1
|
Le H, Nguyen M, Manso HECCC, Wang MD, Watford M. Adipocytes Are the Only Site of Glutamine Synthetase Expression Within the Lactating Mouse Mammary Gland. Curr Dev Nutr 2024; 8:102168. [PMID: 38813479 PMCID: PMC11130672 DOI: 10.1016/j.cdnut.2024.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Background Glutamine in milk is believed to play an important role in neonatal intestinal maturation and immune function. For lactating mothers, glutamine utilization is increased to meet the demands of the enlarged intestine and milk production. However, the source of such glutamine during lactation has not been studied. Objectives We aimed to assess the effects of lactation on the expression of glutamine synthetase (GS) in the mammary gland and other tissues of lactating mice. Methods Mouse tissues were sampled at 4 time points: 8-wk-old (virgin, control), post-delivery day 5 (PD5, early lactation), PD15 (peak lactation), and involution (4 days after weaning at PD21). We examined the gene expression and protein concentrations of GS and the first 2 enzymes of branched-chain amino acid catabolism: branched-chain aminotransferase 2 (BCAT2) and branched-chain ketoacid dehydrogenase subunit E1α (BCKDHA). Results The messenger RNA (mRNA) expression and protein concentrations of GS in mammary glands were significantly lower at PD5 and PD15 compared with the control but were restored at involution. Within the mammary gland, GS protein was only detected in adipocytes with no evidence of presence in mammary epithelial cells. Compared with the control, mRNA and protein concentrations of BCAT2 and BCKDHA in mammary glands significantly decreased during lactation and involution. No changes in GS protein concentrations during lactation were found in the liver, skeletal muscle, and lung. In non-mammary adipose tissue, GS protein abundance was higher during lactation compared with the virgin. Conclusions This work shows that, within the mouse mammary gland, GS is only expressed in adipocytes and that the relative GS abundance in mammary gland sections is lower during lactation. This suggests that mammary adipocytes may be a site of glutamine synthesis in the lactating mouse. Identifying the sources of glutamine production during lactation is important for optimizing milk glutamine concentration to enhance neonatal and maternal health.
Collapse
Affiliation(s)
- Huyen Le
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Mai Nguyen
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Helena Emilia CCC Manso
- Universidade Federal Rural de Pernambuco, Departamento de Zootecnia Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE Brazil
| | - Michelle D Wang
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Malcolm Watford
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
2
|
Johnson ML, Saffrey MJ, Taylor VJ. Gastrointestinal capacity, gut hormones and appetite change during rat pregnancy and lactation. Reproduction 2019; 157:431-443. [DOI: 10.1530/rep-18-0414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 01/13/2023]
Abstract
Pregnancy and lactation increase maternal appetite and adiposity, which in humans can lead to long-term body mass retention. Previous rat reproduction studies suggest that appetite-inhibiting gut hormone, peptide-YY (PYY), is elevated, despite hyperphagia also that gastrointestinal size increases. The present study characterised changes in orexigenic (appetite-stimulating) ghrelin and anorexigenic (appetite-inhibiting) PYY and glucagon-like peptide-1 (GLP-1), and gastrointestinal architecture during pregnancy and lactation, in matched fed and fasted plasma and gut tissue samples taken during the dark phase. Enteroendocrine cells were immunolabelled, and gut masses and lengths were measured. Fasted plasma ghrelin reduced during pregnancy: it was lowest by day 18, recovered to control values at parturition, then increased by the end of lactation. Ghrelin-immunoreactive stomach cells and stomach ghrelin concentrations were highest at birth, prior to the onset of lactation-associated hyperphagia. Plasma fed GLP-1 concentrations were elevated during pregnancy, and together with higher colon concentrations of PYY and GLP-1 during early lactation, they were associated with gastrointestinal tissue expansion, not satiety. Body mass increased during lactation, whereas white adipose tissue depots depleted. Extensive gut remodelling coincided with elevated colon concentrations of PYY and GLP-1. Modifications included stomach and caecum expansion, and duodenal, ascending and descending colon circumference increases, all peaking by day 10 of lactation; increased intestinal masses and lengths peaking at lactation day 10 for small intestine and lactation day 25 for large intestine. If these physical tissue increases persist post-partum, they could accelerate future nutrient assimilation and storage in dams, and may contribute to increased obesity risk.
Collapse
|
3
|
Stramek AK, Johnson ML, Taylor VJ. Improved timed-mating, non-invasive method using fewer unproven female rats with pregnancy validation via early body mass increases. Lab Anim 2018; 53:148-159. [PMID: 29783908 DOI: 10.1177/0023677218774076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
For studies requiring accurate conception-timing, reliable, efficient methods of detecting oestrus reduce time and costs, whilst improving welfare. Standard methods use vaginal cytology to stage cycle, and breeders are paired-up using approximately five proven females with proven males to achieve at least one conception on a specific day. We describe an alternative, fast, consistent, non-invasive method of timed-mating using detection of lordosis behaviour in Wistar and Lister-Hooded rats that used unproven females with high success rates. Rats under reverse lighting had body masses recorded pre-mating, day (d) 3-4, d8, d10 and d18 of pregnancy. Using only the presence of the oestrus dance to time-mate females for 24 hours, 89% of Wistar and 88% of Lister-Hooded rats successfully conceived. We did not observe behavioural oestrus in Sprague-Dawleys without males being present. Significant body mass increases following mating distinguished pregnant from non-pregnant rats, as early as d4 of pregnancy (10% ± 1.0 increase cf. 3% ± 1.2). The pattern of increases throughout gestation was similar for all pregnant rats until late pregnancy, when there were smaller increases for primi- and multiparous rats (32% ± 2.5; 25% ± 2.4), whereas nulliparous rats had highest gains (38% ± 1.5). This method demonstrated a distinct refinement of the previous timed-mating common practice used, as disturbance of females was minimised. Only the number required of nulli-, primi- or multiparous rats were mated, and body mass increases validated pregnancy status. This new breeding management method is now established practice for two strains of rat and has resulted in a reduction in animal use.
Collapse
Affiliation(s)
- Agata K Stramek
- School of Life, Health and Chemical Sciences, The Open University, UK
| | | | - Victoria J Taylor
- School of Life, Health and Chemical Sciences, The Open University, UK
| |
Collapse
|
4
|
Abstract
Adipose tissue depots can exist in close association with other organs, where they assume diverse, often non-traditional functions. In stem cell-rich skin, bone marrow, and mammary glands, adipocytes signal to and modulate organ regeneration and remodeling. Skin adipocytes and their progenitors signal to hair follicles, promoting epithelial stem cell quiescence and activation, respectively. Hair follicles signal back to adipocyte progenitors, inducing their expansion and regeneration, as in skin scars. In mammary glands and heart, adipocytes supply lipids to neighboring cells for nutritional and metabolic functions, respectively. Adipose depots adjacent to skeletal structures function to absorb mechanical shock. Adipose tissue near the surface of skin and intestine senses and responds to bacterial invasion, contributing to the body's innate immune barrier. As the recognition of diverse adipose depot functions increases, novel therapeutic approaches centered on tissue-specific adipocytes are likely to emerge for a range of cancers and regenerative, infectious, and autoimmune disorders.
Collapse
Affiliation(s)
- Rachel K Zwick
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Shook B, Rivera Gonzalez G, Ebmeier S, Grisotti G, Zwick R, Horsley V. The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annu Rev Cell Dev Biol 2016; 32:609-631. [PMID: 27146311 PMCID: PMC5157158 DOI: 10.1146/annurev-cellbio-111315-125426] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classically, white adipose tissue (WAT) was considered an inert component of connective tissue but is now appreciated as a major regulator of metabolic physiology and endocrine homeostasis. Recent work defining how WAT develops and expands in vivo emphasizes the importance of specific locations of WAT or depots in metabolic regulation. Interestingly, mature white adipocytes are integrated into several tissues. A new perspective regarding the in vivo regulation and function of WAT in these tissues has highlighted an essential role of adipocytes in tissue homeostasis and regeneration. Finally, there has been significant progress in understanding how mature adipocytes regulate the pathology of several diseases. In this review, we discuss these novel roles of WAT in the homeostasis and regeneration of epithelial, muscle, and immune tissues and how they contribute to the pathology of several disorders.
Collapse
Affiliation(s)
- Brett Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Guillermo Rivera Gonzalez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Sarah Ebmeier
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | | | - Rachel Zwick
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
- Department of Dermatology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
6
|
Mori H, Bhat R, Bruni-Cardoso A, Chen EI, Jorgens DM, Coutinho K, Louie K, Bowen BB, Inman JL, Tecca V, Lee SJ, Becker-Weimann S, Northen T, Seiki M, Borowsky AD, Auer M, Bissell MJ. New insight into the role of MMP14 in metabolic balance. PeerJ 2016; 4:e2142. [PMID: 27478693 PMCID: PMC4950575 DOI: 10.7717/peerj.2142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022] Open
Abstract
Membrane-anchored matrix metalloproteinase 14 (MMP14) is involved broadly in organ development through both its proteolytic and signal-transducing functions. Knockout of Mmp14 (KO) in mice results in a dramatic reduction of body size and wasting followed by premature death, the mechanism of which is poorly understood. Since the mammary gland develops after birth and is thus dependent for its functional progression on systemic and local cues, we chose it as an organ model for understanding why KO mice fail to thrive. A global analysis of the mammary glands' proteome in the wild type (WT) and KO mice provided insight into an unexpected role of MMP14 in maintaining metabolism and homeostasis. We performed mass spectrometry and quantitative proteomics to determine the protein signatures of mammary glands from 7 to 11 days old WT and KO mice and found that KO rudiments had a significantly higher level of rate-limiting enzymes involved in catabolic pathways. Glycogen and lipid levels in KO rudiments were reduced, and the circulating levels of triglycerides and glucose were lower. Analysis of the ultrastructure of mammary glands imaged by electron microscopy revealed a significant increase in autophagy signatures in KO mice. Finally, Mmp14 silenced mammary epithelial cells displayed enhanced autophagy. Applied to a systemic level, these findings indicate that MMP14 is a crucial regulator of tissue homeostasis. If operative on a systemic level, these findings could explain how Mmp14KO litter fail to thrive due to disorder in metabolism.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Department of Pathology, Center for Comparative Medicine, University of California,Davis,CA,USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory,Berkeley,CA,USA
| | - Ramray Bhat
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory,Berkeley,CA,USA; Calcutta Medical College, University of Calcutta, Calcutta, India
| | - Alexandre Bruni-Cardoso
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory,Berkeley,CA,USA; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo,São Paulo,Brazil
| | - Emily I Chen
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center , New York , NY , USA
| | - Danielle M Jorgens
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kester Coutinho
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Ben Bowen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Victoria Tecca
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sarah J Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sabine Becker-Weimann
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Motoharu Seiki
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Alexander D Borowsky
- Department of Pathology, Center for Comparative Medicine, University of California, Davis, CA, USA
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
7
|
Lin Z, Fisher JW, Wang R, Ross MK, Filipov NM. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling. Toxicol Appl Pharmacol 2013; 273:140-58. [DOI: 10.1016/j.taap.2013.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 11/27/2022]
|
8
|
Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 2010; 15:279-90. [PMID: 20717712 PMCID: PMC2941079 DOI: 10.1007/s10911-010-9187-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 12/18/2022] Open
Abstract
The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance.
Collapse
Affiliation(s)
- Russell C Hovey
- Department of Animal Science, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
9
|
González CR, Caminos JE, Gallego R, Tovar S, Vázquez MJ, Garcés MF, Lopez M, García-Caballero T, Tena-Sempere M, Nogueiras R, Diéguez C. Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner. Physiol Behav 2010; 99:91-9. [PMID: 19887079 DOI: 10.1016/j.physbeh.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 12/19/2022]
Abstract
The aim of the present work was to study the regulation of circulating adiponectin levels and the expression of adiponectin receptor 2 (Adipo-R2) in several rat tissues in relation to fasting, leptin challenge, pregnancy, and chronic undernutrition. Using real-time PCR, we found Adipo-R2 mRNA expression in the liver, stomach, white and brown adipose tissues (WAT and BAT) of adult rats. Immunohistochemical studies confirmed protein expression in the same tissues. Adipo-R2 mRNA levels were decreased in liver after fasting, with no changes in the other tissues. Leptin decreased Adipo-R2 expression in liver and stomach, but increased its expression in WAT and BAT. Chronic caloric restriction in normal rats increased Adipo-R2 gene expression in stomach, while it decreased hepatic Adipo-R2 levels in pregnant rats. Using radioimmunoassay, we found that plasma adiponectin levels were diminished by fasting and leptin. Conversely, circulating adiponectin was increased in food-restricted rats, whereas its levels decreased in food-restricted pregnant rats by the end of gestation. In conclusion our findings provide the first evidence that (a) Adipo-R2 mRNA is regulated in a tissue-specific manner by fasting, but leptin is not responsible for those changes; (b) chronic caloric restriction in normal and pregnant rats also regulate Adipo-R2 mRNA in a tissue-specific manner; and (c) Adipo-R2 mRNA does not show a clear correlation with plasma adiponectin levels.
Collapse
Affiliation(s)
- Carmen Ruth González
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Taylor VJ, Patterson M, Ghatei MA, Bloom SR, Wilson CA. Ghrelin and peptide YY (PYY) profiles in gastrointestinal tissues and the circulation of the rat during pregnancy and lactation. Peptides 2009; 30:2213-20. [PMID: 19778563 DOI: 10.1016/j.peptides.2009.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Plasma and tissue profiles of gastrointestinal hormones ghrelin and peptide YY (PYY) were investigated in different female rat reproductive states. Neither plasma nor tissue ghrelin concentrations were suppressed during pregnancy despite elevated leptin. The highest concentrations of stomach ghrelin were measured in late pregnancy. PYY concentrations in plasma, descending colon and rectum tissues were increased (P<0.001) throughout pregnancy and lactation. PYY peaked at day 5 of lactation in plasma, as well as descending colon and rectum tissues (proestrus vs day 5 of lactation: 25+/-3.0 pmol/l vs 55+/-8.0 pmol/l; 85+/-4.5 pmol/g wwt vs 418+/-45.0 pmol/g wwt; 23+/-3.0 pmol/g wwt vs 78+/-9.1 pmol/g wwt). This PYY peak was temporally associated with the luteinizing hormone peak on day 1 of lactation. Following weaning, dam adiposity and plasma leptin increased whereas ghrelin stomach peptide decreased. Relative PYY concentrations in the tissues of the gut varied in the different states suggesting regional alterations taking place in the colon. The ascending colon produced the highest concentrations in non-pregnant rats, the descending colon the highest concentrations during lactation with the pregnant rats and the dams postweaning in a transition state between. It is unclear what role the increased PYY in various tissues observed has during pregnancy and lactation as it would be expected to be reduced in these states of greatly increased appetite. PYY may have an influence on maternal dietary adaptation, intestinal hypertrophy and weight gain during pregnancy and lactation although it is still unclear precisely how it acts.
Collapse
Affiliation(s)
- Victoria J Taylor
- Department of Metabolic Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
11
|
Jelks A, Belkacemi L, Han G, Chong WL, Ross MG, Desai M. Paradoxical increase in maternal plasma leptin levels in food-restricted gestation: contribution by placental and adipose tissue. Reprod Sci 2009; 16:665-75. [PMID: 19372589 DOI: 10.1177/1933719109334257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maternal food restriction (FR) during pregnancy results in decreased body weight with increased plasma leptin. To address this paradox, we investigated the effects of FR during pregnancy on growth and leptin levels in maternal, placental, and fetal sites. From embryonic day E10, control pregnant rats received ad libitum (AdLib) food, whereas study rats were 50% FR. At gestational ages, E16 and E20, the alterations in maternal body composition, retroperitoneal versus subcutaneous adipose leptin expression, and plasma leptin levels were studied. Furthermore, these changes were related to non-pregnant (NP) status and placental/fetal growth and leptin levels. As compared to NP, both FR and AdLib dams showed a progressive increase in body and lean body mass. However, total body fat was reduced in FR dams but remained unchanged in AdLib dams. Furthermore, plasma leptin levels in FR dams were markedly increased at E20 unlike AdLib dams, which showed moderate increments at E16 and E20. Additionally, FR dams showed significantly decreased leptin expression in subcutaneous and notably unaltered levels in retroperitoneal adipose tissue, suggesting an alternate source of elevated maternal plasma leptin. More importantly, the FR dams had reduced placental weights with paradoxical increased leptin expression at both gestations. Thus, increased plasma leptin levels at E20 in maternal FR pregnancies may be explained, in part, by upregulation of placental leptin. Despite maternal and placental hyperleptinemia during FR pregnancies, the growth-restricted FR fetus had reduced leptin levels. These findings have important implications for pregnancy outcome and fetal growth.
Collapse
Affiliation(s)
- Andrea Jelks
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wang M, Master SR, Chodosh LA. Computational expression deconvolution in a complex mammalian organ. BMC Bioinformatics 2006; 7:328. [PMID: 16817968 PMCID: PMC1559723 DOI: 10.1186/1471-2105-7-328] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 07/03/2006] [Indexed: 11/28/2022] Open
Abstract
Background Microarray expression profiling has been widely used to identify differentially expressed genes in complex cellular systems. However, while such methods can be used to directly infer intracellular regulation within homogeneous cell populations, interpretation of in vivo gene expression data derived from complex organs composed of multiple cell types is more problematic. Specifically, observed changes in gene expression may be due either to changes in gene regulation within a given cell type or to changes in the relative abundance of expressing cell types. Consequently, bona fide changes in intrinsic gene regulation may be either mimicked or masked by changes in the relative proportion of different cell types. To date, few analytical approaches have addressed this problem. Results We have chosen to apply a computational method for deconvoluting gene expression profiles derived from intact tissues by using reference expression data for purified populations of the constituent cell types of the mammary gland. These data were used to estimate changes in the relative proportions of different cell types during murine mammary gland development and Ras-induced mammary tumorigenesis. These computational estimates of changing compartment sizes were then used to enrich lists of differentially expressed genes for transcripts that change as a function of intrinsic intracellular regulation rather than shifts in the relative abundance of expressing cell types. Using this approach, we have demonstrated that adjusting mammary gene expression profiles for changes in three principal compartments – epithelium, white adipose tissue, and brown adipose tissue – is sufficient both to reduce false-positive changes in gene expression due solely to changes in compartment sizes and to reduce false-negative changes by unmasking genuine alterations in gene expression that were otherwise obscured by changes in compartment sizes. Conclusion By adjusting gene expression values for changes in the sizes of cell type-specific compartments, this computational deconvolution method has the potential to increase both the sensitivity and specificity of differential gene expression experiments performed on complex tissues. Given the necessity for understanding complex biological processes such as development and carcinogenesis within the context of intact tissues, this approach offers substantial utility and should be broadly applicable to identifying gene expression changes in tissues composed of multiple cell types.
Collapse
Affiliation(s)
- Min Wang
- Departments of Cancer Biology, Medicine, and Cell & Developmental Biology, and the Abramson Family Cancer Research Institute, University of Pennsylvania, 612 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Stephen R Master
- Departments of Cancer Biology, Medicine, and Cell & Developmental Biology, and the Abramson Family Cancer Research Institute, University of Pennsylvania, 612 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 613A Stellar-Chance Labs, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Lewis A Chodosh
- Departments of Cancer Biology, Medicine, and Cell & Developmental Biology, and the Abramson Family Cancer Research Institute, University of Pennsylvania, 612 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|