1
|
Alperovich M, Tonello C, Mayes LC, Kahle KT. Non-syndromic craniosynostosis. Nat Rev Dis Primers 2025; 11:24. [PMID: 40210850 DOI: 10.1038/s41572-025-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/12/2025]
Abstract
Craniosynostosis is characterized by the premature fusion of one or more major cranial sutures at birth or soon after. Single-suture non-syndromic craniosynostosis (NSC) is the most common form of craniosynostosis and includes the sagittal, metopic, unicoronal and unilambdoid subtypes. Characterized by an abnormal head shape specific to the fused suture type, NSC can cause increased intracranial pressure. Cranial sutures either originate from the neural crest or arise from mesoderm-derived mesenchymal stem cells. A mixture of environmental and genetic factors contributes to NSC, with genetic causes following a largely polygenic model. Physical examination is used to identify the majority of patients, but accompanying radiographic imaging can be confirmatory. The three major surgical techniques in use to treat NSC are cranial vault remodelling, strip craniectomy and spring-assisted cranioplasty. Surgical intervention is ideally performed in the first year of life, with a mortality of <1%. Health-care disparities contribute to delayed initial presentation and timely repair. Optimal timing of surgery and comparative outcomes by surgical technique remain under active study. School-age children with treated NSC on average have subtle, but lower cognitive and behavioural performance. However, patient-reported quality of life outcomes are comparable to those in control individuals.
Collapse
Affiliation(s)
- Michael Alperovich
- Division of Plastic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | - Cristiano Tonello
- Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Sao Paulo, Brazil
| | - Linda C Mayes
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Goovaerts S, Naqvi S, Hoskens H, Herrick N, Yuan M, Shriver MD, Shaffer JR, Walsh S, Weinberg SM, Wysocka J, Claes P. Enhanced insights into the genetic architecture of 3D cranial vault shape using pleiotropy-informed GWAS. Commun Biol 2025; 8:439. [PMID: 40087503 PMCID: PMC11909261 DOI: 10.1038/s42003-025-07875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Large-scale GWAS studies have uncovered hundreds of genomic loci linked to facial and brain shape variation, but only tens associated with cranial vault shape, a largely overlooked aspect of the craniofacial complex. Surrounding the neocortex, the cranial vault plays a central role during craniofacial development and understanding its genetics are pivotal for understanding craniofacial conditions. Experimental biology and prior genetic studies have generated a wealth of knowledge that presents opportunities to aid further genetic discovery efforts. Here, we use the conditional FDR method to leverage GWAS data of facial shape, brain shape, and bone mineral density to enhance SNP discovery for cranial vault shape. This approach identified 120 independent genomic loci at 1% FDR, nearly tripling the number discovered through unconditioned analysis and implicating crucial craniofacial transcription factors and signaling pathways. These results significantly advance our genetic understanding of cranial vault shape and craniofacial development more broadly.
Collapse
Affiliation(s)
- Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanne Hoskens
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research, Institute, University of Calgary, Calgary, AB, Canada
| | - Noah Herrick
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meng Yuan
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Herring SW, Rafferty KL, Shin DU, Smith K, Baldwin MC. Cyclic loading failed to promote growth in a pig model of midfacial hypoplasia. J Anat 2024; 245:879-893. [PMID: 38562033 PMCID: PMC11442677 DOI: 10.1111/joa.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Yucatan miniature pigs, often used as large animal models in clinical research, are distinguished by a breed-specific midfacial hypoplasia with anterior crossbite. Although this deformity can be corrected by distraction osteogenesis, a less invasive method is desirable. We chose a mechanical cyclic stimulation protocol that has been successful in enhancing sutural growth in small animals and in a pilot study on standard pigs. Yucatan minipigs (n = 14) were obtained in pairs, with one of each pair randomly assigned to sham or loaded groups. All animals had loading implants installed on the right nasal and frontal bones and received labels for cell proliferation and mineral apposition. After a week of healing and under anesthesia, experimental animals received cyclic tensile loads (2.5 Hz, 30 min) delivered to the right nasofrontal suture daily for 5 days. Sutural strains were recorded at the final session for experimental animals. Sham animals received the same treatment except without loading or strain gauge placement. In contrast to pilot results on standard pigs, the treatment did not produce the expected sutural widening and increased growth. Although sutures were not fused and strains were in the normal range, the targeted right nasofrontal suture was narrowed rather than widened, with no statistically significant changes in sutural cell proliferation, mineral apposition, or vascularity. In general, Yucatan minipig sutures were more vascular than those of standard pigs and also tended to have more proliferating cells. In conclusion, either because the sutures themselves are abnormal or because of growth restrictions elsewhere in the skull, this cyclic loading protocol was unable to produce the desired response of sutural widening and growth. This treatment, effective in normal animals, did not improve naturally occurring midfacial hypoplasia in Yucatan minipigs.
Collapse
Affiliation(s)
- Susan W Herring
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Katherine L Rafferty
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - David U Shin
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Kelsey Smith
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Michael C Baldwin
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Boonsawat P, Asadollahi R, Niedrist D, Steindl K, Begemann A, Joset P, Bhoj EJ, Li D, Zackai E, Vetro A, Barba C, Guerrini R, Whalen S, Keren B, Khan A, Jing D, Palomares Bralo M, Rikeros Orozco E, Hao Q, Schlott Kristiansen B, Zheng B, Donnelly D, Clowes V, Zweier M, Papik M, Siegel G, Sabatino V, Mocera M, Horn AHC, Sticht H, Rauch A. Deleterious ZNRF3 germline variants cause neurodevelopmental disorders with mirror brain phenotypes via domain-specific effects on Wnt/β-catenin signaling. Am J Hum Genet 2024; 111:1994-2011. [PMID: 39168120 PMCID: PMC11393693 DOI: 10.1016/j.ajhg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/β-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/β-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/β-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/β-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/β-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.
Collapse
Affiliation(s)
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Faculty of Engineering and Science, University of Greenwich London, Medway Campus, Chatham Maritime ME4 4TB, UK
| | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sandra Whalen
- Unité Fonctionnelle de Génétique Odellin, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Amjad Khan
- Faculty of Science, Department of Biological Science (Zoology), University of Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan
| | - Duan Jing
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - María Palomares Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Emi Rikeros Orozco
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Virginia Clowes
- Thames Regional Genetics Service, North West University Healthcare NHS Trust, London, UK
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Gabriele Siegel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Valeria Sabatino
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Martina Mocera
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Pediatric University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
6
|
Topa A, Rohlin A, Fehr A, Lovmar L, Stenman G, Tarnow P, Maltese G, Bhatti-Søfteland M, Kölby L. The value of genome-wide analysis in craniosynostosis. Front Genet 2024; 14:1322462. [PMID: 38318288 PMCID: PMC10839781 DOI: 10.3389/fgene.2023.1322462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Background: This study assessed the diagnostic yield of high-throughput sequencing methods in a cohort of craniosynostosis (CS) patients not presenting causal variants identified through previous targeted analysis. Methods: Whole-genome or whole-exome sequencing (WGS/WES) was performed in a cohort of 59 patients (from 57 families) assessed by retrospective phenotyping as having syndromic or nonsyndromic CS. Results: A syndromic form was identified in 51% of the unrelated cases. A genetic cause was identified in 38% of syndromic cases, with novel variants detected in FGFR2 (a rare Alu insertion), TWIST1, TCF12, KIAA0586, HDAC9, FOXP1, and NSD2. Additionally, we report two patients with rare recurrent variants in KAT6A and YY1 as well as two patients with structural genomic aberrations: one with a 22q13 duplication and one with a complex rearrangement involving chromosome 2 (2p25 duplication including SOX11 and deletion of 2q22). Moreover, we identified potentially relevant variants in 87% of the remaining families with no previously detected causal variants, including novel variants in ADAMTSL4, ASH1L, ATRX, C2CD3, CHD5, ERF, H4C5, IFT122, IFT140, KDM6B, KMT2D, LTBP1, MAP3K7, NOTCH2, NSD1, SOS1, SPRY1, POLR2A, PRRX1, RECQL4, TAB2, TAOK1, TET3, TGFBR1, TCF20, and ZBTB20. Conclusion: These results confirm WGS/WES as a powerful diagnostic tool capable of either targeted in silico or broad genomic analysis depending on phenotypic presentation (e.g., classical or unusual forms of syndromic CS).
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Tarnow
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Giovanni Maltese
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Madiha Bhatti-Søfteland
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
7
|
Mekbib KY, Muñoz W, Allington G, McGee S, Mehta NH, Shofi JP, Fortes C, Le HT, Nelson-Williams C, Nanda P, Dennis E, Kundishora AJ, Khanna A, Smith H, Ocken J, Greenberg ABW, Wu R, Moreno-De-Luca A, DeSpenza T, Zhao S, Marlier A, Jin SC, Alper SL, Butler WE, Kahle KT. Human genetics and molecular genomics of Chiari malformation type 1. Trends Mol Med 2023; 29:1059-1075. [PMID: 37802664 DOI: 10.1016/j.molmed.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Chiari malformation type 1 (CM1) is the most common structural brain disorder involving the craniocervical junction, characterized by caudal displacement of the cerebellar tonsils below the foramen magnum into the spinal canal. Despite the heterogeneity of CM1, its poorly understood patho-etiology has led to a 'one-size-fits-all' surgical approach, with predictably high rates of morbidity and treatment failure. In this review we present multiplex CM1 families, associated Mendelian syndromes, and candidate genes from recent whole exome sequencing (WES) and other genetic studies that suggest a significant genetic contribution from inherited and de novo germline variants impacting transcription regulation, craniovertebral osteogenesis, and embryonic developmental signaling. We suggest that more extensive WES may identify clinically relevant, genetically defined CM1 subtypes distinguished by unique neuroradiographic and neurophysiological endophenotypes.
Collapse
Affiliation(s)
- Kedous Y Mekbib
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - Garrett Allington
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - John P Shofi
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Carla Fortes
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Hao Thi Le
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rui Wu
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism and Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Gaillard L, Goverde A, Weerts MJA, de Klein A, Mathijssen IMJ, Van Dooren MF. Genetic diagnostic yield in an 11-year cohort of craniosynostosis patients. Eur J Med Genet 2023; 66:104843. [PMID: 37716645 DOI: 10.1016/j.ejmg.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Craniosynostosis may present in isolation, 'non-syndromic', or with additional congenital anomalies/neurodevelopmental disorders, 'syndromic'. Clinical focus shifted from confirming classical syndromic cases to offering genetic testing to all craniosynostosis patients. This retrospective study assesses diagnostic yield of molecular testing by investigating prevalences of chromosomal and monogenic (likely) pathogenic variants in an 11-year cohort of 1020 craniosynostosis patients. 502 children underwent genetic testing. Pathogenic variants were identified in 174 patients (35%). Diagnostic yield was significantly higher in syndromic craniosynostosis (62%) than in non-syndromic craniosynostosis (6%). Before whole exome sequencing (WES) emerged, single-gene testing was performed using Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA). Diagnostic yield was 11% and was highest for EFNB1, FGFR2, FGFR3, and IL11RA. Diagnostic yield for copy number variant analysis using microarray was 8%. From 2015 onwards, the WES craniosynostosis panel was implemented, with a yield of 10%. In unsolved, mainly syndromic, cases suspected of a genetic cause, additional WES panels (multiple congenital anomalies (MCA)/intellectual disability (ID)) or open exome analysis were performed with an 18% diagnostic yield. To conclude, microarray and the WES craniosynostosis panel are key to identifying pathogenic variants. in craniosynostosis patients. Given the advances in genetic diagnostics, we should look beyond the scope of the WES craniosynostosis panel and consider extensive genetic diagnostics (e.g. open exome sequencing, whole genome sequencing, RNA sequencing and episignature analysis) if no diagnosis is obtained through microarray and/or WES craniosynostosis panel. If parents are uncomfortable with more extensive diagnostics, MCA or ID panels may be considered.
Collapse
Affiliation(s)
- Linda Gaillard
- Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Plastic and Reconstructive Surgery and Hand Surgery, Rotterdam, the Netherlands.
| | - Anne Goverde
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marjolein J A Weerts
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Annelies de Klein
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Plastic and Reconstructive Surgery and Hand Surgery, Rotterdam, the Netherlands
| | - Marieke F Van Dooren
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Timberlake AT. SMAD6 variants in nonsyndromic craniosynostosis. Eur J Hum Genet 2023; 31:611-612. [PMID: 36797468 PMCID: PMC10250304 DOI: 10.1038/s41431-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Ueharu H, Mishina Y. BMP signaling during craniofacial development: new insights into pathological mechanisms leading to craniofacial anomalies. Front Physiol 2023; 14:1170511. [PMID: 37275223 PMCID: PMC10232782 DOI: 10.3389/fphys.2023.1170511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Cranial neural crest cells (NCCs) are the origin of the anterior part of the face and the head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial NCCs (proliferation, cell death, migration, differentiation, and cell fate specification) are well regulated by several signaling pathways; abnormalities in their behavior are often reported as causative reasons for craniofacial anomalies (CFAs), which occur in 1 in 100 newborns in the United States. Understanding the pathological mechanisms of CFAs would facilitate strategies for identifying, preventing, and treating CFAs. Bone morphogenetic protein (BMP) signaling plays a pleiotropic role in many cellular processes during embryonic development. We and others have reported that abnormalities in BMP signaling in cranial NCCs develop CFAs in mice. Abnormal levels of BMP signaling cause miscorrelation with other signaling pathways such as Wnt signaling and FGF signaling, which mutations in the signaling pathways are known to develop CFAs in mice and humans. Recent Genome-Wide Association Studies and exome sequencing demonstrated that some patients with CFAs presented single nucleotide polymorphisms (SNPs), missense mutations, and duplication of genes related to BMP signaling activities, suggesting that defects in abnormal BMP signaling in human embryos develop CFAs. There are still a few cases of BMP-related patients with CFAs. One speculation is that human embryos with mutations in coding regions of BMP-related genes undergo embryonic lethality before developing the craniofacial region as well as mice development; however, no reports are available that show embryonic lethality caused by BMP mutations in humans. In this review, we will summarize the recent advances in the understanding of BMP signaling during craniofacial development in mice and describe how we can translate the knowledge from the transgenic mice to CFAs in humans.
Collapse
|
11
|
Aldawood ZA, Mancinelli L, Geng X, Yeh SCA, Di Carlo R, C. Leite T, Gustafson J, Wilk K, Yozgatian J, Garakani S, Bassir SH, Cunningham ML, Lin CP, Intini G. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration. Proc Natl Acad Sci U S A 2023; 120:e2120826120. [PMID: 37040407 PMCID: PMC10120053 DOI: 10.1073/pnas.2120826120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2023] [Indexed: 04/12/2023] Open
Abstract
In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.
Collapse
Affiliation(s)
- Zahra A. Aldawood
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam34212, Saudi Arabia
| | - Luigi Mancinelli
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Xuehui Geng
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Shu-Chi A. Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA02114
| | - Roberta Di Carlo
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Taiana C. Leite
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Jonas Gustafson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
| | - Katarzyna Wilk
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Joseph Yozgatian
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Sasan Garakani
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Seyed Hossein Bassir
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Michael L. Cunningham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA98195
| | - Charles P. Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA02114
| | - Giuseppe Intini
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
- University of Pittsburgh UPMC Hillman Cancer Center, Pittsburgh, PA15232
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA15219
| |
Collapse
|
12
|
Transcriptomic Signatures of Single-Suture Craniosynostosis Phenotypes. Int J Mol Sci 2023; 24:ijms24065353. [PMID: 36982425 PMCID: PMC10049207 DOI: 10.3390/ijms24065353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Craniosynostosis is a birth defect where calvarial sutures close prematurely, as part of a genetic syndrome or independently, with unknown cause. This study aimed to identify differences in gene expression in primary calvarial cell lines derived from patients with four phenotypes of single-suture craniosynostosis, compared to controls. Calvarial bone samples (N = 388 cases/85 controls) were collected from clinical sites during reconstructive skull surgery. Primary cell lines were then derived from the tissue and used for RNA sequencing. Linear models were fit to estimate covariate adjusted associations between gene expression and four phenotypes of single-suture craniosynostosis (lambdoid, metopic, sagittal, and coronal), compared to controls. Sex-stratified analysis was also performed for each phenotype. Differentially expressed genes (DEGs) included 72 genes associated with coronal, 90 genes associated with sagittal, 103 genes associated with metopic, and 33 genes associated with lambdoid craniosynostosis. The sex-stratified analysis revealed more DEGs in males (98) than females (4). There were 16 DEGs that were homeobox (HOX) genes. Three TFs (SUZ12, EZH2, AR) significantly regulated expression of DEGs in one or more phenotypes. Pathway analysis identified four KEGG pathways associated with at least one phenotype of craniosynostosis. Together, this work suggests unique molecular mechanisms related to craniosynostosis phenotype and fetal sex.
Collapse
|
13
|
Tooze RS, Calpena E, Weber A, Wilson LC, Twigg SRF, Wilkie AOM. Review of Recurrently Mutated Genes in Craniosynostosis Supports Expansion of Diagnostic Gene Panels. Genes (Basel) 2023; 14:615. [PMID: 36980886 PMCID: PMC10048212 DOI: 10.3390/genes14030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Craniosynostosis, the premature fusion of the cranial sutures, affects ~1 in 2000 children. Although many patients with a genetically determined cause harbor a variant in one of just seven genes or have a chromosomal abnormality, over 60 genes are known to be recurrently mutated, thus comprising a long tail of rarer diagnoses. Genome sequencing for the diagnosis of rare diseases is increasingly used in clinical settings, but analysis of the data is labor intensive and involves a trade-off between achieving high sensitivity or high precision. PanelApp, a crowd-sourced disease-focused set of gene panels, was designed to enable prioritization of variants in known disease genes for a given pathology, allowing enhanced identification of true-positives. For heterogeneous disorders like craniosynostosis, these panels must be regularly updated to ensure that diagnoses are not being missed. We provide a systematic review of genetic literature on craniosynostosis over the last 5 years, including additional results from resequencing a 42-gene panel in 617 affected individuals. We identify 16 genes (representing a 25% uplift) that should be added to the list of bona fide craniosynostosis disease genes and discuss the insights that these new genes provide into pathophysiological mechanisms of craniosynostosis.
Collapse
Affiliation(s)
- Rebecca S. Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Astrid Weber
- Liverpool Centre for Genomic Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Louise C. Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|