1
|
Beyer J, Song Y, Lillicrap A, Rodríguez-Satizábal S, Chatzigeorgiou M. Ciona spp. and ascidians as bioindicator organisms for evaluating effects of endocrine disrupting chemicals: A discussion paper. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106170. [PMID: 37708617 DOI: 10.1016/j.marenvres.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In context of testing, screening and monitoring of endocrine-disrupting (ED) type of environmental pollutants, tunicates could possibly represent a particularly interesting group of bioindicator organisms. These primitive chordates are already important model organisms within developmental and genomics research due to their central position in evolution and close relationship to vertebrates. The solitary ascidians, such as the genus Ciona spp. (vase tunicates), could possibly be extra feasible as ED bioindicators. They have a free-swimming, tadpole-like larval stage that develops extremely quickly (<20 h under favorable conditions), has a short life cycle (typically 2-3 months), are relatively easy to maintain in laboratory culture, have fully sequenced genomes, and transgenic embryos with 3D course data of the embryo ontogeny are available. In this article, we discuss possible roles of Ciona spp. (and other solitary ascidians) as ecotoxicological bioindicator organisms in general but perhaps especially for effect studies of contaminants with presumed endocrine disrupting modes of action.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | | |
Collapse
|
2
|
Morthorst JE, Holbech H, De Crozé N, Matthiessen P, LeBlanc GA. Thyroid-like hormone signaling in invertebrates and its potential role in initial screening of thyroid hormone system disrupting chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:63-82. [PMID: 35581168 PMCID: PMC10083991 DOI: 10.1002/ieam.4632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 05/07/2023]
Abstract
This review examines the presence and evolution of thyroid-like systems in selected aquatic invertebrates to determine the potential use of these organisms in screens for vertebrate thyroid hormone axis disrupting chemicals (THADCs). Such a screen might support the phasing out of some vertebrate testing. Although arthropods including crustaceans do not contain a functional thyroid signaling system, elements of such a system exist in the aquatic phyla mollusks, echinoderms, tunicates, and cephalochordates. These phyla can synthesize thyroid hormone, which has been demonstrated in some groups to induce the nuclear thyroid hormone receptor (THR). Thyroid hormone may act in these phyla through interaction with a membrane integrin receptor. Thyroid hormone regulates inter alia metamorphosis but, unlike in vertebrates, this does not occur via receptor activation by the ligands triiodothyronine (T3) and thyroxine (T4). Instead, the unliganded nuclear receptor itself controls metamorphosis in mollusks, echinoderms, and tunicates, whereas the T3 derivative tri-iodothyroacetic acid (TRIAC) acts as a THR ligand in cephalochordates. In view of this, it may be possible to develop an invertebrate-based screen that is sensitive to vertebrate THADCs that interfere with thyroid hormone synthesis or metabolism along with interaction with membrane receptors. The review makes some recommendations for the need to develop an appropriate test method. Integr Environ Assess Manag 2023;19:63-82. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Henrik Holbech
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Noémie De Crozé
- Laboratoire Recherche Environnementale, L'ORÉAL Recherche & InnovationAulnay‐sous‐BoisFrance
| | | | - Gerald A. LeBlanc
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
3
|
Sakamoto A, Hozumi A, Shiraishi A, Satake H, Horie T, Sasakura Y. The
TRP
channel
PKD2
is involved in sensing the mechanical stimulus of adhesion for initiating metamorphosis in the chordate
Ciona. Dev Growth Differ 2022; 64:395-408. [DOI: 10.1111/dgd.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Aya Sakamoto
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Takeo Horie
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| |
Collapse
|
4
|
Esposito A, Ambrosino L, Piazza S, D’Aniello S, Chiusano ML, Locascio A. Evolutionary Adaptation of the Thyroid Hormone Signaling Toolkit in Chordates. Cells 2021; 10:cells10123391. [PMID: 34943899 PMCID: PMC8699336 DOI: 10.3390/cells10123391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
The specification of the endostyle in non-vertebrate chordates and of the thyroid gland in vertebrates are fundamental steps in the evolution of the thyroid hormone (TH) signaling to coordinate development and body physiology in response to a range of environmental signals. The physiology and biology of TH signaling in vertebrates have been studied in the past, but a complete understanding of such a complex system is still lacking. Non-model species from non-vertebrate chordates may greatly improve our understanding of the evolution of this complex endocrine pathway. Adaptation of already existing proteins in order to perform new roles is a common feature observed during the course of evolution. Through sequence similarity approaches, we investigated the presence of bona fide thyroid peroxidase (TPO), iodothyronine deiodinase (DIO), and thyroid hormone receptors (THRs) in non-vertebrate and vertebrate chordates. Additionally, we determined both the conservation and divergence degrees of functional domains at the protein level. This study supports the hypothesis that non-vertebrate chordates have a functional thyroid hormone signaling system and provides additional information about its possible evolutionary adaptation.
Collapse
Affiliation(s)
- Alfonso Esposito
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology, ICGEB, 34149 Trieste, Italy; (A.E.); (S.P.)
| | - Luca Ambrosino
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (L.A.); (M.L.C.)
| | - Silvano Piazza
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology, ICGEB, 34149 Trieste, Italy; (A.E.); (S.P.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Maria Luisa Chiusano
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (L.A.); (M.L.C.)
- Department of Agriculture, Università degli Studi di Napoli Federico II, 80055 Portici, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence:
| |
Collapse
|
5
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
6
|
Holzer G, Roux N, Laudet V. Evolution of ligands, receptors and metabolizing enzymes of thyroid signaling. Mol Cell Endocrinol 2017; 459:5-13. [PMID: 28342854 DOI: 10.1016/j.mce.2017.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
Abstract
Thyroid hormones (THs) play important roles in vertebrates such as the control of the metabolism, development and seasonality. Given the pleiotropic effects of thyroid disorders (developmental delay, mood disorder, tachycardia, etc), THs signaling is highly investigated, specially using mammalian models. In addition, the critical role of TH in controlling frog metamorphosis has led to the use of Xenopus as another prominent model to study THs action. Nevertheless, animals regarded as non-model species can also improve our understanding of THs signaling. For instance, studies in amphioxus highlighted the role of Triac as a bona fide thyroid hormone receptor (TR) ligand. In this review, we discuss our current understanding of the THs signaling in the different taxa forming the metazoans (multicellular animals) group. We mainly focus on three actors of the THs signaling: the ligand, the receptor and the deiodinases, enzymes playing a critical role in THs metabolism. By doing so, we also pinpoint many key questions that remain unanswered. How can THs accelerate metamorphosis in tunicates and echinoderms while their TRs have not been yet demonstrated as functional THs receptors in these species? Do THs have a biological effect in insects and cnidarians even though they do not have any TR? What is the basic function of THs in invertebrate protostomia? These questions can appear disconnected from pharmacological issues and human applications, but the investigation of THs signaling at the metazoans scale can greatly improve our understanding of this major endocrinological pathway.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Natacha Roux
- Laboratoire de Biologie Intégrative des Organismes Marins UMR 7232, CNRS et Université Pierre et Marie Curie, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Laboratoire de Biologie Intégrative des Organismes Marins UMR 7232, CNRS et Université Pierre et Marie Curie, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
7
|
Taylor E, Heyland A. Evolution of thyroid hormone signaling in animals: Non-genomic and genomic modes of action. Mol Cell Endocrinol 2017; 459:14-20. [PMID: 28549993 DOI: 10.1016/j.mce.2017.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023]
Abstract
Much research has focused on vertebrate thyroid hormone (TH) synthesis and their function in development and metabolism. While important differences in TH synthesis and signaling exist, comparative studies between vertebrates fail to explain the evolutionary origins of this important regulatory axis. For that, one needs to make sense out of the diverse TH effects which have been described in invertebrate phyla but for which a mechanistic understanding is largely missing. Almost every major group of non-vertebrate animals possesses the capability to synthesize and metabolize thyroid hormones and there is evidence for a nuclear thyroid hormone receptor mediated mechanism in the bilateria, especially in molluscs, echinoderms, cephalochordates and ascidians. Still, genomic pathways cannot fully explain many observed effects of thyroid hormones in groups such as cnidarians, molluscs, and echinoderms and it is therefore possible that TH may signal via other mechanisms, such as non-genomic signaling systems via membrane bound or cytoplasmic receptors. Here we provide a brief review of TH actions in selected invertebrate species and discuss the hypothesis that non-genomic TH action may have played a critical role in TH signaling throughout animal evolution.
Collapse
Affiliation(s)
- Elias Taylor
- University of Guelph, Integrative Biology, Canada
| | | |
Collapse
|
8
|
Zoeller RT, Tan SW, Tyl RW. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol 2007; 37:11-53. [PMID: 17364704 DOI: 10.1080/10408440601123446] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article reviews the thyroid system, mainly from a mammalian standpoint. However, the thyroid system is highly conserved among vertebrate species, so the general information on thyroid hormone production and feedback through the hypothalamic-pituitary-thyroid (HPT) axis should be considered for all vertebrates, while species-specific differences are highlighted in the individual articles. This background article begins by outlining the HPT axis with its components and functions. For example, it describes the thyroid gland, its structure and development, how thyroid hormones are synthesized and regulated, the role of iodine in thyroid hormone synthesis, and finally how the thyroid hormones are released from the thyroid gland. It then progresses to detail areas within the thyroid system where disruption could occur or is already known to occur. It describes how thyroid hormone is transported in the serum and into the tissues on a cellular level, and how thyroid hormone is metabolized. There is an in-depth description of the alpha and beta thyroid hormone receptors and their functions, including how they are regulated, and what has been learned from the receptor knockout mouse models. The nongenomic actions of thyroid hormone are also described, such as in glucose uptake, mitochondrial effects, and its role in actin polymerization and vesicular recycling. The article discusses the concept of compensation within the HPT axis and how this fits into the paradigms that exist in thyroid toxicology/endocrinology. There is a section on thyroid hormone and its role in mammalian development: specifically, how it affects brain development when there is disruption to the maternal, the fetal, the newborn (congenital), or the infant thyroid system. Thyroid function during pregnancy is critical to normal development of the fetus, and several spontaneous mutant mouse lines are described that provide research tools to understand the mechanisms of thyroid hormone during mammalian brain development. Overall this article provides a basic understanding of the thyroid system and its components. The complexity of the thyroid system is clearly demonstrated, as are new areas of research on thyroid hormone physiology and thyroid hormone action developing within the field of thyroid endocrinology. This review provides the background necessary to review the current assays and endpoints described in the following articles for rodents, fishes, amphibians, and birds.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Morrill Science Center, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
9
|
Chambon JP, Nakayama A, Takamura K, McDougall A, Satoh N. ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development 2007; 134:1203-19. [PMID: 17332536 DOI: 10.1242/dev.002220] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ascidian tadpoles, metamorphosis is triggered by a polarized wave of apoptosis, via mechanisms that are largely unknown. We demonstrate that the MAP kinases ERK and JNK are both required for the wave of apoptosis and metamorphosis. By employing a gene-profiling-based approach, we identified the network of genes controlled by either ERK or JNK activity that stimulate the onset of apoptosis. This approach identified a gene network involved in hormonal signalling, in innate immunity, in cell-cell communication and in the extracellular matrix. Through gene silencing, we show that Ci-sushi, a cell-cell communication protein controlled by JNK activity, is required for the wave of apoptosis that precedes tail regression. These observations lead us to propose a model of metamorphosis whereby JNK activity in the CNS induces apoptosis in several adjacent tissues that compose the tail by inducing the expression of genes such as Ci-sushi.
Collapse
Affiliation(s)
- Jean-Philippe Chambon
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|