1
|
Honvo-Houéto E, Truchet S. Indirect Immunofluorescence on Frozen Sections of Mouse Mammary Gland. J Vis Exp 2015. [PMID: 26650781 DOI: 10.3791/53179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indirect immunofluorescence is used to detect and locate proteins of interest in a tissue. The protocol presented here describes a complete and simple method for the immune detection of proteins, the mouse lactating mammary gland being taken as an example. A protocol for the preparation of the tissue samples, especially concerning the dissection of mouse mammary gland, tissue fixation and frozen tissue sectioning, are detailed. A standard protocol to perform indirect immunofluorescence, including an optional antigen retrieval step, is also presented. The observation of the labeled tissue sections as well as image acquisition and post-treatments are also stated. This procedure gives a full overview, from the collection of animal tissue to the cellular localization of a protein. Although this general method can be applied to other tissue samples, it should be adapted to each tissue/primary antibody couple studied.
Collapse
|
2
|
Comparative analysis of caveolins in mouse and tammar wallaby: role in regulating mammary gland function. Gene 2014; 552:51-8. [PMID: 25200498 DOI: 10.1016/j.gene.2014.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 11/21/2022]
Abstract
Recent studies using the mouse showed an inverse correlation between the Caveolin 1 gene expression and lactation, and this was regulated by prolactin. However, current study using mammary explants from pregnant mice showed that while insulin (I), cortisol (F) and prolactin (P) resulted in maximum induction of the β-casein gene, FP and IFP resulted in the downregulation of Caveolin 1. Additionally, IF, FP and IFP resulted in the downregulation of Caveolin 2. Immunohistochemistry confirmed localisation of Caveolin 1 specific to myoepithelial cells and adipocytes. Comparative studies with the tammar wallaby showed Caveolin 1 and 2 had 70-80% homology with the mouse proteins. However, in contrast to the mouse, Caveolin 1 and 2 genes showed a significantly increased level of expression in the mammary gland during lactation. The regulation of tammar Caveolin 1 and 2 gene expression was examined in mammary explants from pregnant tammars, and no significant difference was observed either in the absence or in the presence of IFP.
Collapse
|
3
|
Aïoun J, Chat S, Bordat C, Péchoux C. Antigen recovery and preservation using the microwave irradiation of biological samples for transmission electron microscopy analysis. Micron 2013; 52-53:16-23. [PMID: 23962686 DOI: 10.1016/j.micron.2013.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/10/2013] [Accepted: 07/19/2013] [Indexed: 11/15/2022]
Abstract
Most studies using microwave irradiation (MWI) for the preparation of tissue samples have reported an improvement in structural integrity. However, there have been few studies on the effect of microwave (MW) on antigen preservation during sample preparation prior to immunolocalization. This report documents our experience of specimen preparation using an automatic microwave apparatus to obtain antigen preservation and retrieval. We tested the effects of MW processing vs. conventional procedures on the morphology and antigenicity of two different tissues: the brain and mammary gland, whose chemical composition and anatomical organization are quite different. We chose to locate the transcription factor PPARβ/δ using immunocytochemistry on brain tissue sections from hamsters. Antigen retrieval protocols involving MWI were used to restore immunoreactivity. We also studied the efficiency of the ultrastructural immunolocalization of both PPARγ and caveolin-1 following MWI vs. conventional treatment, on mammary gland tissue from mice at 10 days of lactation. Our findings showed that the treatment of tissue samples with MWI, in the context of a process lasting just a few hours from fixation to immunolocalization, enabled similar, or even better, results than conventional protocols. The quantification of immunolabeling for cav-1 indicated an increase in density of up to three-fold in tissues processed in the microwave oven. Furthermore, MW treatment permitted the localization of PPARβ/δ in glutaraldehyde-fixed specimens, which was impossible in the absence of MWI. This study thus showed that techniques involving the use of microwaves could largely improve both ultrastructure and immunodetection.
Collapse
Affiliation(s)
- Josiane Aïoun
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche UR902 Nutrition et Régulation Lipidique des Fonctions Cérébrales, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
4
|
Abstract
The mammary epithelium coordinates the uptake of milk precursors and the transport of milk components in order to produce milk of relatively constant composition at a particular stage of lactation, as long as the mammary gland is healthy. The mammary epithelial cell controls the uptake of blood-borne molecules at its basal side and the release of products into milk at its apical side, through mechanisms of internalization (endocytosis) and mechanisms of release (exocytosis). These events are strictly dependent on the physiological stage of the mammary gland. This review addresses the mechanisms responsible for these processes and points out new questions that remain to be answered concerning possible interconnections between them, for an optimal milk secretion.
Collapse
|
6
|
Andrey P, Kiêu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot PG, Hue-Beauvais C, Houba-Hérin N, Duranthon V, Devinoy E, Beaujean N, Gaudin V, Maurin Y, Debey P. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 2010; 6:e1000853. [PMID: 20628576 PMCID: PMC2900307 DOI: 10.1371/journal.pcbi.1000853] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 06/03/2010] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.
Collapse
Affiliation(s)
- Philippe Andrey
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, Orsay, France
- IFR144 Neuro-Sud Paris, France
- UPMC, Université Paris 06, France
| | - Kiên Kiêu
- INRA, UR341, Mathématiques et Informatique Appliquées, Jouy-en-Josas, France
| | - Clémence Kress
- INRA, UR1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | - Gaëtan Lehmann
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Leïla Tirichine
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Zichuan Liu
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Eric Biot
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, Orsay, France
- IFR144 Neuro-Sud Paris, France
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Pierre-Gaël Adenot
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Cathy Hue-Beauvais
- INRA, UR1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | - Nicole Houba-Hérin
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Véronique Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Eve Devinoy
- INRA, UR1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | - Nathalie Beaujean
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Valérie Gaudin
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Yves Maurin
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, Orsay, France
- IFR144 Neuro-Sud Paris, France
| | - Pascale Debey
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| |
Collapse
|
9
|
Castino R, Delpal S, Bouguyon E, Demoz M, Isidoro C, Ollivier-Bousquet M. Prolactin promotes the secretion of active cathepsin D at the basal side of rat mammary acini. Endocrinology 2008; 149:4095-105. [PMID: 18420735 PMCID: PMC2488222 DOI: 10.1210/en.2008-0249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cathepsin D (CD), a lysosomal aspartic protease present in mammary tissue and milk in various molecular forms, is also found in the incubation medium of mammary acini in molecular forms that are proteolytically active on prolactin at a physiological pH. Because prolactin controls the vesicular traffic in mammary cells, we studied, in vivo and in vitro, its effects on the polarized transport and secretion of various forms of CD in the rat mammary gland. CD accumulated in vesicles not involved in endocytosis in the basal region of cells. Prolactin increased this accumulation and the release of endosomal active single-chain CD at the basal side of acini. The CD-mediated proteolysis of prolactin, leading to the antiangiogenic 16-kDa form, at a physiological pH, was observed only in conditioned medium but not milk. These data support the novel concept that an active molecular form of CD, secreted at the basal side of the mammary epithelium, participates in processing blood-borne prolactin outside the cell, this polarized secretion being controlled by prolactin itself.
Collapse
Affiliation(s)
- Roberta Castino
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, 21800 Novara, Italy
| | | | | | | | | | | |
Collapse
|