1
|
Cheng X, Shen S. Transcriptional reprogramming in oral squamous cell carcinoma. Sci Rep 2025; 15:18210. [PMID: 40414942 DOI: 10.1038/s41598-025-01364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 05/06/2025] [Indexed: 05/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer globally. This disease is characterized by its complex genetic underpinnings, involving the intricate regulation of multiple genes. Genetic factors influence cellular processes such as growth, differentiation, and apoptosis of oral mucosal cells, thereby promoting or inhibiting tumor formation and progression. Furthermore, environmental factors-including smoking, alcohol consumption, and human papillomavirus (HPV) infection-can significantly increase the risk of developing OSCC. These external influences can impact the disease in several ways. Delayed clinical detection and the absence of specific biomarkers, coupled with expensive treatment alternatives, contribute to poor prognoses among OSCC patients. Thus, identifying OSCC biomarkers has become imperative. This study investigates publicly accessible sequencing data of oral mucosal tissues from four distinct datasets-GSE23558, GSE30784, GSE36090, and GSE51010-archived in the Gene Expression Omnibus (GEO) database. By analyzing these datasets, which encompass a range of genetic profiles and experimental conditions, the study seeks to uncover critical biomarkers and molecular pathways involved in the early stages of OSCC development. The primary objective is to identify pivotal genes linked to the onset of OSCC. The findings provide preliminary evidence for therapeutic targets in OSCC and may serve as a robust foundation for subsequent biological research endeavors.
Collapse
Affiliation(s)
- Xianyang Cheng
- School of Stomatology, Jinan University, Guangzhou, 510000, China
| | - Shan Shen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Sambri I, Trepiccione F. A zebrafish model to study RRAGD variants associated cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H1343-H1344. [PMID: 39453427 DOI: 10.1152/ajpheart.00695.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (School of Advanced Studies), Genomics and Experimental Medicine Program (GEM), Naples, Italy
| | - Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
3
|
Adella A, Tengku F, Arjona FJ, Broekman S, de Vrieze E, van Wijk E, Hoenderop JGJ, de Baaij JHF. RRAGD variants cause cardiac dysfunction in a zebrafish model. Am J Physiol Heart Circ Physiol 2024; 327:H1187-H1197. [PMID: 39331021 DOI: 10.1152/ajpheart.00705.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The Ras-related GTP-binding protein D (RRAGD) gene plays a crucial role in cellular processes. Recently, RRAGD variants found in patients have been implicated in a novel disorder with kidney tubulopathy and dilated cardiomyopathy. Currently, the consequences of RRAGD variants at the organismal level are unknown. Therefore, this study investigated the impact of RRAGD variants on cardiac function using a zebrafish embryo model. Furthermore, the potential usage of rapamycin, an mTOR inhibitor, as a therapy was assessed in this model. Zebrafish embryos were injected with RRAGD p.S76L and p.P119R cRNA and the resulting heart phenotypes were studied. Our findings reveal that overexpression of RRAGD mutants resulted in decreased ventricular fractional shortening, ejection fraction, and pericardial swelling. In RRAGD S76L-injected embryos, lower survival and heartbeat were observed, whereas survival was unaffected in RRAGD P119R embryos. These observations were reversible following therapy with the mTOR inhibitor rapamycin. Moreover, no effects on electrolyte homeostasis were observed. Together, these findings indicate a crucial role of RRAGD in cardiac function. In the future, the molecular mechanisms by which RRAGD variants result in cardiac dysfunction and if the effects of rapamycin are specific for RRAGD-dependent cardiomyopathy should be studied in clinical studies.NEW & NOTEWORTHY The resultant heart-associated phenotypes in the zebrafish embryos of this study serve as a valuable experimental model for this rare cardiomyopathy. Moreover, the potential therapeutic property of rapamycin in cardiac dysfunctions was highlighted, making this study a pivotal step toward prospective clinical applications.
Collapse
Affiliation(s)
- Anastasia Adella
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Faris Tengku
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francisco J Arjona
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Sambri I, Ferniani M, Ballabio A. Ragopathies and the rising influence of RagGTPases on human diseases. Nat Commun 2024; 15:5812. [PMID: 38987251 PMCID: PMC11237164 DOI: 10.1038/s41467-024-50034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program (GEM), Naples, Italy
| | - Marco Ferniani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
5
|
Liu Y, Zhu Y, Chen H, Zhou J, Niu P, Shi D. Raptor mediates the selective inhibitory effect of cardamonin on RRAGC-mutant B cell lymphoma. BMC Complement Med Ther 2023; 23:336. [PMID: 37749558 PMCID: PMC10521446 DOI: 10.1186/s12906-023-04166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND mTORC1 (mechanistic target of rapamycin complex 1) is associated with lymphoma progression. Oncogenic RRAGC (Rag guanosine triphosphatase C) mutations identified in patients with follicular lymphoma facilitate the interaction between Raptor (regulatory protein associated with mTOR) and Rag GTPase. It promotes the activation of mTORC1 and accelerates lymphomagenesis. Cardamonin inhibits mTORC1 by decreasing the protein level of Raptor. In the present study, we investigated the inhibitory effect and possible mechanism of action of cardamonin in RRAGC-mutant lymphoma. This could provide a precise targeted therapy for lymphoma with RRAGC mutations. METHODS Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Protein expression and phosphorylation levels were determined using western blotting. The interactions of mTOR and Raptor with RagC were determined by co-immunoprecipitation. Cells overexpressing RagC wild-type (RagCWT) and RagC Thr90Asn (RagCT90N) were generated by lentiviral infection. Raptor knockdown was performed by lentivirus-mediated shRNA transduction. The in vivo anti-tumour effect of cardamonin was assessed in a xenograft model. RESULTS Cardamonin disrupted mTOR complex interactions by decreasing Raptor protein levels. RagCT90N overexpression via lentiviral infection increased cell proliferation and mTORC1 activation. The viability and tumour growth rate of RagCT90N-mutant cells were more sensitive to cardamonin treatment than those of normal and RagCWT cells. Cardamonin also exhibited a stronger inhibitory effect on the phosphorylation of mTOR and p70 S6 kinase 1 in RagCT90N-mutant cells. Raptor knockdown abolishes the inhibitory effects of cardamonin on mTOR. An in vivo xenograft model demonstrated that the RagCT90N-mutant showed significantly higher sensitivity to cardamonin treatment. CONCLUSIONS Cardamonin exerts selective therapeutic effects on RagCT90N-mutant cells. Cardamonin can serve as a drug for individualised therapy for follicular lymphoma with RRAGC mutations.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Peiguang Niu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Daohua Shi
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
6
|
Reijnders MRF, Seibt A, Brugger M, Lamers IJC, Ott T, Klaas O, Horváth J, Rose AMS, Craghill IM, Brunet T, Graf E, Mayerhanser K, Hellebrekers D, Pauck D, Neuen-Jacob E, Rodenburg RJT, Wieczorek D, Klee D, Mayatepek E, Driessen G, Bindermann R, Averdunk L, Lohmeier K, Sinnema M, Stegmann APA, Roepman R, Poulter JA, Distelmaier F. De novo missense variants in RRAGC lead to a fatal mTORopathy of early childhood. Genet Med 2023; 25:100838. [PMID: 37057673 DOI: 10.1016/j.gim.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.
Collapse
Affiliation(s)
- Margot R F Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Torsten Ott
- University Children's Hospital, University Hospital Muenster, Münster, Germany
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horváth
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Ailsa M S Rose
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Isabel M Craghill
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Debby Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David Pauck
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard J T Rodenburg
- Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk Klee
- Department of Diagnostic and Interventional Radiology, University Hospital, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gertjan Driessen
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert Bindermann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Klaus Lohmeier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
7
|
Sambri I, Ferniani M, Campostrini G, Testa M, Meraviglia V, de Araujo MEG, Dokládal L, Vilardo C, Monfregola J, Zampelli N, Vecchio Blanco FD, Torella A, Ruosi C, Fecarotta S, Parenti G, Staiano L, Bellin M, Huber LA, De Virgilio C, Trepiccione F, Nigro V, Ballabio A. RagD auto-activating mutations impair MiT/TFE activity in kidney tubulopathy and cardiomyopathy syndrome. Nat Commun 2023; 14:2775. [PMID: 37188688 DOI: 10.1038/s41467-023-38428-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Marco Ferniani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | | | - Marialuisa Testa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | | | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ladislav Dokládal
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Claudia Vilardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | - Nicolina Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carolina Ruosi
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Fecarotta
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Milena Bellin
- Leiden University Medical Center, 2333ZC, Leiden, the Netherlands
- Department of Biology, University of Padua, 35131, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Biogem Research Institute Ariano Irpino, Ariano Irpino, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
8
|
Alvim JM, Venturini G, Oliveira TGM, Seidman JG, Seidman CE, Krieger JE, Pereira AC. mTOR signaling inhibition decreases lysosome migration and impairs the success of Trypanosoma cruzi infection and replication in cardiomyocytes. Acta Trop 2023; 240:106845. [PMID: 36709791 DOI: 10.1016/j.actatropica.2023.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi (T. cruzi) and, among all the chronic manifestations of the disease, Chronic Chagas Cardiomyopathy (CCC) is the most severe outcome. Despite high burden and public health importance in Latin America, there is a gap in understanding the molecular mechanisms that results in CCC development. Previous studies showed that T. cruzi uses the host machinery for infection and replication, including the repurposing of the responses to intracellular infection such as mitochondrial activity, vacuolar membrane, and lysosomal activation in benefit of parasite infection and replication. One common signaling upstream to many responses to parasite infection is mTOR pathway, previous associated to several downstream cellular mechanisms including autophagy, mitophagy and lysosomal activation. Here, using human iPSC derived cardiomyocytes (hiPSCCM), we show the mTOR pathway is activated in hiPSCCM after T. cruzi infection, and the inhibition of mTOR with rapamycin reduced number of T. cruzi 48 h post infection (hpi). Rapamycin treatment also reduced lysosome migration from nuclei region to cell periphery resulting in less T. cruzi inside the parasitophorous vacuole (PV) in the first hour of infection. In addition, the number of parasites leaving the PV to the cytoplasm to replicate in later times of infection was also lower after rapamycin treatment. Altogether, our data suggest that host's mTOR activation concomitant with parasite infection modulates lysosome migration and that T. cruzi uses this mechanism to achieve infection and replication. Modulating this mechanism with rapamycin impaired the success of T. cruzi life cycle independent of mitophagy.
Collapse
Affiliation(s)
- Juliana M Alvim
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil
| | - Gabriela Venturini
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Department of Genetics, Harvard Medical School, United States.
| | - Theo G M Oliveira
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Fundação Pró-Sangue Hemocentro de São Paulo, Brazil
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, United States; Brigham and Women's Hospital, Harvard Medical School, United States; Howard Hughes Medical Institute (HHMI), United States
| | - José E Krieger
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil
| | - Alexandre C Pereira
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Department of Genetics, Harvard Medical School, United States
| |
Collapse
|
9
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
10
|
Wang Y, Han B, Fan Y, Yi Y, Lv J, Wang J, Yang X, Jiang D, Zhao L, Zhang J, Yuan H. Next-Generation Sequencing Reveals Novel Genetic Variants for Dilated Cardiomyopathy in Pediatric Chinese Patients. Pediatr Cardiol 2022; 43:110-120. [PMID: 34350506 DOI: 10.1007/s00246-021-02698-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022]
Abstract
Dilated cardiomyopathy (DCM) is a myocardial disease characterized by bilateral or left ventricular cardiac dilation and systolic dysfunction that can lead to heart failure and sudden cardiac death in children. Many studies have focused on genetic variation in DCM-related genes in adult populations; however, the mutational landscape in pediatric DCM patients remains undetermined, especially in the Chinese population. We applied next-generation sequencing (NGS) technology to genetically analyze 46 pediatric DCM patients to reveal genotype-phenotype correlations. Our results indicated DCM-associated pathogenic mutations in 10 genes related to the structure or function of the sarcomere, desmosome, and cytoskeleton. We also identified 6 pathogenic mutations (5 novel) in the Titin (TTN) gene that resulted in truncated TTN variants in 6 (13%) out of 46 patients. Correlations between TTN mutations and clinical outcomes were assessed. Our data indicate that one-third of pediatric DCM cases are caused by genetic mutations. The role of TTN variants should not be underestimated in pediatric DCM and age-dependent pathogenic penetrance of these mutations should be considered for familial DCM cases. We argue that genetic testing of DCM cases is valuable for predicting disease severity, prognosis, and recurrence risk, and for screening first-degree relatives.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Bo Han
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China.
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Youfei Fan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Yingchun Yi
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Jianli Lv
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Jing Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Xiaofei Yang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Diandong Jiang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Lijian Zhao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Jianjun Zhang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hui Yuan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| |
Collapse
|
11
|
Schlingmann KP, Jouret F, Shen K, Nigam A, Arjona FJ, Dafinger C, Houillier P, Jones DP, Kleinerüschkamp F, Oh J, Godefroid N, Eltan M, Güran T, Burtey S, Parotte MC, König J, Braun A, Bos C, Ibars Serra M, Rehmann H, Zwartkruis FJ, Renkema KY, Klingel K, Schulze-Bahr E, Schermer B, Bergmann C, Altmüller J, Thiele H, Beck BB, Dahan K, Sabatini D, Liebau MC, Vargas-Poussou R, Knoers NV, Konrad M, de Baaij JH. mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. J Am Soc Nephrol 2021; 32:2885-2899. [PMID: 34607910 PMCID: PMC8806087 DOI: 10.1681/asn.2021030333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.
Collapse
Affiliation(s)
- Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium,Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Kuang Shen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anukrati Nigam
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Pascal Houillier
- Cordeliers Research Center, Centre National de la Recherche Scientifique (CNRS), ERL8228, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, University of Paris, Paris, France,Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), European Hospital Georges Pompidou, Paris, France,Reference Center for Hereditary Renal Diseases in Children and Adults (MARHEA), Paris, France
| | - Deborah P. Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Felix Kleinerüschkamp
- Department of Pediatric Cardiology, University Children’s Hospital, Münster, Germany
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Godefroid
- Division of Pediatric Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tülay Güran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Stéphane Burtey
- Center for Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Christine Parotte
- Division of Nephrology-Dialysis, Department of Internal Medicine, CHR Verviers East Belgium, Verviers, Belgium
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Alina Braun
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Ibars Serra
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Holger Rehmann
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J.T. Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,CECAD, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Carsten Bergmann
- Limbach Genetics, Medizinische Genetik Mainz, Mainz, Germany,Division of Nephrology, Department of Medicine, University Hospital Freiburg, Breisgau, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Karin Dahan
- Center of Human Genetics, Gosselies, Belgium,Division of Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - David Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Max C. Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Rosa Vargas-Poussou
- Department of Genetics, AP-HP, European Hospital Georges Pompidou, Paris, France
| | - Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Tripathi S, Dsouza NR, Urrutia R, Zimmermann MT. Structural bioinformatics enhances mechanistic interpretation of genomic variation, demonstrated through the analyses of 935 distinct RAS family mutations. Bioinformatics 2021; 37:1367-1375. [PMID: 33226070 PMCID: PMC8208742 DOI: 10.1093/bioinformatics/btaa972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Protein-coding genetic alterations are frequently observed in Clinical Genetics, but the high yield of variants of uncertain significance remains a limitation in decision making. RAS-family GTPases are cancer drivers, but only 54 variants, across all family members, fall within well-known hotspots. However, extensive sequencing has identified 881 non-hotspot variants for which significance remains to be investigated. RESULTS Here, we evaluate 935 missense variants from seven RAS genes, observed in cancer, RASopathies and the healthy adult population. We characterized hotspot variants, previously studied experimentally, using 63 sequence- and 3D structure-based scores, chosen by their breadth of biophysical properties. Applying scores that display best correlation with experimental measures, we report new valuable mechanistic inferences for both hot-spot and non-hotspot variants. Moreover, we demonstrate that 3D scores have little-to-no correlation with those based on DNA sequence, which are commonly used in Clinical Genetics. Thus, combined, these new knowledge bear significant relevance. AVAILABILITY AND IMPLEMENTATION All genomic and 3D scores, and markdown for generating figures, are provided in our supplemental data. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Swarnendu Tripathi
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA.,Precision Medicine Simulation Unit, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA.,Precision Medicine Simulation Unit, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA
| | - Raul Urrutia
- Precision Medicine Simulation Unit, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA.,Department of Surgery, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA.,Precision Medicine Simulation Unit, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA.,Clinical and Translational Sciences Institute, Genomic Sciences and Precision Medicine Center, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Kim M, Lu L, Dvornikov AV, Ma X, Ding Y, Zhu P, Olson TM, Lin X, Xu X. TFEB Overexpression, Not mTOR Inhibition, Ameliorates RagC S75Y Cardiomyopathy. Int J Mol Sci 2021; 22:5494. [PMID: 34071043 PMCID: PMC8197163 DOI: 10.3390/ijms22115494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
A de novo missense variant in Rag GTPase protein C (RagCS75Y) was recently identified in a syndromic dilated cardiomyopathy (DCM) patient. However, its pathogenicity and the related therapeutic strategy remain unclear. We generated a zebrafish RragcS56Y (corresponding to human RagCS75Y) knock-in (KI) line via TALEN technology. The KI fish manifested cardiomyopathy-like phenotypes and poor survival. Overexpression of RagCS75Y via adenovirus infection also led to increased cell size and fetal gene reprogramming in neonatal rat ventricle cardiomyocytes (NRVCMs), indicating a conserved mechanism. Further characterization identified aberrant mammalian target of rapamycin complex 1 (mTORC1) and transcription factor EB (TFEB) signaling, as well as metabolic abnormalities including dysregulated autophagy. However, mTOR inhibition failed to ameliorate cardiac phenotypes in the RagCS75Y cardiomyopathy models, concomitant with a failure to promote TFEB nuclear translocation. This observation was at least partially explained by increased and mTOR-independent physical interaction between RagCS75Y and TFEB in the cytosol. Importantly, TFEB overexpression resulted in more nuclear TFEB and rescued cardiomyopathy phenotypes. These findings suggest that S75Y is a pathogenic gain-of-function mutation in RagC that leads to cardiomyopathy. A primary pathological step of RagCS75Y cardiomyopathy is defective mTOR-TFEB signaling, which can be corrected by TFEB overexpression, but not mTOR inhibition.
Collapse
Affiliation(s)
- Maengjo Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Linghui Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexey V. Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Timothy M. Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55901, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| |
Collapse
|
14
|
Yin S, Liu L, Gan W. The Roles of Post-Translational Modifications on mTOR Signaling. Int J Mol Sci 2021; 22:ijms22041784. [PMID: 33670113 PMCID: PMC7916890 DOI: 10.3390/ijms22041784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
Collapse
|
15
|
Sciarretta S, Forte M, Frati G, Sadoshima J. The complex network of mTOR signaling in the heart. Cardiovasc Res 2021; 118:424-439. [PMID: 33512477 DOI: 10.1093/cvr/cvab033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) integrates several intracellular and extracellular signals involved in the regulation of anabolic and catabolic processes. mTOR assembles into two macromolecular complexes, named mTORC1 and mTORC2, which have different regulators, substrates and functions. Studies of gain- and loss-of-function animal models of mTOR signaling revealed that mTORC1/2 elicit both adaptive and maladaptive functions in the cardiovascular system. Both mTORC1 and mTORC2 are indispensable for driving cardiac development and cardiac adaption to stress, such as pressure overload. However, persistent and deregulated mTORC1 activation in the heart is detrimental during stress and contributes to the development and progression of cardiac remodeling and genetic and metabolic cardiomyopathies. In this review, we discuss the latest findings regarding the role of mTOR in the cardiovascular system, both under basal conditions and during stress, such as pressure overload, ischemia and metabolic stress. Current data suggest that mTOR modulation may represent a potential therapeutic strategy for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
16
|
Franaszczyk M, Truszkowska G, Chmielewski P, Rydzanicz M, Kosinska J, Rywik T, Biernacka A, Spiewak M, Kostrzewa G, Stepien-Wojno M, Stawinski P, Bilinska M, Krajewski P, Zielinski T, Lutynska A, Bilinska ZT, Ploski R. Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes. J Clin Med 2020; 9:jcm9020370. [PMID: 32013205 PMCID: PMC7073782 DOI: 10.3390/jcm9020370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
The vast majority of cardiomyopathies have an autosomal dominant inheritance; hence, genetic testing is typically offered to patients with a positive family history. A de novo mutation is a new germline mutation not inherited from either parent. The purpose of our study was to search for de novo mutations in patients with cardiomyopathy and no evidence of the disease in the family. Using next-generation sequencing, we analyzed cardiomyopathy genes in 12 probands. In 8 (66.7%), we found de novo variants in known cardiomyopathy genes (TTN, DSP, SCN5A, TNNC1, TPM1, CRYAB, MYH7). In the remaining probands, the analysis was extended to whole exome sequencing in a trio (proband and parents). We found de novo variants in genes that, so far, were not associated with any disease (TRIB3, SLC2A6), a possible disease-causing biallelic genotype (APOBEC gene family), and a de novo mosaic variant without strong evidence of pathogenicity (UNC45A). The high prevalence of de novo mutations emphasizes that genetic screening is also indicated in cases of sporadic cardiomyopathy. Moreover, we have identified novel cardiomyopathy candidate genes that are likely to affect immunological function and/or reaction to stress that could be especially relevant in patients with disease onset associated with infection/infestation.
Collapse
Affiliation(s)
- Maria Franaszczyk
- Molecular Biology Laboratory, Department of Medical Biology, Institute of Cardiology, 04-628 Warsaw, Poland; (M.F.)
| | - Grazyna Truszkowska
- Molecular Biology Laboratory, Department of Medical Biology, Institute of Cardiology, 04-628 Warsaw, Poland; (M.F.)
| | - Przemyslaw Chmielewski
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Malgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Joanna Kosinska
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Tomasz Rywik
- Department of Heart Failure and Transplantology, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Anna Biernacka
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mateusz Spiewak
- Magnetic Resonance Unit, Department of Radiology, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Grazyna Kostrzewa
- Department of Forensic Medicine, Medical University of Warsaw, 02-007 Warsaw, Poland
| | - Malgorzata Stepien-Wojno
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Piotr Stawinski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Maria Bilinska
- Department of Arrhythmia, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Pawel Krajewski
- Department of Forensic Medicine, Medical University of Warsaw, 02-007 Warsaw, Poland
| | - Tomasz Zielinski
- Department of Heart Failure and Transplantology, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Anna Lutynska
- Department of Medical Biology, Institute of Cardiology, 04-628 Warsaw, Poland
| | - Zofia T. Bilinska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Institute of Cardiology, 04-628 Warsaw, Poland
- Correspondence: (Z.T.B.); (R.P.); Tel.: +48-223434710 (Z.T.B.); +48-225720695 (R.P.)
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
- Correspondence: (Z.T.B.); (R.P.); Tel.: +48-223434710 (Z.T.B.); +48-225720695 (R.P.)
| |
Collapse
|
17
|
Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, Santhanam B, Rogala KB, Sabatini DM, Williams RL. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019; 366:203-210. [PMID: 31601764 PMCID: PMC6795536 DOI: 10.1126/science.aax3939] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.
Collapse
Affiliation(s)
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alex Berndt
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | - Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
18
|
Groff AF, Resetkova N, DiDomenico F, Sakkas D, Penzias A, Rinn JL, Eggan K. RNA-seq as a tool for evaluating human embryo competence. Genome Res 2019; 29:1705-1718. [PMID: 31548358 PMCID: PMC6771404 DOI: 10.1101/gr.252981.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023]
Abstract
The majority of embryos created through in vitro fertilization (IVF) do not implant. It seems plausible that rates of implantation would improve if we had a better understanding of molecular factors affecting embryo competence. Currently, the process of selecting an embryo for uterine transfer uses an ad hoc combination of morphological criteria, the kinetics of development, and genetic testing for aneuploidy. However, no single criterion can ensure selection of a viable embryo. In contrast, RNA-sequencing (RNA-seq) of embryos could yield high-dimensional data, which may provide additional insight and illuminate the discrepancies among current selection criteria. Recent advances enabling the production of RNA-seq libraries from single cells have facilitated the application of this technique to the study of transcriptional events in early human development. However, these studies have not assessed the quality of their constituent embryos relative to commonly used embryological criteria. Here, we perform proof-of-principle advancement to embryo selection procedures by generating RNA-seq libraries from a trophectoderm biopsy as well as the remaining whole embryo. We combine state-of-the-art embryological methods with low-input RNA-seq to develop the first transcriptome-wide approach for assessing embryo competence. Specifically, we show the capacity of RNA-seq as a promising tool in preimplantation screening by showing that biopsies of an embryo can capture valuable information available in the whole embryo from which they are derived. Furthermore, we show that this technique can be used to generate a RNA-based digital karyotype and to identify candidate competence-associated genes. Together, these data establish the foundation for a future RNA-based diagnostic in IVF.
Collapse
Affiliation(s)
- Abigail F Groff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nina Resetkova
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Boston IVF, Waltham, Massachusetts 02451, USA.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Francesca DiDomenico
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | - Alan Penzias
- Boston IVF, Waltham, Massachusetts 02451, USA.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Biochemistry, BioFrontiers, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
20
|
HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. Eur J Med Genet 2019; 62:103540. [DOI: 10.1016/j.ejmg.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
|
21
|
Sciarretta S, Forte M, Frati G, Sadoshima J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. Circ Res 2019; 122:489-505. [PMID: 29420210 DOI: 10.1161/circresaha.117.311147] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Maurizio Forte
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Giacomo Frati
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Junichi Sadoshima
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.).
| |
Collapse
|
22
|
Dai G, Pu Z, Cheng X, Yin J, Chen J, Xu T, Zhang H, Li Z, Chen X, Chen J, Qin Y, Yang S. Whole-Exome Sequencing Reveals Novel Genetic Variation for Dilated Cardiomyopathy in Pediatric Chinese Patients. Pediatr Cardiol 2019; 40:950-957. [PMID: 30993396 DOI: 10.1007/s00246-019-02096-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/22/2019] [Indexed: 12/30/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by left or bilateral ventricular dilation and systolic dysfunction without rational conditions, which can lead to progressive heart failure and sudden cardiac death. Most of the pathogenic genes have been reported in adult population by locus mapping in familial cases and animal model studies. However, it still remains challenging to decipher the role of genetics in the etiology of pediatric DCM. We applied whole-exome sequencing (WES) for 30 sporadic pediatric DCM subjects and 100 non-DCM local controls. We identified the pathogenic mutations using bioinformatics tools based on genomic strategies synergistically and confirmed mutations by Sanger sequencing. We identified compound heterozygous nonsense mutations in DSP (c.3799C > T, p.R1267X; c.4444G > T, p.E1482X). In sporadic cases, the two heterozygous mutations in XIRP2 were identified. Then we performed an exome-wide association study with 30 case and 100 control subjects. Interestingly, we could not identify TTN truncating variants in all cases. Collectively, we observed a significant risk signal between carriers of TTN deleterious missense variants and DCM risk (odds ratio 4.0, 95% confidence interval 1.1-22.2, p = 3.12 × 10-2). Our observations expanded the spectrum of mutations and were valuable in the pre- and postnatal screening and genetic diagnosis for DCM.
Collapse
Affiliation(s)
- Genyin Dai
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zhening Pu
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Xueying Cheng
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jie Yin
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jun Chen
- Department of Echocardiography, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ting Xu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Han Zhang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zewei Li
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuan Chen
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jinlong Chen
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yuming Qin
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
23
|
Zhang SB, Liu YX, Fan LL, Huang H, Li JJ, Jin JY, Xiang R. A novel heterozygous variant p.(Trp538Arg) of SYNM is identified by whole-exome sequencing in a Chinese family with dilated cardiomyopathy. Ann Hum Genet 2018; 83:95-99. [PMID: 30276801 DOI: 10.1111/ahg.12287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is a relatively frequent myocardial disease that may lead to heart failure, syncope, and sudden cardiac death. Genetic factors play important roles in the etiology of the disease. To date, at least 50 genes have been identified in patients with DCM, among them, only three mutations have been reported in Synemin (SYNM) gene. In this study, we investigate a Chinese family of three generations with four patients with DCM. Employing whole-exome sequencing (WES) and bioinformatics strategies, a novel heterozygous missense mutation p.(Trp538Arg) of SYNM was identified and cosegregated with the affected family members. The missense mutation locates in the C-terminal domain of SYNM and leads to a substitution of tryptophan by arginine and may cause the structure change of synemin protein. In conclusion, we employed WES to detect the mutations of DCM patients and identified a novel likely pathogenic mutation in SYNM gene. Our study not only expands the spectrum of SYNM mutations, it further confirms that mutations in SYMN may underlie nonfamilial DCM, and offers genetic testing information to additional DCM patients.
Collapse
Affiliation(s)
- Shu-Bing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hao Huang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jing-Jing Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Shen K, Choe A, Sabatini DM. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Mol Cell 2017; 68:552-565.e8. [PMID: 29056322 PMCID: PMC5674802 DOI: 10.1016/j.molcel.2017.09.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
mTOR complex I (mTORC1) is a central growth regulator that senses amino acids through a pathway that converges on the Rag GTPases, an obligate heterodimer of two related GTPases. Despite their central role in amino acid sensing, it is unknown why the Rag GTPases are heterodimeric and whether their subunits communicate with each other. Here, we find that the binding of guanosine triphosphate (GTP) to one subunit inhibits the binding and induces the hydrolysis of GTP by the other. This intersubunit communication pushes the Rag GTPases into either of two stable configurations, which represent active "on" or "off" states that interconvert via transient intermediates. Subunit coupling confers on the mTORC1 pathway its capacity to respond rapidly to the amino acid level. Thus, the dynamic response of mTORC1 requires intersubunit communication by the Rag GTPases, providing a rationale for why they exist as a dimer and revealing a distinct mode of control for a GTP-binding protein.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Abigail Choe
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J, Li RG, Liu H, Zhang M, Shi HY, Zhao L, Jiang WF, Liu X, Qiu XB, Qu XK, Yang YQ. MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2017; 56:502-511. [PMID: 28902616 DOI: 10.1515/cclm-2017-0461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Background:
The MADS-box transcription factor myocyte enhancer factor 2C (MEF2C) is required for the cardiac development and postnatal adaptation and in mice-targeted disruption of the MEF2C gene results in dilated cardiomyopathy (DCM). However, in humans, the association of MEF2C variation with DCM remains to be investigated.
Methods:
The coding regions and splicing boundaries of the MEF2C gene were sequenced in 172 unrelated patients with idiopathic DCM. The available close relatives of the index patient harboring an identified MEF2C mutation and 300 unrelated, ethnically matched healthy individuals used as controls were genotyped for MEF2C. The functional effect of the mutant MEF2C protein was characterized in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system.
Results:
A novel heterozygous MEF2C mutation, p.Y157X, was detected in an index patient with adult-onset DCM. Genetic screen of the mutation carrier’s family members revealed that the mutation co-segregated with DCM, which was transmitted as an autosomal dominant trait with complete penetrance. The non-sense mutation was absent in 300 control individuals. Functional analyses unveiled that the mutant MEF2C protein had no transcriptional activity. Furthermore, the mutation abolished the synergistic transactivation between MEF2C and GATA4 as well as HAND1, two other transcription factors that have been associated with DCM.
Conclusions:
This study indicates MEF2C as a new gene responsible for human DCM, which provides novel insight into the mechanism underpinning DCM, suggesting potential implications for development of innovative prophylactic and therapeutic strategies for DCM, the most prevalent form of primary myocardial disease.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Emergency Medicine, Shanghai Tongren Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Zhao-Hui Qiu
- Department of Cardiology, Shanghai Tongren Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Xing-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital , Fudan University , Shanghai , P.R. China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital , Fudan University , Shanghai , P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , 241 West Huaihai Road , Shanghai 200030 , P.R. China , Phone: +86 21 62821990, Fax: +86 21 62821105
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , 241 West Huaihai Road , Shanghai 200030 , P.R. China , Phone: +86 21 62821990, Fax: +86 21 62821105
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| |
Collapse
|
26
|
Long PA, Evans JM, Olson TM. Diagnostic Yield of Whole Exome Sequencing in Pediatric Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:jcdd4030011. [PMID: 29367541 PMCID: PMC5715713 DOI: 10.3390/jcdd4030011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder characterized by progressive heart failure. DCM typically remains clinically silent until adulthood, yet symptomatic disease can develop in childhood. We sought to identify the genetic basis of pediatric DCM in 15 sporadic and three affected-siblings cases, comprised of 21 affected children (mean age, five years) whose parents had normal echocardiograms (mean age, 39 years). Twelve underwent cardiac transplantation and five died with severe heart failure. Parent-offspring whole exome sequencing (WES) data were filtered for rare, deleterious, de novo and recessive variants. In prior work, we reported de novo mutations in TNNT2 and RRAGC and compound heterozygous mutations in ALMS1 and TAF1A among four cases in our cohort. Here, de novo mutations in established DCM genes—RBM20, LMNA, TNNT2, and PRDM16—were identified among five additional cases. The RBM20 mutation was previously reported in familial DCM. An identical unreported LMNA mutation was identified in two unrelated cases, both harboring gene-specific defects in cardiomyocyte nuclear morphology. Collectively, WES had a 50% diagnostic yield in our cohort, providing an explanation for pediatric heart failure and enabling informed family planning. Research is ongoing to discover novel DCM genes among the remaining families.
Collapse
Affiliation(s)
- Pamela A Long
- Mayo Graduate School of Biomedical Sciences, Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Timothy M Olson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Simpson S, Rutland P, Rutland CS. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Vet Sci 2017; 4:E19. [PMID: 29056678 PMCID: PMC5606618 DOI: 10.3390/vetsci4010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
In the global human population, the leading cause of non-communicable death is cardiovascular disease. It is predicted that by 2030, deaths attributable to cardiovascular disease will have risen to over 20 million per year. This review compares the cardiomyopathies in both human and non-human animals and identifies the genetic associations for each disorder in each species/taxonomic group. Despite differences between species, advances in human medicine can be gained by utilising animal models of cardiac disease; likewise, gains can be made in animal medicine from human genomic insights. Advances could include undertaking regular clinical checks in individuals susceptible to cardiomyopathy, genetic testing prior to breeding, and careful administration of breeding programmes (in non-human animals), further development of treatment regimes, and drugs and diagnostic techniques.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Paul Rutland
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | - Catrin Sian Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|