1
|
Chen T, Mu S, Guo M, Zhang Z, Kang X. Dynamics of hyperacetylated histone H4 (H4Kac) during spermatogenesis in four decapod crustaceans. Tissue Cell 2021; 73:101594. [PMID: 34333381 DOI: 10.1016/j.tice.2021.101594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/08/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
During spermatogenesis, the transition from histone to protamine is highly conserved in most invertebrates and vertebrates. Thus far, a large and growing body of literature has demonstrated that histones and histone modifications still exist in the sperm nucleus of decapod crustaceans. H4Kac is believed to play an important role in the process of sperm chromatin condensation. However, the dynamics of hyperacetylated histone H4 (H4Kac) during spermatogenesis in decapoda are still unknown. In this paper, the distribution of H4Kac in four decapod crustaceans (Eriocheir sinensis, Charybdis japonica, Procambarus clarkii, and Macrobrachium nipponense) were investigated via immunofluorescence. Our results indicated that H4Kac was visible in the mature sperm nucleus of E. sinensis, C. japonica, and M. nipponense. Unlike the other three species, H4Kac was translocated from the nuclei to cytoplasm in mid-spermatids of P. clarkii. Eventually, H4Kac were not present in mature spermatozoa of P. clarkii. Importantly, we observed for the first time that H4Kac was distributed outside the nucleus, which reminds us that H4Kac may participate in the formation of acrosome structure in decapod crustaceans and may be a prerequisite for proper chromatin decondensation.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Shumei Mu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Mingshen Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, First Central Hospital of Baoding, 071000, Hebei, China
| | - Xianjiang Kang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China; Department of Reproductive Medicine, First Central Hospital of Baoding, 071000, Hebei, China.
| |
Collapse
|
2
|
Li G, Kang X, Mu S, Guo M, Huang S, Chen Q, Nong S, Huang X, Hu H, Sun K. H3K9ac involved in the decondensation of spermatozoal nuclei during spermatogenesis in Chinese mitten crab Eriocheir sinensis. Cytotechnology 2016; 69:75-87. [PMID: 27896558 DOI: 10.1007/s10616-016-0038-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/28/2016] [Indexed: 01/24/2023] Open
Abstract
As a well-known crustacean model species, the Chinese mitten crab Eriocheir sinensis presents spermatozoa with decondensed DNA. Our aim was to analyze structural distribution of the histone H3 and its acetylated lysine 9 (H3K9ac) during spermatogenesis for the mechanistic understanding of the nuclear decondensation of the spermatozoa in E. sinensis. Using specific antibodies, we followed the structural distribution and acetylated lysine 9 of the histone H3 during spermatogenesis, especially spermiogenesis, of E. sinensis. Various spermary samples at different developmental stages were used for histological immunofluorescence and ultrastructural immunocytochemistry. Our results demonstrate a wide distribution of the histone H3 and H3K9ac during spermatogenesis, including spermatogonia, spermatocytes, spermatids, and immature and mature spermatozoa except for absence of H3K9ac in the secondary spermatocytes. Especially during the initial stage of nuclear decondensation, histone H3 lysine 9 was acetylated and then an amount of H3K9ac was removed from within to outside of the nuclei of late spermatids. The portion of remaining H3K9ac was gradually transferred from the nuclei during the stages of spermatozoa maturation. Our findings suggest both the acetylation of histone H3 lysine 9 and the remain of H3K9ac to contribute to the nuclear decondensation in spermatozoa of E. sinensis.
Collapse
Affiliation(s)
- Genliang Li
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China.
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Mingshen Guo
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Shiwen Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Qinna Chen
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Song Nong
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Xiaomin Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Hongliu Hu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Ke Sun
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| |
Collapse
|
3
|
Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016; 151:R55-70. [PMID: 26850883 DOI: 10.1530/rep-15-0562] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
4
|
Immunocytochemical and immunogold analyses of histone H4 acetylation during Chara vulgaris spermiogenesis. Micron 2015; 82:86-93. [PMID: 26774747 DOI: 10.1016/j.micron.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/23/2022]
Abstract
Histone acetylation is one of the epigenetic modifications which play a significant role in chromatin remodeling during spermiogenesis. Acetylation of the histone H4 makes the exchange of nucleoproteins easy. Research on mouse spermatogenesis showed that H4 histone acetylated at Lys 12 (H4K12ac) was specific only to spermatids. Immunocytochemical studies of Chara vulgaris spermatids with the use of antibodies against the histone H4K12ac revealed positive reactions in spermatid nuclei at stages I-VII. This reaction, connected with nuclear condensation, was much stronger at the early stages of spermiogenesis than later on. Moreover, it showed that at the stages V-VII in spermatid nuclei the presence of the histone H4K12ac corresponded with DNA double-strand breaks. Electron microscopy studies with the use of immunogold technique revealed an almost twofold difference between the mean total numbers of gold grains in the examined chromatin in both stages. This study showed nearly equal distribution of gold grains on condensed and non-condensed chromatin of spermatids at the stage III/IV (48.11% and 51.89%, respectively). In the later stage-VI, when chromatin condensation proceeded, labeling of condensed chromatin reached 57.27%, while in the case of non-condensed chromatin it dropped to 42.73%. The percentage analysis also revealed an increase (above 9%) in condensed chromatin labeling in relation to the stage III/IV. Intensive acetylation of histone H4 at the early stages is correlated with DNA DSBs and transcriptional activity. It facilitates chromatin loosening, which enables the correct course of chromatin remodeling at a later stage. Histone γH2AX also influences chromatin structure in many biological processes in different cell types. Current studies reveal other similarities regarding histone H4 acetylation, not only between Chara and mammals but between invertebrates (molluscs) and vertebrates (bony fishes) as well.
Collapse
|
5
|
Burlibaşa L, Zarnescu O. In vivo effects of Trichostatin A – A histone deacetylase inhibitor – On chromatin remodeling during Triturus cristatus spermatogenesis. Anim Reprod Sci 2013; 142:89-99. [DOI: 10.1016/j.anireprosci.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/20/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
6
|
Goossens E, Bilgec T, Van Saen D, Tournaye H. Mouse germ cells go through typical epigenetic modifications after intratesticular tissue grafting. Hum Reprod 2011; 26:3388-400. [DOI: 10.1093/humrep/der334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Abstract
SummaryOogenesis is a critical event in the formation of female gametes, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the chromatin architecture in newt oocytes. Using fluorescence microscopy, as well as transmission electron microscopy (TEM), immunohistochemical method and RE-ChIP assay, some peculiar aspects of chromatin and chromosome organization and evolution in crested newt oogenesis were investigated. We focussed our investigations on detection of certain epigenetic modifications (H4 hyperacetylation, H2A ubiquitinylation and cytosine methylation) at the rRNA gene (18S–5.8S–28S) promoter region. Our findings suggest that there is an involvement of some epigenetic modifications as well as of linker histone variants in chromatin architecture dynamics during crested newt oogenesis.
Collapse
|