1
|
Navarro-López B, Wilke F, Suárez-Ulloa V, Baeta M, Martos-Fernández R, Moreno-López O, Olalde I, Martínez-Jarreta B, Jiménez S, Walsh S, de Pancorbo MM. Exploring the association between SNPs and facial morphology in a Spanish population. Sci Rep 2025; 15:13826. [PMID: 40263409 PMCID: PMC12015493 DOI: 10.1038/s41598-025-98748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Understanding and predicting human external phenotypes, particularly facial shape, is of great value for individual identification. However, facial morphology is a highly complex trait. Despite its complexity, recent genome wide association studies (GWAS) have shed light on potential SNPs associated with facial features, offering a first glimpse into the likely genetic background of individual appearance. In this paper we have selected a set of 116 candidate SNPs and studied their association with facial phenotypes in a Spanish population of 412 individuals, highlighting a wide spectrum of facial morphologies worthy of investigation. We performed canonical correlation analysis (CCA) between each SNP and the observed spacial variation in facial shape, from its representation by a dense mesh of 7160 quasi-landmarks, revealing significant associations within different facial segments. In particular, ten SNPs are highlighted for their strong association within this Spanish population, some of them uncovering correlations with novel facial regions. These findings underline the importance and usefulness of conducting candidate SNP studies, not only to validate existing associations but also to unveil novel correlations within subpopulations.
Collapse
Affiliation(s)
- Belén Navarro-López
- BIOMICs Research Group, Department of Zoology and Animal Cellular Biology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, 01009, Vitoria-Gasteiz, Spain.
| | - Franziska Wilke
- Indiana University Indianapolis (IUI), Indianapolis, IN, 46202, USA
| | | | - Miriam Baeta
- BIOMICs Research Group, Department of Zoology and Animal Cellular Biology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01009, Vitoria-Gasteiz, Spain
| | - Rubén Martos-Fernández
- Department of Legal Medicine, Toxicology, and Physical Anthropology, University of Granada, 18071, Granada, Spain
| | - Olatz Moreno-López
- BIOMICs Research Group, Department of Zoology and Animal Cellular Biology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
- Department of Physical Anthropology, Society of Sciences Aranzadi, 20014, Donostia, Spain
| | - Iñigo Olalde
- BIOMICs Research Group, Department of Zoology and Animal Cellular Biology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
- Ikerbasque-Basque Foundation of Science, 48009, Bilbao, Spain
| | - Begoña Martínez-Jarreta
- Faculty of Medicine, University of Zaragoza, 50009, Zaragoza, Spain
- Aragon Health Research Institute (IIS-Aragón), 50009, Zaragoza, Spain
| | - Susana Jiménez
- Department of Pathology and Surgery, University of Miguel Hernández, 03550, Alicante, Spain
| | - Susan Walsh
- Indiana University Indianapolis (IUI), Indianapolis, IN, 46202, USA
| | - Marian M de Pancorbo
- BIOMICs Research Group, Department of Zoology and Animal Cellular Biology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
- Faculty of Medicine, University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
2
|
Du S, Chen J, Li J, Qian W, Wu S, Peng Q, Liu Y, Pan T, Li Y, Hadi SS, Tan J, Yuan Z, Wang J, Tang K, Wang Z, Wen Y, Dong X, Zhou W, Ruiz-Linares A, Shi Y, Jin L, Liu F, Zhang M, Wang S. A multi-ancestry GWAS meta-analysis of facial features and its application in predicting archaic human features. J Genet Genomics 2025; 52:513-524. [PMID: 39002897 DOI: 10.1016/j.jgg.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Facial morphology, a complex trait influenced by genetics, holds great significance in evolutionary research. However, due to limited fossil evidence, the facial characteristics of Neanderthals and Denisovans have remained largely unknown. In this study, we conduct a large-scale multi-ethnic meta-analysis of the genome-wide association study (GWAS), including 9674 East Asians and 10,115 Europeans, quantitatively assessing 78 facial traits using 3D facial images. We identify 71 genomic loci associated with facial features, including 21 novel loci. We develop a facial polygenic score (FPS) that enables the prediction of facial features based on genetic information. Interestingly, the distribution of FPSs among populations from diverse continental groups exhibits relevant correlations with observed facial features. Furthermore, we apply the FPS to predict the facial traits of seven Neanderthals and one Denisovan using ancient DNA and align predictions with the fossil records. Our results suggest that Neanderthals and Denisovans likely share similar facial features, such as a wider but shorter nose and a wider endocanthion distance. The decreased mouth width is characterized specifically in Denisovans. The integration of genomic data and facial trait analysis provides valuable insights into the evolutionary history and adaptive changes in human facial morphology.
Collapse
Affiliation(s)
- Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieyi Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jiarui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Qian
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sijie Wu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sibte Syed Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11452, Kingdom of Saudi Arabia
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu 225326, China
| | - Jiucun Wang
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu 225326, China; Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200120, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai 200438, China
| | - Kun Tang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xinran Dong
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai 201102, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; Aix-Marseille Université, CNRS, EFS, ADES, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Jin
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu 225326, China; Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200120, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai 200438, China
| | - Fan Liu
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11452, Kingdom of Saudi Arabia; Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| | - Manfei Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200120, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
3
|
Qiao H, Tan J, Yan J, Sun C, Yin X, Li Z, Wu J, Guan H, Wen S, Zhang M, Xu S, Jin L. A comprehensive evaluation of the phenotype-first and data-driven approaches in analyzing facial morphological traits. iScience 2024; 27:109325. [PMID: 38487017 PMCID: PMC10937830 DOI: 10.1016/j.isci.2024.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
The phenotype-first approach (PFA) and data-driven approach (DDA) have both greatly facilitated anthropological studies and the mapping of trait-associated genes. However, the pros and cons of the two approaches are poorly understood. Here, we systematically evaluated the two approaches and analyzed 14,838 facial traits in 2,379 Han Chinese individuals. Interestingly, the PFA explained more facial variation than the DDA in the top 100 and 1,000 except in the top 10 phenotypes. Accordingly, the ratio of heterogeneous traits extracted from the PFA was much greater, while more homogenous traits were found using the DDA for different sex, age, and BMI groups. Notably, our results demonstrated that the sex factor accounted for 30% of phenotypic variation in all traits extracted. Furthermore, we linked DDA phenotypes to PFA phenotypes with explicit biological explanations. These findings provide new insights into the analysis of multidimensional phenotypes and expand the understanding of phenotyping approaches.
Collapse
Affiliation(s)
- Hui Qiao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jun Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Xing Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Zijun Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jiazi Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Haijuan Guan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Menghan Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Cho HW, Ban HJ, Jin HS, Cha S, Eom YB. A genome-wide association scan reveals novel loci for facial traits of Koreans. Genomics 2023; 115:110710. [PMID: 37734486 DOI: 10.1016/j.ygeno.2023.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
DNA-based prediction of externally visible characteristics (EVC) with SNPs is one of the research areas of interest in the forensic field. Based on a previous study performing GWAS on facial traits in a Korean population, herein, we present results stemming from GWA analysis with KoreanChip and novel genetic loci satisfying genome-wide significant level. We discovered a total of 20 signals and 12 loci were found to have novel associations with facial traits, including six loci located in intergenic regions and six loci located at UBE2O, HECTD2, CCDC108, TPK1, FCN2, and FRMPD1. Additionally, we performed a polygenic score analysis for 33 distance-related traits in facial phenotyping and determined genetic relationships between facial traits and SNPs using the GCTA program. The results of the current study offer an understanding of how facial morphology is influenced by complex genetic structures and provide insights into forensic investigation and population genetics.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyo-Jeong Ban
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Seongwon Cha
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
5
|
Li Q, Chen J, Faux P, Delgado ME, Bonfante B, Fuentes-Guajardo M, Mendoza-Revilla J, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo-Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Wu S, Du S, Giardina A, Paria SS, Khokan MR, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Rojas W, Rothhammer F, Navarro N, Wang S, Adhikari K, Ruiz-Linares A. Automatic landmarking identifies new loci associated with face morphology and implicates Neanderthal introgression in human nasal shape. Commun Biol 2023; 6:481. [PMID: 37156940 PMCID: PMC10167347 DOI: 10.1038/s42003-023-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10-8) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.
Collapse
Affiliation(s)
- Qing Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
| | - Jieyi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Miguel Eduardo Delgado
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, República Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, República Argentina
| | - Betty Bonfante
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, 75015, France
| | - J Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, 07745, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Mirsha Sánchez-Quinto
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), Mexico City, 06320, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Sijie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrea Giardina
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Soumya Subhra Paria
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mahfuzur Rahman Khokan
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica, 1000000, Chile
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, 21000, France
- EPHE, PSL University, Paris, 75014, France
| | - Sijia Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China.
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Could routine forensic STR genotyping data leak personal phenotypic information? Forensic Sci Int 2022; 335:111311. [PMID: 35468577 DOI: 10.1016/j.forsciint.2022.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
The application of forensic genetic markers must comply with privacy rights and legal policies on a premise that the markers do not expose phenotypic information. The most widely-used short tandem repeats (STRs) are generally viewed as 'junk' DNA because most STRs are located in non-coding regions and therefore refrain from leaking phenotypic traits. But with a deepening understanding of phenotypes and underlying genetic structure, whether STRs could potentially reflect any phenotypic information may need re-examining. Therefore, we performed the following analyses. First, we analyzed the association between 15 STRs and three facial characteristics (single or double eyelid, with or without epicanthus, unattached or attached earlobe) on 721 unrelated Han Chinese individuals. Then, we collected 27199 individuals' STRs and geographic data from the literature to investigate the association between STRs and bio-geographic information, and predict geographic information by STRs on additional 1993 unrelated individuals. We found that there was scarcely any association between STRs with studied facial characteristics. Although allele19 in D2S1338 and allele 18 in FGA (P = 0.0032, P = 0.0030, respectively after Bonferroni correction) showed statistical significance, the prediction effectiveness was very low. For the STRs and bio-geographic information, the principal component analysis showed the first three components could explain 87.7% of the variance, but the prediction accuracy only reached 25.2%. We demonstrated that the forensic phenotypes are usually complex traits, it is hardly possible to uncover phenotypic information by testing only dozens of STR loci.
Collapse
|
7
|
Zhang M, Wu S, Du S, Qian W, Chen J, Qiao L, Yang Y, Tan J, Yuan Z, Peng Q, Liu Y, Navarro N, Tang K, Ruiz-Linares A, Wang J, Claes P, Jin L, Li J, Wang S. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet 2022; 54:403-411. [PMID: 35393595 DOI: 10.1038/s41588-022-01038-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Facial morphology-a conspicuous feature of human appearance-is highly heritable. Previous studies on the genetic basis of facial morphology were performed mainly in European-ancestry cohorts (EUR). Applying a data-driven phenotyping and multivariate genome-wide scanning protocol to a large collection of three-dimensional facial images of individuals with East Asian ancestry (EAS), we identified 244 variants in 166 loci (62 new) associated with typical-range facial variation. A newly proposed polygenic shape analysis indicates that the effects of the variants on facial shape in EAS can be generalized to EUR. Based on this, we further identified 13 variants related to differences between facial shape in EUR and EAS populations. Evolutionary analyses suggest that the difference in nose shape between EUR and EAS populations is caused by a directional selection, due mainly to a local adaptation in Europeans. Our results illustrate the underlying genetic basis for facial differences across populations.
Collapse
Affiliation(s)
- Manfei Zhang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Computer Science, Fudan University, Shanghai, China
| | - Sijie Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Qian
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Computer Science, Fudan University, Shanghai, China
| | - Jieyi Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Qiao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, Taizhou, China
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS-EPHE, Université Bourgogne Franche-Comté, Dijon, France
- Ecole Pratique des Hautes Etudes, PSL University, Paris, France
| | - Kun Tang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Andrés Ruiz-Linares
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, China
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Fudan-Taizhou Institute of Health Sciences, Taizhou, China.
| | - Jiarui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
| | - Sijia Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
8
|
Qian W, Zhang M, Wan K, Xie Y, Du S, Li J, Mu X, Qiu J, Xue X, Zhuang X, Wu Y, Liu F, Wang S. Genetic evidence for facial variation being a composite phenotype of cranial variation and facial soft tissue thickness. J Genet Genomics 2022; 49:934-942. [DOI: 10.1016/j.jgg.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
9
|
Shull LC, Lencer ES, Kim HM, Goyama S, Kurokawa M, Costello JC, Jones K, Artinger KB. PRDM paralogs antagonistically balance Wnt/β-catenin activity during craniofacial chondrocyte differentiation. Development 2022; 149:274527. [PMID: 35132438 PMCID: PMC8918787 DOI: 10.1242/dev.200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/β-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/β-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/β-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.
Collapse
Affiliation(s)
- Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra S. Lencer
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hyun Min Kim
- Department of Pharmacology and University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, The University of Tokyo, Tokyo, 113-8655, Japan
| | - James C. Costello
- Department of Pharmacology and University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Author for correspondence ()
| |
Collapse
|
10
|
Grine FE, Gonzalvo E, Rossouw L, Holt S, Black W, Braga J. Variation in Middle Stone Age mandibular molar enamel-dentine junction topography at Klasies River Main Site assessed by diffeomorphic surface matching. J Hum Evol 2021; 161:103079. [PMID: 34739985 DOI: 10.1016/j.jhevol.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
The morphology and variability of the Middle Stone Age (MSA) hominin fossils from Klasies River Main Site have been the focus of investigation for more than four decades. The mandibular remains have figured prominently in discussions relating to robusticity, size dimorphism, and symphyseal morphology. Variation in corpus size between the robust SAM-AP 6223 and the diminutive SAM-AP 6225 mandibles is particularly impressive, and the difference between the buccolingual diameters of their M2s significantly exceeds recent human sample variation. SAM-AP 6223 and SAM-AP 6225 are the only Klasies specimens with homologous teeth (M2 and M3) that permit comparisons of crown morphology. While the differences in dental trait expression at the outer enamel surfaces of these molars are slight, diffeomorphic surface analyses of their underlying enamel-dentine junction (EDJ) topographies reveal differences that are well beyond the means of pairwise differences among comparative samples of Later Stone Age (LSA) Khoesan and recent African homologues. The EDJs of both SAM-AP 6225 molars and the SAM-AP 6223 M3 fall outside the envelopes that define the morphospace of these two samples. Although the radiocarbon dated LSA individuals examined here differ by a maximum of some 7000 years, and the two Klasies jaws may differ by perhaps as much as 18,000 years, it is difficult to ascribe their differences to time alone. With reference to the morphoscopic traits by which the SAM-AP 6223 and SAM-AP 6225 EDJs differ, the most striking is the expression of the protoconid cingulum. This is very weakly developed on the SAM-AP 6223 molars and distinct in SAM-AP 6225. As such, this diminutive fossil exhibits a more pronounced manifestation of what is likely a plesiomorphic feature, thus adding to the morphological mosaicism that is evident in the Klasies hominin assemblage. Several possible explanations for the variation and mosaicism in this MSA sample are discussed.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Elsa Gonzalvo
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France
| | - Lloyd Rossouw
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Wendy Black
- Archaeology Unit, Research and Exhibitions Department, Iziko Museums of South Africa, Cape Town, South Africa
| | - José Braga
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
11
|
Liu T, Momin M, Zhou H, Zheng Q, Fan F, Jia J, Liu M, Bao M, Li J, Huo Y, Liu J, Zhang Y, Mao X, Han X, Hu Z, Zeng C, Liu F, Zhang Y. Exome-Wide Association Study Identifies East Asian-Specific Missense Variant MTHFR C136T Influencing Homocysteine Levels in Chinese Populations RH: ExWAS of tHCY in a Chinese Population. Front Genet 2021; 12:717621. [PMID: 34707639 PMCID: PMC8542906 DOI: 10.3389/fgene.2021.717621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023] Open
Abstract
Plasma total homocysteine (tHCY) is a known risk factor of a wide range of complex diseases. No genome scans for tHCY have been conducted in East Asian populations. Here, we conducted an exome-wide association study (ExWAS) for tHCY in 5,175 individuals of Chinese Han origin, followed by a replication study in 668 Chinese individuals. The ExWAS identified two loci, 1p36.22 (lead single-nucleotide polymorphism (SNP) rs1801133, MTHFR C677T) and 16q24.3 (rs1126464, DPEP1), showing exome-wide significant association with tHCY (p < 5E-7); and both loci have been previously associated with tHCY in non-East Asian populations. Both SNPs were replicated in the replication study (p < 0.05). Conditioning on the genotype of C677T and rs1126464, we identified a novel East Asian-specific missense variant rs138189536 (C136T) of MTHFR (p = 6.53E-10), which was also significant in the replication study (p = 9.8E-3). The C136T and C677T variants affect tHCY in a compound heterozygote manner, where compound heterozygote and homozygote genotype carriers had on average 43.4% increased tHCY than had other genotypes. The frequency of the homozygote C677T genotype showed an inverse-U-shaped geospatial pattern globally with a pronounced frequency in northern China, which coincided with the high prevalence of hyperhomocysteinemia (HHCY) in northern China. A logistic regression model of HHCY status considering sex, age, and the genotypes of the three identified variants reached an area under the receiver operating characteristic curve (AUC) value of 0.74 in an independent validation cohort. These genetic observations provide new insights into the presence of multiple causal mutations at the MTHFR locus, highlight the role of genetics in HHCY epidemiology among different populations, and provide candidate loci for future functional studies.
Collapse
Affiliation(s)
- Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Mohetaboer Momin
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Huiyue Zhou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Qiwen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Mengyuan Liu
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Jialin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaning Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Mao
- Beijing P4 Healthcare Institute, Beijing, China
| | - Xiao Han
- Beijing P4 Healthcare Institute, Beijing, China
| | - Zhiyuan Hu
- Beijing P4 Healthcare Institute, Beijing, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China.,Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Liu C, Lee MK, Naqvi S, Hoskens H, Liu D, White JD, Indencleef K, Matthews H, Eller RJ, Li J, Mohammed J, Swigut T, Richmond S, Manyama M, Hallgrímsson B, Spritz RA, Feingold E, Marazita ML, Wysocka J, Walsh S, Shriver MD, Claes P, Weinberg SM, Shaffer JR. Genome scans of facial features in East Africans and cross-population comparisons reveal novel associations. PLoS Genet 2021; 17:e1009695. [PMID: 34411106 PMCID: PMC8375984 DOI: 10.1371/journal.pgen.1009695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.
Collapse
Affiliation(s)
- Chenxing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Myoung Keun Lee
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hanne Hoskens
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Julie D. White
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Karlijne Indencleef
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Harold Matthews
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jiarui Li
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Mange Manyama
- Anatomy in Radiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Benedikt Hallgrímsson
- Department of Anatomy and Cell Biology, Alberta Children´s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Richard A. Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mark D. Shriver
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Peter Claes
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Seth M. Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Hoskens H, Liu D, Naqvi S, Lee MK, Eller RJ, Indencleef K, White JD, Li J, Larmuseau MHD, Hens G, Wysocka J, Walsh S, Richmond S, Shriver MD, Shaffer JR, Peeters H, Weinberg SM, Claes P. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet 2021; 17:e1009528. [PMID: 33983923 PMCID: PMC8118281 DOI: 10.1371/journal.pgen.1009528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.
Collapse
Affiliation(s)
- Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Karlijne Indencleef
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Julie D. White
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Jiarui Li
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Maarten H. D. Larmuseau
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Biology, Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
- Histories vzw, Mechelen, Belgium
| | - Greet Hens
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Mark D. Shriver
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Gowans LJJ, Al Dhaheri N, Li M, Busch T, Obiri-Yeboah S, Oti AA, Sabbah DK, Arthur FKN, Awotoye WO, Alade AA, Twumasi P, Agbenorku P, Plange-Rhule G, Naicker T, Donkor P, Murray JC, Sobreira NLM, Butali A. Co-occurrence of orofacial clefts and clubfoot phenotypes in a sub-Saharan African cohort: Whole-exome sequencing implicates multiple syndromes and genes. Mol Genet Genomic Med 2021; 9:e1655. [PMID: 33719213 PMCID: PMC8123728 DOI: 10.1002/mgg3.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background Orofacial clefts (OFCs) are congenital malformations of the face and palate, with an incidence of 1 per 700 live births. Clubfoot or congenital talipes equinovarus (CTEV) is a three‐dimensional abnormality of the leg, ankle, and feet that leads to the anomalous positioning of foot and ankle joints and has an incidence of 1 per 1000 live births. OFCs and CTEV may occur together or separately in certain genetic syndromes in addition to other congenital abnormalities. Here, we sought to decipher the genetic etiology of OFC and CTEV that occurred together in six probands. Methods At the time of recruitment, the most clinically obvious congenital anomalies in these individuals were the OFC and CTEV. We carried out whole‐exome sequencing (WES) on DNA samples from probands and available parents employing the Agilent SureSelect XT kit and Illumina HiSeq2500 platform, followed by bioinformatics analyses. WES variants were validated by clinical Sanger Sequencing. Results Of the six probands, we observed probable pathogenic genetic variants in four. In three probands with probable pathogenic genetic variants, each individual had variants in three different genes, whereas one proband had probable pathogenic variant in just one gene. In one proband, we observed variants in DIS3L2, a gene associated with Perlman syndrome. A second proband had variants in EPG5 (associated with Vici Syndrome), BARX1 and MKI67, while another proband had potentially etiologic variants in FRAS1 (associated with Fraser Syndrome 1), TCOF1 (associated with Treacher Collins Syndrome 1) and MKI67. The last proband had variants in FRAS1, PRDM16 (associated with Cardiomyopathy, dilated, 1LL/Left ventricular noncompaction 8) and CHD7 (associated with CHARGE syndrome/Hypogonadotropic hypogonadism 5 with or without anosmia). Conclusion Our results suggest that clubfoot and OFCs are two congenital abnormalities that can co‐occur in certain individuals with varying genetic causes and expressivity, warranting the need for deep phenotyping.
Collapse
Affiliation(s)
- Lord J J Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Noura Al Dhaheri
- Department of Medical Genetics, John Hopkins University, Baltimore, MD, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Solomon Obiri-Yeboah
- Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander A Oti
- Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel K Sabbah
- Department of Orthodontics and Child Oral Health, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Waheed O Awotoye
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Azeez A Alade
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter Twumasi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pius Agbenorku
- Department of Surgery, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gyikua Plange-Rhule
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Thirona Naicker
- Department of Pediatrics, University of KwaZulu-Natal, South Africa
| | - Peter Donkor
- Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Surgery, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Nara L M Sobreira
- Department of Medical Genetics, John Hopkins University, Baltimore, MD, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
White JD, Indencleef K, Naqvi S, Eller RJ, Hoskens H, Roosenboom J, Lee MK, Li J, Mohammed J, Richmond S, Quillen EE, Norton HL, Feingold E, Swigut T, Marazita ML, Peeters H, Hens G, Shaffer JR, Wysocka J, Walsh S, Weinberg SM, Shriver MD, Claes P. Insights into the genetic architecture of the human face. Nat Genet 2021; 53:45-53. [PMID: 33288918 PMCID: PMC7796995 DOI: 10.1038/s41588-020-00741-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/23/2020] [Indexed: 01/28/2023]
Abstract
The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.
Collapse
Affiliation(s)
- Julie D White
- Department of Anthropology, Pennsylvania State University, State College, PA, USA.
| | - Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hanne Hoskens
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jasmien Roosenboom
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiarui Li
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Ellen E Quillen
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, OH, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary L Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Greet Hens
- Department of Neurosciences, Experimental Oto-Rhino-Laryngology, KU Leuven, Leuven, Belgium
| | - John R Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
|
17
|
Editors' Note to: EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population. Hum Genet 2019; 139:273. [PMID: 31807863 DOI: 10.1007/s00439-019-02097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
What makes your “eyes” look different? FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|