1
|
Zhu H, Zhang J, Rao S, Durbin MD, Li Y, Lang R, Liu J, Xiao B, Shan H, Meng Z, Wang J, Tang X, Shi Z, Cox LL, Zhao S, Ware SM, Tan TY, de Silva M, Gallacher L, Liu T, Mi J, Zeng C, Zheng HF, Zhang Q, Antonarakis SE, Cox TC, Zhang YB. Common cis-regulatory variation modifies the penetrance of pathogenic SHROOM3 variants in craniofacial microsomia. Genome Res 2025; 35:1065-1079. [PMID: 40234029 PMCID: PMC12047249 DOI: 10.1101/gr.280047.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
Pathogenic coding variants have been identified in thousands of genes, yet the mechanisms underlying the incomplete penetrance in individuals carrying these variants are poorly understood. In this study, in a cohort of 2009 craniofacial microsomia (CFM) patients of Chinese ancestry and 2625 Han Chinese controls, we identified multiple predicted pathogenic coding variants in SHROOM3 in both CFM patients and healthy individuals. We found that the penetrance of CFM correlates with specific haplotype combinations containing likely pathogenic-coding SHROOM3 variants and CFM-associated expression quantitative trait loci (eQTLs) of SHROOM3 expression. Further investigations implicate specific eQTL combinations, such as rs1001322 or rs344131, in combination with other significant CFM-associated eQTLs, which we term combined eQTL phenotype modifiers (CePMods). We additionally show that rs344131, located within a regulatory enhancer region of SHROOM3, demonstrates allele-specific effects on enhancer activity and thus impacts expression levels of the associated SHROOM3 allele harboring any rare coding variant. Our findings also suggest that CePMods may serve as pathogenic determinants, even in the absence of rare deleterious coding variants in SHROOM3 This highlights the critical role of allelic expression in determining the penetrance and severity of craniofacial abnormalities, including microtia and facial asymmetry. Additionally, using quantitative phenotyping, we demonstrate that both microtia and facial asymmetry are present in two separate Shroom3 mouse models, the severity of which is dependent on gene dosage. Our study establishes SHROOM3 as a likely pathogenic gene for CFM and demonstrates eQTLs as determinants of modified penetrance in the manifestation of the disease in individuals carrying likely pathogenic rare coding variants.
Collapse
Affiliation(s)
- Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiao Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Soumya Rao
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Matthew D Durbin
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ying Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Ruirui Lang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiqiang Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Baichuan Xiao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Hailin Shan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziqiu Meng
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jinmo Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaokai Tang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhenni Shi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Liza L Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Stephanie M Ware
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Tiong Y Tan
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Michelle de Silva
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jie Mi
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Changqing Zeng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hou-Feng Zheng
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Diseases & Population (DaP) Geninfo Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland;
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva 1211, Switzerland
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA;
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China;
- Key Laboratory of Big Data-Based Precision Medicine and Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing 100191, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Beihang University, Beijing 100083, China
| |
Collapse
|
2
|
Li Q, Zhang BH, Chen Q, Fu Y, Zuo X, Lu P, Zhang W, Wang B. Pathogenic variants in SHROOM3 associated with hemifacial microsomia. J Hum Genet 2025; 70:189-194. [PMID: 39875538 DOI: 10.1038/s10038-025-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Hemifacial microsomia (HFM) is a rare congenital disorder that affects facial symmetry, ear development, and other congenital anomalies. However, known causal genes account for only approximately 6% of patients, indicating the need to discover more pathogenic genes. Association tests demonstrated an association between common variants in SHROOM3 and HFM (P = 1.02E-4 for the lead SNP), while gene burden analysis revealed a significant enrichment of rare variants in HFM patients compared to healthy controls (P = 2.78E-5). We then evaluated the expression patterns of SHROOM3 and the consequences of its deleterious variants. Our study identified 7 deleterious variants in SHROOM3 among the 320 Chinese HFM patients and 2 deleterious variants in two HFM trios, respectively, suggesting a model of dominant inheritance with incomplete penetrance. These variants were predicted to significantly impact SHROOM3 function. Furthermore, the gene expression pattern of SHROOM3 in the pharyngeal arches and the presence of facial abnormalities in gene-edited mice suggest that SHROOM3 plays important roles in facial development. Our findings suggest that SHROOM3 is a likely pathogenic gene for HFM.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bing-Hua Zhang
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yaoyao Fu
- Department of facial plastic and reconstructive surgery, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiang Zuo
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Peng Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Weiwei Zhang
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
3
|
Kobayashi S, Yokoi T, Omata T, Yako H, Miyamoto Y, Yamauchi J. Claudin-11, a hypomyelinating leukodystrophy 22 (HLD22)-responsible protein, uniquely interacts with shroom-2 to change cell phenotypes. BBA ADVANCES 2025; 7:100159. [PMID: 40230506 PMCID: PMC11995805 DOI: 10.1016/j.bbadva.2025.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Oligodendroglial cells are a type of glial cell in the central nervous system (CNS) that wrap neuronal axons with differentiated plasma membranes known as myelin sheaths. While the physiological functions of oligodendrocytes, such as generating saltatory conduction and protecting neuronal axons, are well understood, the physiological and/or pathophysiological molecular mechanisms governing their differentiation before myelination remain unclear. In this study, we describe for the first time that claudin-11, a protein associated with hypomyelinating leukodystrophy 22 (HLD22), interacts with shroom-2, a presumable adaptor protein containing the PSD95, DLG1, and ZO-1 (PDZ) domain. Knockdown of claudin-11 using specific siRNA resulted in a decrease in morphological changes and marker proteins in the FBD-102b oligodendroglial model undergoing differentiation. Transfection of the C-terminal PDZ ligand sequence of claudin-11, which was found to interact with the PDZ domain of shroom-2, also reduced these phenotypic changes. The HLD22-associated mutated sequence in claudin-11 failed to interact with the PDZ domain of shroom-2. Furthermore, knockdown of shroom-2 or transfection of the PDZ domain of shroom-2, which is involved in the interaction with claudin-11, resulted in decreased morphological changes and marker protein expression. These changes were linked to the phosphorylation states of Akt kinase, a key signaling molecule in oligodendroglial cell differentiation and myelination. These results suggest that the interaction between claudin-11 and shroom-2 plays a key role in shaping cell morphology, providing insights into the molecular mechanisms underlying oligodendroglial differentiation before myelination, as well as potential pathological mechanisms associated with HLD22 at the molecular and cellular levels.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takanori Yokoi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takeru Omata
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hideji Yako
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
4
|
Liu W, Xiu L, Zhou M, Li T, Jiang N, Wan Y, Qiu C, Li J, Hu W, Zhang W, Wu J. The Critical Role of the Shroom Family Proteins in Morphogenesis, Organogenesis and Disease. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:187-202. [PMID: 38884059 PMCID: PMC11169129 DOI: 10.1007/s43657-023-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Mingzhe Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Tao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Hu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030 China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| |
Collapse
|
5
|
Oxman E, Li H, Wang HY, Zohn IE. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects. Hum Genet 2024; 143:263-277. [PMID: 38451291 PMCID: PMC11043113 DOI: 10.1007/s00439-024-02647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.
Collapse
Affiliation(s)
- Elias Oxman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA
| | - Huili Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hong-Yan Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA.
| |
Collapse
|
6
|
Oxman E, Li H, Wang HY, Zohn I. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects. RESEARCH SQUARE 2024:rs.3.rs-3794712. [PMID: 38260607 PMCID: PMC10802691 DOI: 10.21203/rs.3.rs-3794712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased secretion of extracellular heat shock protein 90 (eHSP90) to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with human disease and suggest that sequence variation in HECTD1 may play a role in the etiology of human NTDs.
Collapse
Affiliation(s)
| | - Huili Li
- University of Colorado at Boulder
| | | | | |
Collapse
|
7
|
Chen Z, Lei Y, Finnell RH, Ding Y, Su Z, Wang Y, Xie H, Chen F. Whole-exome sequencing study of hypospadias. iScience 2023; 26:106663. [PMID: 37168556 PMCID: PMC10165268 DOI: 10.1016/j.isci.2023.106663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Hypospadias results from the impaired urethral development, which is influenced by androgens, but its genetic etiology is still unknown. Through whole exome sequencing analysis, we identified NR5A1, SRD5A2, and AR as mutational hotspots in the etiology of severe hypospadias, as these genes are related to androgen signaling. Additionally, rare damaging variants in cilia-related outer dynein arm heavy chain (ODNAH) genes (DNAH5, DNAH8, DNAH9, DNAH11, and DNAH17) (p = 8.5 × 10-47) were significantly enriched in hypospadias cases. The Dnah8 KO mice exhibited significantly decreased testosterone levels, which had an impact on urethral development and disrupted steroid biosynthesis. Combined with trios data, transcriptomic, and phenotypical and proteomic characterization of a mouse model, our work links ciliary genes with hypospadias. Overall, a panel of ODNAH genes with rare damaging variants was identified in 24% of hypospadias patients, providing significant insights into the underlying pathogenesis of hypospadias as well as genetic counseling.
Collapse
Affiliation(s)
- Zhongzhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaping Wang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center For Hypospadias Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
8
|
Abstract
Apical constriction refers to the active, actomyosin-driven process that reduces apical cell surface area in epithelial cells. Apical constriction is utilized in epithelial morphogenesis during embryonic development in multiple contexts, such as gastrulation, neural tube closure, and organogenesis. Defects in apical constriction can result in congenital birth defects, yet our understanding of the molecular control of apical constriction is relatively limited. To uncover new genetic regulators of apical constriction and gain mechanistic insight into the cell biology of this process, we need reliable assay systems that allow real-time observation and quantification of apical constriction as it occurs and permit gain- and loss-of-function analyses to explore gene function and interaction during apical constriction. In this chapter, we describe using the early Xenopus embryo as an assay system to investigate molecular mechanisms involved in apical constriction during both gastrulation and neurulation.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Human neural tube morphogenesis in vitro by geometric constraints. Nature 2021; 599:268-272. [PMID: 34707290 PMCID: PMC8828633 DOI: 10.1038/s41586-021-04026-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.
Collapse
|
10
|
Tamkeen N, AlOmar SY, Alqahtani SAM, Al-Jurayyan A, Farooqui A, Tazyeen S, Ahmad N, Ishrat R. Identification of the Key Regulators of Spina Bifida Through Graph-Theoretical Approach. Front Genet 2021; 12:597983. [PMID: 33889172 PMCID: PMC8056047 DOI: 10.3389/fgene.2021.597983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for developing its successful interventions. The architecture of the SB network, constructed from 117 manually curated genes was found to self-organize into a scale-free fractal state having a weak hierarchical organization. We identified three modules/motifs consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3, TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they propagate signals through the different hierarchical levels of the network to conserve the network’s stability while maintaining low popularity in the network. We also observed that the SB network exhibits a rich-club organization, the formation of which is attributed to our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally with each other and emerge in the same motif, open up a new dimension of research of studying these KRs together. Owing to the multiple etiology and mechanisms of SB, a combination of several biomarkers is expected to have higher diagnostic accuracy for SB as compared to using a single biomarker. So, if all the KRs present in a single module/motif are targetted together, they can serve as biomarkers for the diagnosis of SB. Our study puts forward some novel SB-related genes that need further experimental validation to be considered as reliable future biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Hildebrand JD, Leventry AD, Aideyman OP, Majewski JC, Haddad JA, Bisi DC, Kaufmann N. A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology. Biol Open 2021; 10:bio.055640. [PMID: 33504488 PMCID: PMC7875558 DOI: 10.1242/bio.055640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, we have utilized Drosophila melanogaster to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, we identified several cytoskeletal and signaling protein that may cooperate with Shroom. We show that two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology. Summary: Using Drosophila as a model system, we identify F-actin and microtubules as important determinants of how cells and tissues respond to Shroom induced contractility.
Collapse
Affiliation(s)
- Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adam D Leventry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Omoregie P Aideyman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John C Majewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James A Haddad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dawn C Bisi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nancy Kaufmann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
12
|
Deshwar AR, Martin N, Shannon P, Chitayat D. A homozygous pathogenic variant in SHROOM3 associated with anencephaly and cleft lip and palate. Clin Genet 2020; 98:299-302. [PMID: 32621286 DOI: 10.1111/cge.13804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 01/10/2023]
Abstract
Neural tube defects (NTD) are among the most common congenital anomalies, affecting about 1:1000 births. In most cases, the etiology of NTD is multifactorial and the genetic variants associated with them remain largely unknown. There is extensive evidence from animal models over the past two decades implicating SHROOM3 in neural tube formation; however, its exact role in human disease has remained elusive. In this report, we present the first case of a human fetus with a homozygous loss of function variant in SHROOM3. The fetus presents with anencephaly and cleft lip and palate, similar to previously described Shroom3 mouse mutants and is suggestive of a novel monogenic cause of NTD. Our case provides clarification on the contribution of SHROOM3 to human development after decades of model organism research.
Collapse
Affiliation(s)
- Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Chen Z, Lin X, Wang Y, Xie H, Chen F. Dysregulated expression of androgen metabolism genes and genetic analysis in hypospadias. Mol Genet Genomic Med 2020; 8:e1346. [PMID: 32515122 PMCID: PMC7434757 DOI: 10.1002/mgg3.1346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background The aberrant expression of genes involved in androgen metabolism and genetic contribution are unclear in hypospadias. Methods We compared gene expression profiles by RNA sequencing from five non‐hypospadiac foreskins, five mild hypospadiac foreskins, and five severe hypospadiac foreskins. In addition, to identify rare coding variants with large effects on hypospadias risk, we carried out whole exome sequencing in three patients in a hypospadias family. Results The average expression of androgen receptor (AR) and CYP19A1 were significantly decreased in severe hypospadias (p < .01) and mild hypospadias (p < .05), whereas expression of several other androgen metabolism enzymes, including CYP3A4, HSD17B14, HSD3B7, HSD17B7, CYP11A1 were exclusively significantly expressed in severe hypospadias (p < .05). Compound rare damaging mutants of AR gene with HSD3B1 and SLC25A5 genes were identified in the different severe hypospadias. Conclusions In conclusion, our findings demonstrated that dysregulation of AR and CYP19A1 could play a crucial role in the development of hypospadias. Inconsistent AR expression may be caused by the feedback loop of ESR1 signaling or combined genetic effects with other risk genes. This findings complement the possible role of AR triggered mechanism in the development of hypospadias.
Collapse
Affiliation(s)
- Zhongzhong Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Lin
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaping Wang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xie
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| |
Collapse
|
14
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
15
|
Lei Y, Kim S, Chen Z, Cao X, Zhu H, Yang W, Shaw GM, Zheng Y, Zhang T, Wang H, Finnell RH. Variants identified in PTK7 associated with neural tube defects. Mol Genet Genomic Med 2019; 7:e00584. [PMID: 30689296 PMCID: PMC6465732 DOI: 10.1002/mgg3.584] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Variants in planar cell polarity (PCP) pathway genes have been repeatedly implicated in the pathogenesis of NTDs in both mouse models and in human cohorts. Mouse models indicate that the homogenous disruption of the Ptk7 gene, a PCP regulator, results in craniorachischisis; while embryos that are doubly heterozygous for Ptk7XST87 and Vangl2Lp mutations present with spina bifida. METHODS In this study, we initially sequenced exons of the human PTK7 gene in 192 spina bifida patients and 190 controls from a California population. A phase II validation study was performed in 343 Chinese NTD cohort. Functional assays including immunoblotting and immunoprecipitation were used to study identified variants effect on PTK7 function. RESULTS We identified three rare (MAF <0.001) missense heterozygous PTK7 variants (NM_001270398.1:c.581C>T, p.Arg630Ser and p.Tyr725Phe) in the spina bifida patients. In our functional analyses, p.Arg630Ser affected PTK7 mutant protein stability and increased interaction with Dvl2, while the p.Thr186Met variant decreased PTK7 interactions with Dvl2. No novel predicted-to-be-damaging variant or function-disrupted PTK7 variant was identified among the control subjects. We subsequently re-sequenced the PTK7 CDS region in 343 NTDs from China to validate the association between PTK7 and NTDs. The frequency of PTK7 rare missense variants in the Chinese NTD samples is significantly higher than in gnomAD controls. CONCLUSION Our study suggests that rare missense variants in PTK7 contribute to the genetic risk of NTDs.
Collapse
Affiliation(s)
- Yunping Lei
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Present address:
Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and MedicineBaylor College of MedicineHoustonTexas77030
| | - Sung‐Eun Kim
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
| | - Zhongzhong Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Xuanye Cao
- Departments of Molecular and Cellular Biology and MedicineBaylor College of MedicineHoustonTexas
| | - Huiping Zhu
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Present address:
Asuragen Inc.2150 Woodward St #100AustinTX78744
| | - Wei Yang
- Department of Pediatrics, Division of NeonatologyStanford University School of MedicineStanfordCalifornia
| | - Gary M. Shaw
- Department of Pediatrics, Division of NeonatologyStanford University School of MedicineStanfordCalifornia
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijingChina
| | - Hong‐Yan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Richard H. Finnell
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Collaborative Innovation Center for Genetics & Development, School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
16
|
SHROOM2 inhibits tumor metastasis through RhoA-ROCK pathway-dependent and -independent mechanisms in nasopharyngeal carcinoma. Cell Death Dis 2019; 10:58. [PMID: 30683844 PMCID: PMC6347642 DOI: 10.1038/s41419-019-1325-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
SHROOM2 is a key mediator of RhoA–ROCK pathway that regulates cell motility and actin cytoskeleton organization. However, the functions of SHROOM2 beyond RhoA/ROCK signaling remain poorly understood. Here, we report that SHROOM2 not only participates in RhoA–ROCK-induced stress fiber formation and focal adhesion, but also had an unanticipated role in suppressing epithelial-to-mesenchymal transition (EMT) and tumor metastasis. Depletion of SHROOM2 in nasopharyngeal carcinoma (NPC) cells enhances mesenchymal characteristics and reduces epithelial markers, concomitant with increased motility, enabling the development of invasion and tumor metastasis, which are largely ROCK-independent, as ROCK inhibitor Y-27632 did not cause EMT phenotype; furthermore, combination of ROCK inhibition and SHROOM2 depletion resulted in the most robust increases in cell migration and invasion, indicating that SHROOM2 and ROCK work synergistically rather than epistatic. Analysis of clinical samples suggested that SHROOM2 is downregulated in NPC and the expression of SHROOM2 in metastatic NPC was even lower than in the primary tumors. Our findings uncover a non-canonical role of SHROOM2 as a potent antagonist for EMT and NPC metastasis.
Collapse
|