primary functional variant conferred susceptibility to PBC. Our approach was useful to dissect the pathogenesis not only of PBC, but also other digestive diseases in which NFKB1/MANBA has been reported as a susceptibility locus.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Correspondence Address correspondence to: Yuki Hitomi, PhD, Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. fax: (81) 3-5802-8619.
| | - Ken Nakatani
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Japan Science and Technology Agency, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Medicine, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Minoru Nakamura
- Headquarters of Primary Biliary Cholangitis (PBC) Research in National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan,Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Kadiyska T, Tourtourikov I, Popmihaylova AM, Kadian H, Chavoushian A. Role of TNFSF15 in the intestinal inflammatory response. World J Gastrointest Pathophysiol 2018; 9:73-78. [PMID: 30809418 PMCID: PMC6384511 DOI: 10.4291/wjgp.v9.i4.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal diseases, specifically Crohn’s disease, ulcerative colitis, diverticular disease, and primary biliary cirrhosis are all characterized by complicated inflammation of the digestive tract. Their pathology is multifactorial, and risk factors encompass both genetic and environmental factors. Recent advances in the genetic component of inflammatory bowel diseases (IBDs) have revealed that the tumor necrosis factor superfamily member 15 (TNFSF15) contains a number of risk alleles associated not only with IBD but also with other diseases such as diverticular disease and primary biliary cirrhosis. These risk alleles in TNFSF15 and the altered expression of its gene product can serve as the common ground between these disorders by explaining at least some of the underlying processes that lead to a dysregulated immune response and subsequent chronic inflammation. Here, we aim to outline how the TNFSF15 gene is involved in the proliferation and cell fate of different populations of T cells and subsequently in the control of both pro- and anti-inflammatory cytokines. Furthermore, we summarize what is currently known of TNFSF15 control region variants, how they are associated with each mentioned disease, and how these variants can explain the autoimmune pathology of said diseases through altered TNFSF15 expression.
Collapse
Affiliation(s)
- Tanya Kadiyska
- Department of Medical Chemistry and Biochemistry, Sofia Medical University, Sofia 1431, Bulgaria
- Genetic Medico-Diagnostic Laboratory Genica, Sofia 1612, Bulgaria
| | | | | | - Hilda Kadian
- Bulgarian Association for Inflammatory Bowel Diseases, Sofia 1527, Bulgaria
| | - Ani Chavoushian
- Department of Gastroenterology, Acibadem City Clinic Oncology Center, Sofia 1784, Bulgaria
| |
Collapse
|
14
|
Wang XM, Tu JC. TNFSF15 is likely a susceptibility gene for systemic lupus erythematosus. Gene 2018; 670:106-113. [PMID: 29803925 DOI: 10.1016/j.gene.2018.05.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
We aim to explore the correlation of TNFSF15 genetic polymorphisms with susceptibility to systemic lupus erythematosus (SLE). This study enrolled SLE patients and healthy individuals to detect three single nucleotide polymorphisms (SNPs) of TNFSF15 (rs3810936, rs6478108 and rs4979462) through using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the possible association of these three SNPs with the risk of SLE and the mRNA level of TNFSF15 was quantified by real-time PCR. The rs3810936 T allele carrier greatly decreased risk of SLE (OR = 0.620, 95% CI = 0.454-0.849, P = 0.003), while the risk of SLE for rs4979462 T allele carrier was significantly increased (OR = 1.66, 95% CI = 1.243-2.218, P < 0.001). The mRNA level of TNFSF15 was obviously higher in SLE patients, and specifically, the patients who carried the CC genotype of TNFSF15 rs3810936 had a higher TNFSF15 mRNA, but the rs4979462 CC genotype carriers appeared to be associated with the decreased TNFSF15 mRNA (all P < 0.05). Besides, the genotypes of rs3810936 and rs4979462 of TNFSF15 were significantly associated with butterfly rash, arthritis, serositis, renal nephritis, hematological disorder, immunological disorder and positive antinuclear antibody (ANA) of SLE patients (all P < 0.05). CCT and CTT haplotypes were risk factors of SLE, but CCC and TTT were protective factors of SLE (all P < 0.05). Logistic regression analysis showed that rs3810936 and rs4979462 of TNFSF15, histories of chilblain and wet living environment were independently associated with the risk of SLE (all P < 0.05).The current results suggested that TNFSF15 (rs3810936 and rs4979462) SNPs may confer susceptibility to SLE risk, which were significantly associated with the clinical phenotypes of SLE.
Collapse
Affiliation(s)
- Xian-Mo Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, PR China
| | - Jian-Cheng Tu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, PR China.
| |
Collapse
|
15
|
Identification of the functional variant driving ORMDL3 and GSDMB expression in human chromosome 17q12-21 in primary biliary cholangitis. Sci Rep 2017; 7:2904. [PMID: 28588209 PMCID: PMC5460198 DOI: 10.1038/s41598-017-03067-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Numerous genome-wide association studies (GWAS) have been performed to identify susceptibility genes to various human complex diseases. However, in many cases, neither a functional variant nor a disease susceptibility gene have been clarified. Here, we show an efficient approach for identification of a functional variant in a primary biliary cholangitis (PBC)-susceptible region, chromosome 17q12-21 (ORMDL3-GSDMB-ZPBP2-IKZF3). High-density association mapping was carried out based on SNP imputation analysis by using the whole-genome sequence data from a reference panel of 1,070 Japanese individuals (1KJPN), together with genotype data from our previous GWAS (PBC patients: n = 1,389; healthy controls: n = 1,508). Among 23 single nucleotide polymorphisms (SNPs) with P < 1.0 × 10-8, rs12946510 was identified as the functional variant that influences gene expression via alteration of Forkhead box protein O1 (FOXO1) binding affinity in vitro. Moreover, expression-quantitative trait locus (e-QTL) analyses showed that the PBC susceptibility allele of rs12946510 was significantly associated with lower endogenous expression of ORMDL3 and GSDMB in whole blood and spleen. This study not only identified the functional variant in chr.17q12-21 and its molecular mechanism through which it conferred susceptibility to PBC, but it also illustrated an efficient systematic approach for post-GWAS analysis that is applicable to other complex diseases.
Collapse
|
16
|
Qiu F, Tang R, Zuo X, Shi X, Wei Y, Zheng X, Dai Y, Gong Y, Wang L, Xu P, Zhu X, Wu J, Han C, Gao Y, Zhang K, Jiang Y, Zhou J, Shao Y, Hu Z, Tian Y, Zhang H, Dai N, Liu L, Wu X, Zhao W, Zhang X, Zang Z, Nie J, Sun W, Zhao Y, Mao Y, Jiang P, Ji H, Dong Q, Li J, Li Z, Bai X, Li L, Lin M, Dong M, Li J, Zhu P, Wang C, Zhang Y, Jiang P, Wang Y, Jawed R, Xu J, Zhang Y, Wang Q, Yang Y, Yang F, Lian M, Jiang X, Xiao X, Li Y, Fang J, Qiu D, Zhu Z, Qiu H, Zhang J, Tian W, Chen S, Jiang L, Ji B, Li P, Chen G, Wu T, Sun Y, Yu J, Tang H, He M, Xia M, Pei H, Huang L, Qing Z, Wu J, Huang Q, Han J, Xie W, Sun Z, Guo J, He G, Eric Gershwin M, Lian Z, Liu X, Seldin MF, Liu X, Chen W, Ma X. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun 2017; 8:14828. [PMID: 28425483 PMCID: PMC5429142 DOI: 10.1038/ncomms14828] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a strong hereditary component. Here, we report a genome-wide association study that included 1,122 PBC cases and 4,036 controls of Han Chinese descent, with subsequent replication in a separate cohort of 907 PBC cases and 2,127 controls. Our results show genome-wide association of 14 PBC risk loci including previously identified 6p21 (HLA-DRA and DPB1), 17q12 (ORMDL3), 3q13.33 (CD80), 2q32.3 (STAT1/STAT4), 3q25.33 (IL12A), 4q24 (NF-κB) and 22q13.1 (RPL3/SYNGR1). We also identified variants in IL21, IL21R, CD28/CTLA4/ICOS, CD58, ARID3A and IL16 as novel PBC risk loci. These new findings and histochemical studies showing enhanced expression of IL21 and IL21R in PBC livers (particularly in the hepatic portal tracks) support a disease mechanism in which the deregulation of the IL21 signalling pathway, in addition to CD4 T-cell activation and T-cell co-stimulation are critical components in the development of PBC.
Collapse
Affiliation(s)
- Fang Qiu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ruqi Tang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Xianbo Zuo
- Department of Dermatology at No. 1 Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yiran Wei
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Xiaodong Zheng
- Department of Dermatology at No. 1 Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu 214005, China
| | - Yuhua Gong
- Department of Laboratory Medicine, The Third People's Hospital of Zhenjiang, Zhenjiang, Jiangsu 212005, China
| | - Lan Wang
- Department of Laboratory Medicine, The 81th Hospital of PLA, Nanjing, Jiangsu 210002, China
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu 215007, China
| | - Xiang Zhu
- Department of Laboratory Medicine, The Fifth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jian Wu
- Department of Rheumatology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chongxu Han
- Department of Laboratory Medicine, Subei People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yueqiu Gao
- Department of Hepatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Kui Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yuzhang Jiang
- Department of Laboratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Jianbo Zhou
- Department of Laboratory Medicine, Jiangyin People's Hospital, Southeast University, Jiangyin, Jiangsu 214400, China
| | - Youlin Shao
- Department of Laboratory Medicine, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| | - Zhigang Hu
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ye Tian
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Haiyan Zhang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Na Dai
- Department of Gastroenterology, Jiangsu University affiliated Kunshan Hospital, Kunshan, Jiangsu 215300, China
| | - Lei Liu
- Department of Gastroenterology, Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Xudong Wu
- Department of Gastroenterology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, China
| | - Weifeng Zhao
- Department of Rheumatology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaomin Zhang
- Department of Laboratory Medicine, The University Hospital, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhidong Zang
- Department of Hepatology, The Second Hospital of Nanjing, Southeast University, Nanjing, Jiangsu 210003, China
| | - Jinshan Nie
- Department of Gastroenterology, Taicang First People's Hospital, Soochow University, Taicang, Jiangsu 215400, China
| | - Weihao Sun
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Zhao
- Department of Gastroenterology, Eastern Hepatobiliary Surgery Hospital, Shanghai 201805, China
| | - Yuan Mao
- Department of Immunology, Nanjing Kingmed Clinical Laboratory Co. Ltd. Nanjing, Jiangsu 210042, China
| | - Po Jiang
- Department of Hepatology, The Second People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, China
| | - Hualiang Ji
- Department of Gastroenterology, Hai'an People's Hospital, Nantong University Medical School, Hai'an, Jiangsu 226600, China
| | - Qing Dong
- Department of Laboratory Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215009, China
| | - Junming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenzhong Li
- Department of Paediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xinli Bai
- Department of Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Li Li
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Maosong Lin
- Department of Hepatology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan 215300, China
| | - Ming Dong
- Department of Genomics and Epigenomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinxin Li
- Department of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Ping Zhu
- Department of Nutrition and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Chan Wang
- Division of Rheumatology, Allergy, and Clinical Immunology, Rowe Program in Genetics, University of California-Davis, Davis, California 95616, USA
| | - Yanqiu Zhang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Peng Jiang
- Department of Stomatology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yujue Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Rohil Jawed
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jing Xu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yu Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qixia Wang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Yue Yang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Min Lian
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Xiang Jiang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Xiao Xiao
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Yanmei Li
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jingyuan Fang
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Dekai Qiu
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Zhen Zhu
- Department of Laboratory Medicine, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| | - Hong Qiu
- Department of Laboratory Medicine, The 81th Hospital of PLA, Nanjing, Jiangsu 210002, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Tian
- Department of Rheumatology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Sufang Chen
- Department of Laboratory Medicine, The Fifth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu 215007, China
| | - Ling Jiang
- Department of Rheumatology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Bing Ji
- Department of Laboratory Medicine, The 81th Hospital of PLA, Nanjing, Jiangsu 210002, China
| | - Ping Li
- Department of Laboratory Medicine, The 81th Hospital of PLA, Nanjing, Jiangsu 210002, China
| | - Guochang Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Tianxue Wu
- Department of Laboratory Medicine, Subei People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yan Sun
- Department of Laboratory Medicine, Subei People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jianjiang Yu
- Department of Laboratory Medicine, Jiangyin People's Hospital, Southeast University, Jiangyin, Jiangsu 214400, China
| | - Huijun Tang
- Department of Laboratory Medicine, Jiangyin People's Hospital, Southeast University, Jiangyin, Jiangsu 214400, China
| | - Michun He
- Department of Rheumatology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Min Xia
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Hao Pei
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu 214005, China
| | - Lihua Huang
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu 214005, China
| | - Zhuye Qing
- Department of Immunology, Nanjing Kingmed Clinical Laboratory Co. Ltd. Nanjing, Jiangsu 210042, China
| | - Jianfang Wu
- Department of Hepatology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan 215300, China
| | - Qinghai Huang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhongsheng Sun
- Department of Genomics and Epigenomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Guo
- Department of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Gengsheng He
- Department of Nutrition and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, Rowe Program in Genetics, University of California-Davis, Davis, California 95616, USA
| | - Zhexiong Lian
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiang Liu
- Department of Stomatology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Michael F. Seldin
- Division of Rheumatology, Allergy, and Clinical Immunology, Rowe Program in Genetics, University of California-Davis, Davis, California 95616, USA
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Weichang Chen
- Department of Rheumatology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| |
Collapse
|
17
|
Kawashima M, Hitomi Y, Aiba Y, Nishida N, Kojima K, Kawai Y, Nakamura H, Tanaka A, Zeniya M, Hashimoto E, Ohira H, Yamamoto K, Abe M, Nakao K, Yamagiwa S, Kaneko S, Honda M, Umemura T, Ichida T, Seike M, Sakisaka S, Harada M, Yokosuka O, Ueno Y, Senju M, Kanda T, Shibata H, Himoto T, Murata K, Miyake Y, Ebinuma H, Taniai M, Joshita S, Nikami T, Ota H, Kouno H, Kouno H, Nakamuta M, Fukushima N, Kohjima M, Komatsu T, Komeda T, Ohara Y, Muro T, Yamashita T, Yoshizawa K, Nakamura Y, Shimada M, Hirashima N, Sugi K, Ario K, Takesaki E, Naganuma A, Mano H, Yamashita H, Matsushita K, Yamauchi K, Makita F, Nishimura H, Furuta K, Takahashi N, Kikuchi M, Masaki N, Tanaka T, Tamura S, Mori A, Yagi S, Shirabe K, Komori A, Migita K, Ito M, Nagaoka S, Abiru S, Yatsuhashi H, Yasunami M, Shimoda S, Harada K, Egawa H, Maehara Y, Uemoto S, Kokudo N, Takikawa H, Ishibashi H, Chayama K, Mizokami M, Nagasaki M, Tokunaga K, Nakamura M. Genome-wide association studies identify PRKCB as a novel genetic susceptibility locus for primary biliary cholangitis in the Japanese population. Hum Mol Genet 2017; 26:650-659. [PMID: 28062665 DOI: 10.1093/hmg/ddw406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
A previous genome-wide association study (GWAS) performed in 963 Japanese individuals (487 primary biliary cholangitis [PBC] cases and 476 healthy controls) identified TNFSF15 (rs4979462) and POU2AF1 (rs4938534) as strong susceptibility loci for PBC. In this study, we performed GWAS in additional 1,923 Japanese individuals (894 PBC cases and 1,029 healthy controls), and combined the results with the previous data. This GWAS, together with a subsequent replication study in an independent set of 7,024 Japanese individuals (512 PBC cases and 6,512 healthy controls), identified PRKCB (rs7404928) as a novel susceptibility locus for PBC (odds ratio [OR] = 1.26, P = 4.13 × 10-9). Furthermore, a primary functional variant of PRKCB (rs35015313) was identified by genotype imputation using a phased panel of 1,070 Japanese individuals from a prospective, general population cohort study and subsequent in vitro functional analyses. These results may lead to improved understanding of the disease pathways involved in PBC, forming a basis for prevention of PBC and development of novel therapeutics.
Collapse
Affiliation(s)
- Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kaname Kojima
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hitomi Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Etsuko Hashimoto
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Rheumatic Diseases, Fukushima Medical University of Medicine, Fukushima, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagaski, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takeji Umemura
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takafumi Ichida
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Masataka Seike
- First Department of Internal Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Osamu Yokosuka
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Michio Senju
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Kanda
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagaski, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Kazumoto Murata
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yasuhiro Miyake
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio Graduate School of Medicine, Tokyo, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Joshita
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshiki Nikami
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kouno
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nobuyoshi Fukushima
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kohjima
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Komeda
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yukio Ohara
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toyokichi Muro
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yoko Nakamura
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiro Sugi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Eiichi Takesaki
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Mano
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Haruhiro Yamashita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kouki Matsushita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiko Yamauchi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naohiro Takahashi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masahiro Kikuchi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naohiko Masaki
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiro Tanaka
- Organ Transplantation Service, The University of Tokyo, Tokyo, Japan
| | - Sumito Tamura
- Hepatobiliarypancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Mori
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Shirabe
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Kiyoshi Migita
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Masahiro Ito
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Michio Yasunami
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hiroto Egawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihiro Kokudo
- Hepatobiliarypancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiromi Ishibashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
- Headquaters of gp210 Working Group in Intractable Liver Disease Research Project Team of the Ministry of Health and Welfare in Japan, Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| |
Collapse
|
18
|
Ait-Ali T, Díaz I, Soldevila F, Cano E, Li Y, Wilson AD, Giotti B, Archibald AL, Mateu E, Darwich L. Distinct functional enrichment of transcriptional signatures in pigs with high and low IFN-gamma responses after vaccination with a porcine reproductive and respiratory syndrome virus (PRRSV). Vet Res 2016; 47:104. [PMID: 27765052 PMCID: PMC5073823 DOI: 10.1186/s13567-016-0392-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023] Open
Abstract
Little is known about the host factor in the response to PRRSV vaccination. For this purpose, piglets were immunized with a commercial PRRSV-live vaccine and classified as high responders (HR) or low responders (LR) as regards to the frequencies of virus-specific IFN-γ-secreting cells. Six weeks post vaccination, PBMCs isolated from three individuals with the most extreme responses in each HR and LR groups and 3 unvaccinated controls, were either stimulated with phytohaemagglutinin, challenged with the vaccine or mock treated for 24 h, prior conducting transcriptional studies, gene ontology and pathway analyses. The LR group had very low neutralizing antibody levels and showed a higher number of down-regulated transcripts compared with the HR group (FDR < 0.2, P < 0.001). Down-regulated genes encoded chemoattractants, proinflammatory cytokines and the interferon-inducible GBP family, and showed enrichment in wounding (FDR < 3.6E-13), inflammation (FDR < 8E-12), defence (FDR < 8.7E-09) and immunity (FDR < 7.6E-08), suggesting immune response impairment. In the HR group, down-regulated genes were involved in protein transport (FDR < 4.77E-03), locomotory behavior (FDR < 5.47E-3), regulation of protein localization (FDR < 1.02E-02), and regulation of TNF superfamily member 15 and miR181. In contrast, the HR group presented up-regulated transcripts associated with wounding (FDR < 4.95). Moreover, IFN-γ was predicted to be an inhibited upstream regulator since IFN-γ pathways were associated with higher number of down-regulated genes in the LR (n = 40) than the HR (n = 10). Divergent responses to PRRSV-vaccination may be the result of the genetic background of the host.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain
| | - Ferran Soldevila
- Virology Department, Animal and Plant Health and Agency, Addlestone, KT15 3NB, UK.,Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Esmeralda Cano
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain
| | - Yanli Li
- Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain
| | - Alison D Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Bruno Giotti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain.,Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain
| | - Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain. .,Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain.
| |
Collapse
|
19
|
Fine-mapping analysis revealed complex pleiotropic effect and tissue-specific regulatory mechanism of TNFSF15 in primary biliary cholangitis, Crohn's disease and leprosy. Sci Rep 2016; 6:31429. [PMID: 27507062 PMCID: PMC4979016 DOI: 10.1038/srep31429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphism within the 9q32 locus is linked with increased risk of several diseases, including Crohn’s disease (CD), primary biliary cholangitis (PBC) and leprosy. The most likely disease-causing gene within 9q32 is TNFSF15, which encodes the pro-inflammatory cytokine TNF super-family member 15, but it was unknown whether these disparate diseases were associated with the same genetic variance in 9q32, and how variance within this locus might contribute to pathology. Using genetic data from published studies on CD, PBC and leprosy we revealed that bearing a T allele at rs6478108/rs6478109 (r2 = 1) or rs4979462 was significantly associated with increased risk of CD and decreased risk of leprosy, while the T allele at rs4979462 was associated with significantly increased risk of PBC. In vitro analyses showed that the rs6478109 genotype significantly affected TNFSF15 expression in cells from whole blood of controls, while functional annotation using publicly-available data revealed the broad cell type/tissue-specific regulatory potential of variance at rs6478109 or rs4979462. In summary, we provide evidence that variance within TNFSF15 has the potential to affect cytokine expression across a range of tissues and thereby contribute to protection from infectious diseases such as leprosy, while increasing the risk of immune-mediated diseases including CD and PBC.
Collapse
|
20
|
Li P, Lu G, Cui Y, Wu Z, Chen S, Li J, Wen X, Zhang H, Mu S, Zhang F, Li Y. Association of IL12A Expression Quantitative Trait Loci (eQTL) With Primary Biliary Cirrhosis in a Chinese Han Population. Medicine (Baltimore) 2016; 95:e3665. [PMID: 27175695 PMCID: PMC4902537 DOI: 10.1097/md.0000000000003665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genome-wide association studies in European individuals have revealed that IL12A is strongly associated with primary biliary cirrhosis (PBC). However, this association was not detected in replicative studies conducted in Chinese Han and Japanese populations.To verify contributions of genetic variants of IL12A to the pathogenesis of PBC in Chinese populations, a replicative study of 22 single nucleotide polymorphisms (SNPs) around the IL12A gene locus was performed in a cohort of 586 PBC cases and 726 healthy controls. Three out of the 22 SNPs were significantly associated with PBC. The 2 SNPs with the most significant association signal were rs4679868 (P = 6.59E-05, odds ratio [OR] = 1.554 [1.253-1.927]) and rs6441286 (P = 8.00E-05, OR = 1.551 [1.250-1.924]). These 2 SNPs were strongly linked to each other (r = 0.981), and both were found to be significantly associated with PBC in European populations.An expression quantitative trait loci (eQTL) analysis was performed based on the observation that these 2 SNPs were located in proximity to 2 enhancers verified by luciferase reporter systems in the HEK293 cell line. The results of eQTL analysis, conducted using the publically accessible data, showed that the risk alleles of rs4679868 and rs6441286 were significantly associated with decreased expression of IL12A in lymphoblastoid cell lines derived from individuals of Chinese Han ancestry (P = 0.0031 for rs4679868 and P = 0.0073 for rs6441286). In addition, the risk alleles of the 2 SNPs were significantly associated with down-regulation of SCHIP1, a celiac disease susceptible gene, 91.5 kb upstream of IL12A.These results not only demonstrated that IL12A is associated with PBC in the Chinese Han population but also identified a potential mechanism for its involvement in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Ping Li
- From the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing (PL, GL, ZW, SC, JL, XW, HZ, FZ, YL) and Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an (GL, YC, MJ), China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 2016; 66:25-39. [PMID: 26347073 DOI: 10.1016/j.jaut.2015.08.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
Primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) represent the three major hepatic autoimmune conditions. Patient morbidity and mortality remain high across these three diseases, and an unmet need for rational therapy exists. Disease understanding has focused on combining clinical and laboratory based science to provide better insights into the joint host and environmental factors necessary for the initiation, and perpetuation, of hepato-biliary inflammation. Twin studies, family studies, population studies and an inter-relationship with other autoimmune phenomena suggest a genetic component to risk for each disease. Until recently, understanding of this genetic risk has been limited to HLA haplotypes. Associations with risk-conferring and protective HLA haplotypes are present in all three diseases. Over the last few years, genome-wide association studies (GWAS), and related genetic association studies, have greatly increased understanding of the genetic risk signature of these three diseases and autoimmunity in general. Here we consider the rationale for GWAS in general and with specific reference to hepatic autoimmunity. We consider the process of GWAS, and highlight major findings to date. Potential functional implications of key findings are discussed including the IL-12/STAT4 pathway in PBC and the CD28/IL-2 pathway in PSC. We describe the marked pleiotropy demonstrated by PBC and PSC, which is consistent with other autoimmune diseases. Further, we focus on specific gene associations including SH2B3, which is common to all three diseases, and FUT2 in PSC, which represents a link between environment and genetics. We review attempts to translate GWAS findings into basic laboratory models including in vivo systems and highlight where clinical observations relate to genetics. Finally we describe deficiencies in GWAS to date and consider future study of genetics in hepatic autoimmunity.
Collapse
Affiliation(s)
- G J Webb
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - G M Hirschfield
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Webb GJ, Siminovitch KA, Hirschfield GM. The immunogenetics of primary biliary cirrhosis: A comprehensive review. J Autoimmun 2015; 64:42-52. [PMID: 26250073 PMCID: PMC5014907 DOI: 10.1016/j.jaut.2015.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
Primary biliary cirrhosis (PBC), a classic autoimmune liver disease, is characterised by a progressive T cell predominant lymphocytic cholangitis, and a serologic pattern of reactivity in the form of specific anti-mitochondrial antibodies (AMA). CD4+ T cells are particularly implicated by PBC's cytokine signature, the presence of CD4+ T cells specific to mitochondrial auto-antigens, the expression of MHC II on injured biliary epithelial cells, and PBC's coincidence with other similar T cell mediated autoimmune conditions. CD4+ T cells are also central to current animal models of PBC, and their transfer typically also transfers disease. The importance of genetic risk to developing PBC is evidenced by a much higher concordance rate in monozygotic than dizygotic twins, increased AMA rates in asymptomatic relatives, and disproportionate rates of disease in siblings of PBC patients, PBC family members and certain genetically defined populations. Recently, high-throughput genetic studies have greatly expanded our understanding of the gene variants underpinning risk for PBC development, so linking genetics and immunology. Here we summarize genetic association data that has emerged from large scale genome-wide association studies and discuss the evidence for the potential functional significance of the individual genes and pathways identified; we particularly highlight associations in the IL-12-STAT4-Th1 pathway. HLA associations and epigenetic effects are specifically considered and individual variants are linked to clinical phenotypes where data exist. We also consider why there is a gap between calculated genetic risk and clinical data: so-called missing heritability, and how immunogenetic observations are being translated to novel therapies. Ultimately whilst genetic risk factors will only account for a proportion of disease risk, ongoing efforts to refine associations and understand biologic links to disease pathways are hoped to drive more rational therapy for patients.
Collapse
Affiliation(s)
- G J Webb
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - K A Siminovitch
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto General Research Institute, and Departments of Immunology and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - G M Hirschfield
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| |
Collapse
|
23
|
Aiba Y, Yamazaki K, Nishida N, Kawashima M, Hitomi Y, Nakamura H, Komori A, Fuyuno Y, Takahashi A, Kawaguchi T, Takazoe M, Suzuki Y, Motoya S, Matsui T, Esaki M, Matsumoto T, Kubo M, Tokunaga K, Nakamura M. Disease susceptibility genes shared by primary biliary cirrhosis and Crohn's disease in the Japanese population. J Hum Genet 2015; 60:525-31. [PMID: 26084578 DOI: 10.1038/jhg.2015.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
We previously identified TNFSF15 as the most significant susceptibility gene at non-HLA loci for both primary biliary cirrhosis (PBC) and Crohn's diseases (CD) in the Japanese population. The aim of this study is to identify further disease susceptibility genes shared by PBC and CD. We selected 15 and 33 genetic variants that were significantly associated with PBC and CD, respectively, based on previously reported genome-wide association studies of the Japanese population. Next, an association study was independently performed for these genetic variants in CD (1312 CD patients and 3331 healthy controls) and PBC (1279 PBC patients and 1015 healthy controls) cohorts. Two CD susceptibility genes, ICOSLG rs2838519 and IL12B rs6556412, were also nominally associated with susceptibility to PBC (P=3.85 × 10(-2) and P=8.40 × 10(-3), respectively). Three PBC susceptibility genes, CXCR5 rs6421571, STAT4 rs7574865 and NFKB1 rs230534, were nominally associated with susceptibility to CD (P=2.82 × 10(-2), P=3.88 × 10(-2) and P=2.04 × 10(-2), respectively). The effect of ICOSLG and CXCR5 variants were concordant but the effect of STAT4, NFKB1 and IL12B variants were discordant for PBC and CD. TNFSF15 and ICOSLG-CXCR5 might constitute a shared pathogenic pathway in the development of PBC and CD in the Japanese population, whereas IL12B-STAT4-NFKB1 might constitute an opposite pathogenic pathway, reflecting the different balance between Th1 and Th17 in the two diseases.
Collapse
Affiliation(s)
- Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan
| | - Keiko Yamazaki
- Laboratory for Genotyping Development, Center for Integrative Medical Science, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitomi Nakamura
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuta Fuyuno
- Laboratory for Genotyping Development, Center for Integrative Medical Science, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Takaaki Kawaguchi
- Department of Medicine, Division of Gastroenterology, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Masakazu Takazoe
- Department of Medicine, Division of Gastroenterology, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Faculty of Medicine, Toho University, Chiba, Japan
| | - Satoshi Motoya
- Department of Gastroenterology, Sapporo Kosei Hospital, Sapporo, Japan
| | - Toshiyuki Matsui
- Laboratory for Genotyping Development, Center for Integrative Medical Science, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan.,Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Science, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Headquarters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ) and gp210 working in Research Program of Intractable Hepatoboliary Disease Study Group supported by the Ministry of Health, Labour, and Welfare of Japan, Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| |
Collapse
|