1
|
Perez LM, Nonn L. Harnessing the Utility of Ex Vivo Patient Prostate Tissue Slice Cultures. Front Oncol 2022; 12:864723. [PMID: 35433436 PMCID: PMC9008363 DOI: 10.3389/fonc.2022.864723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Patient-derived prostate tissue explant cultures are powerful research tools that offer the potential for personalized medicine. These cultures preserve the local microenvironment of the surrounding stroma but are not without limitations and challenges. There are several methods and processing techniques to culture tissue ex vivo, that include explant tissue chunks and precision-cut tissue slices. Precision-cut tissue slices provide a consistent distribution of nutrients and gases to the explant. Herein we summarize the prostate tissue slice method, its limitations and discuss the utility of this model, to investigate prostate biology and therapeutic treatment responses.
Collapse
Affiliation(s)
- Lillian M Perez
- University of Illinois at Chicago Pathology Department, Chicago, IL, United States.,University of Illinois Cancer Center, Chicago, IL, United States
| | - Larisa Nonn
- University of Illinois at Chicago Pathology Department, Chicago, IL, United States.,University of Illinois Cancer Center, Chicago, IL, United States
| |
Collapse
|
2
|
Ramzy GM, Koessler T, Ducrey E, McKee T, Ris F, Buchs N, Rubbia-Brandt L, Dietrich PY, Nowak-Sliwinska P. Patient-Derived In Vitro Models for Drug Discovery in Colorectal Carcinoma. Cancers (Basel) 2020; 12:cancers12061423. [PMID: 32486365 PMCID: PMC7352800 DOI: 10.3390/cancers12061423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lack of relevant preclinical models that reliably recapitulate the complexity and heterogeneity of human cancer has slowed down the development and approval of new anti-cancer therapies. Even though two-dimensional in vitro culture models remain widely used, they allow only partial cell-to-cell and cell-to-matrix interactions and therefore do not represent the complex nature of the tumor microenvironment. Therefore, better models reflecting intra-tumor heterogeneity need to be incorporated in the drug screening process to more reliably predict the efficacy of drug candidates. Classic methods of modelling colorectal carcinoma (CRC), while useful for many applications, carry numerous limitations. In this review, we address the recent advances in in vitro CRC model systems, ranging from conventional CRC patient-derived models, such as conditional reprogramming-based cell cultures, to more experimental and state-of-the-art models, such as cancer-on-chip platforms or liquid biopsy.
Collapse
Affiliation(s)
- George M. Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (G.M.R.); (E.D.)
- Translational Research Center in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Thibaud Koessler
- Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland; (T.K.); (P.-Y.D.)
| | - Eloise Ducrey
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (G.M.R.); (E.D.)
- Translational Research Center in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas McKee
- Division of Clinical Pathology, Diagnostic Department, University Hospitals of Geneva (HUG), 1211 Geneva, Switzerland; (T.M.); (L.R.-B.)
| | - Frédéric Ris
- Translational Department of Digestive and Transplant Surgery, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.R.); (N.B.)
| | - Nicolas Buchs
- Translational Department of Digestive and Transplant Surgery, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.R.); (N.B.)
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Diagnostic Department, University Hospitals of Geneva (HUG), 1211 Geneva, Switzerland; (T.M.); (L.R.-B.)
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland; (T.K.); (P.-Y.D.)
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (G.M.R.); (E.D.)
- Translational Research Center in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-3352
| |
Collapse
|
3
|
Dünker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 2019; 11:cancers11101499. [PMID: 31591362 PMCID: PMC6826367 DOI: 10.3390/cancers11101499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.
Collapse
Affiliation(s)
- Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| |
Collapse
|
4
|
Tumor-associated macrophages and individual chemo-susceptibility are influenced by iron chelation in human slice cultures of gastric cancer. Oncotarget 2019; 10:4731-4742. [PMID: 31413815 PMCID: PMC6677664 DOI: 10.18632/oncotarget.27089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: Presence of tumor-associated macrophages (TAM) and high levels of ferritin and lipocalin 2 (Lcn2) in the tumor microenvironment are associated with poor prognosis in many types of cancer. Here we investigate whether iron deprivation influences TAM phenotype and chemotherapy resistance in tumor slice cultures (TSC) of gastric cancer. Results: TAM remained morphologically and functionally stable for four DIV. DFO treatment for 72 h decreased ferritin expression in TAM and in the tumor stroma but did not alter Lcn2 expression. TAM phenotype was altered after 72 h of cisplatin or DFO treatment compared with control conditions. Single DFO treatment and combined treatment with cytotoxic drugs significantly increased tumor cell apoptosis in TSC of gastric cancer. Methods: TSC were manufactured by cutting tissue of gastric cancer resection specimens in 350 μm thick slices and cultivating them under standard conditions on a filter membrane, at an air-liquid interface. After 24 h ex vivo, TSC were treated with irinotecan (100 nM) or cisplatin (10 μM) alone and in combination with deferoxamine (DFO; 10 μM, 100 μM), respectively, for 72 h. After four days in vitro (DIV) the TSC were fixated with paraformaldehyde, paraffin embedded and analyzed by immunohistochemistry for apoptosis (cPARP), proliferation (Ki67), TAM (CD68, CD163), ferritin, and Lcn2 expression. Conclusions: TAM are well preserved and can be studied in TSC of gastric cancer. Iron deprivation significantly increased tumor cell apoptosis.
Collapse
|
5
|
Figiel S, Pasqualin C, Bery F, Maupoil V, Vandier C, Potier-Cartereau M, Domingo I, Guibon R, Bruyere F, Maheo K, Fromont G. Functional Organotypic Cultures of Prostate Tissues: A Relevant Preclinical Model that Preserves Hypoxia Sensitivity and Calcium Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1268-1275. [PMID: 30954471 DOI: 10.1016/j.ajpath.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
In prostate cancer research, there is a lack of valuable preclinical models. Tumor cell heterogeneity and sensitivity to microenvironment signals, such as hypoxia or extracellular calcium concentration, are difficult to reproduce. Here, we developed and characterized an ex vivo tissue culture model preserving these properties. Prostate tissue slices from 26 patients were maintained ex vivo under optimized culture conditions. The expression of markers associated with proliferation, androgen-receptor signaling, and hypoxia was assessed by immunostaining. A macroscope was used to achieve real-time calcium fluorescence optical imaging. Tissue morphology was maintained successfully without necrosis for 5 days. Compared with native tumors and tissue cultured with androgens, androgen deprivation in the medium led to decreased expression of both androgen receptor and its target gene products, prostate specific antigen (PSA) and ETS-related gene (ERG). Ex vivo cultured slices also were sensitive to hypoxia because carbonic anhydrase IX and zinc finger E-box binding homeobox 1 (Zeb1) protein levels increased in 1% oxygen. Exposure of slices to supraphysiological extracellular Ca2+ concentration induced a robust and rapid Ca2+ entry, with a greater response in tumor compared with nontumor tissue. This ex vivo model reproduces the morphologic and functional characteristics of human prostate cancer, including sensitivity to androgen deprivation and induced response to hypoxia and extracellular Ca2+. It therefore could become an attractive tool for drug response prediction studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roseline Guibon
- Inserm UMR U1069, Tours, France; Department of Pathology, CHU-Universite de Tours, Tours, France
| | - Franck Bruyere
- Department of Urology, CHU-Universite de Tours, Tours, France
| | | | - Gaelle Fromont
- Inserm UMR U1069, Tours, France; Department of Pathology, CHU-Universite de Tours, Tours, France.
| |
Collapse
|
6
|
Zhang W, van Weerden WM, de Ridder CMA, Erkens‐Schulze S, Schönfeld E, Meijer TG, Kanaar R, van Gent DC, Nonnekens J. Ex vivo treatment of prostate tumor tissue recapitulates in vivo therapy response. Prostate 2019; 79:390-402. [PMID: 30520109 PMCID: PMC6587720 DOI: 10.1002/pros.23745] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND In vitro models of prostate cancer (PCa) are not always reliable to evaluate anticancer treatment efficacy. This limitation may be overcome by using viable tumor slice material. Here we report on the establishment of an optimized ex vivo method to culture tissue slices from patient-derived xenografts (PDX) of prostate cancer (PCa), to assess responses to PCa treatments. METHODS Three PDX models were used that are characterized by different androgen receptor (AR) expression and different homology directed DNA repair capacities, due to a breast cancer associated two (BRCA2) wild-type or mutated status. Tumors were removed from mice, sliced using a vibratome and cultured for a maximum of 6 days. To test the sensitivity to androgen antagonist, tumor slices from the AR-expressing and AR-negative PDX tumors were treated with the anti-androgen enzalutamide. For sensitivity to DNA repair intervention, tumors slices from BRCA2 wild-type and mutated PDXs were treated with the poly (ADP-ribose) polymerase-1 inhibitor olaparib. Treatment response in these tumor slices was determined by measuring slice morphology, cell proliferation, apoptosis, AR expression level, and secretion of prostate specific antigen (PSA). RESULTS We compared various culture conditions (support materials, growth media, and use of a 3D smooth rocking platform) to define the optimal condition to maintain tissue viability and proliferative capacity up to least 6 days. Under optimized conditions, enzalutamide treatment significantly decreased proliferation, increased apoptosis, and reduced AR-expression and PSA secretion of AR-expressing tumor slices compared to AR-negative slices, that did not respond to the intervention. Olaparib treatment significantly increased cell death in BRCA2 mutated tumors slices as compared to slices from BRCA2 wild type tumors. CONCLUSIONS Ex vivo treatment of PCa PDX tumor slices with enzalutamide and olaparib recapitulates responses previously observed in vivo. The faithful retention of tissue structure and function in this ex vivo model offers an ideal opportunity for treatment efficacy screening, thereby reducing costs and numbers of experimental animals.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Molecular GeneticsErasmus MCRotterdamThe Netherlands
| | | | | | | | - Edgar Schönfeld
- Department of Molecular GeneticsErasmus MCRotterdamThe Netherlands
| | - Titia G. Meijer
- Department of Molecular GeneticsErasmus MCRotterdamThe Netherlands
- Oncode InstituteErasmus MCRotterdamThe Netherlands
| | - Roland Kanaar
- Department of Molecular GeneticsErasmus MCRotterdamThe Netherlands
- Oncode InstituteErasmus MCRotterdamThe Netherlands
| | - Dik C. van Gent
- Department of Molecular GeneticsErasmus MCRotterdamThe Netherlands
- Oncode InstituteErasmus MCRotterdamThe Netherlands
| | - Julie Nonnekens
- Department of Molecular GeneticsErasmus MCRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
7
|
Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci OA 2017; 3:FSO190. [PMID: 28670477 PMCID: PMC5481868 DOI: 10.4155/fsoa-2017-0003] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
Optimal patient stratification is of utmost importance in the era of personalized medicine. Prediction of individual treatment responses by functional ex vivo assays requires model systems derived from viable tumor samples, which should closely resemble in vivo tumor characteristics and microenvironment. This review discusses a broad spectrum of model systems, ranging from classic 2D monolayer culture techniques to more experimental ‘cancer-on-chip’ procedures. We mainly focus on organotypic tumor slices that take tumor heterogeneity and tumor–stromal interactions into account. These 3D model systems can be exploited for patient selection as well as for fundamental research. Selection of the right model system for each specific research endeavor is crucial and requires careful balancing of the pros and cons of each technology. Selection of the right therapy for individual cancer patients is very important with the expanding number of possible treatments. How tumors respond to a therapy can be tested by treating a sample from the tumor outside the body. Various culture methods can be used to maintain this tumor sample. Each of these model systems has its own benefits and disadvantages. In this review, we discuss the advantages and drawbacks of the available model systems and how they can be used to guide personalized medicine.
Collapse
|
8
|
Roife D, Dai B, Kang Y, Perez MVR, Pratt M, Li X, Fleming JB. Ex Vivo Testing of Patient-Derived Xenografts Mirrors the Clinical Outcome of Patients with Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2016; 22:6021-6030. [PMID: 27259561 PMCID: PMC5136340 DOI: 10.1158/1078-0432.ccr-15-2936] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
PURPOSE Translation of the patient-derived xenograft (PDX) model into a method for practical personalized cancer treatment is prevented by the intense resources and time necessary to generate and test each tumorgraft. We aimed to develop a high-throughput ex vivo drug testing approach that can be used for personalized cancer treatment design. EXPERIMENTAL DESIGN We developed a unique ex vivo live tissue sensitivity assay (LTSA), in which precision-cut and uniform small tissue slices derived from pancreatic ductal adenocarcinoma PDX tumors were arrayed in a 96-well plate and screened against clinically relevant regimens within 3 to 5 days. The correlation between the sensitivities of tissue slices to the regimens and patients' clinical responses and outcome were statistically analyzed. The results of LTSA assay were further confirmed with biochemical methods in vitro and animal PDX model in vivo RESULTS: The ex vivo tissue slices remain viable for at least 5 days, and the tumor parenchyma, including stroma, vascular structures, and signaling pathways, are all retained. The sensitivities of the ex vivo tissue slices to gemcitabine and irinotecan was consistent with the clinical responses and outcomes of the patients from whom the tumorgrafts were derived (r = 0.77; P = 0.0002). Retrospective analysis showed that the patients who received LTSA-sensitive regimens had remarkably longer progression-free survival than patients who received LTSA-resistant regimens (16.33 vs. 3.8 months; n = 18, P = 0.011). CONCLUSIONS The results from these PDX and LTSA methods reflect clinical patients' responses and could be used as a personalized strategy for improving systemic therapy effectiveness in patients with pancreatic cancer. Clin Cancer Res; 22(24); 6021-30. ©2016 AACR.
Collapse
Affiliation(s)
- David Roife
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mayrim V. Rios Perez
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael Pratt
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Abstract
OBJECTIVES Because of rapid loss of functional differentiation that regularly occurs in vitro, culture systems permitting long-term studies on pancreatic acinar cells pose a major technical challenge. We recently described a method for long-term cultivation of mouse acinar cells. Here, we introduce a novel 2-step culture system for human pancreatic acinar cells. METHODS The system involves 2 successive culture phases, which are as follows: primary organotypic culture of isolated acinar clusters under soft Matrigel (BD Biosciences, Bedford, Mass; range, 2-3 days) followed by dissociation and secondary monolayer culture of acinar cells (4 days). Basal and agonist-induced amylase secretion was used to assess the secretory capability. RESULTS Acinar clusters showed excellent morphology and stable basal amylase secretion throughout primary culture. Carbachol (0.1 mM/L) increased amylase secretion 1.4-fold (P = 0.021) versus basal in 3 independent 4-day secondary cultures. Despite the controversy about the presence and roles of cholecystokinin receptors in human acinar cells, one of them also responded to 0.1 and 10 nM/L concentrations of caerulein with 1.9- and 1.4-fold increases in the rate of amylase secretion, respectively. CONCLUSIONS Our technique allows cultured human acinar cells to maintain secretory differentiation for a minimum of 7 days. The technique provides novel prospects for in vitro modeling of the human exocrine pancreas.
Collapse
|
10
|
Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate. J Transl Med 2014; 94:208-21. [PMID: 24296879 PMCID: PMC3946793 DOI: 10.1038/labinvest.2013.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 01/22/2023] Open
Abstract
Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.
Collapse
|
11
|
Keshari KR, Sriram R, Van Criekinge M, Wilson DM, Wang ZJ, Vigneron DB, Peehl DM, Kurhanewicz J. Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate 2013; 73:1171-81. [PMID: 23532911 PMCID: PMC3976546 DOI: 10.1002/pros.22665] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND The treatment of prostate cancer has been impeded by the lack of both clinically relevant disease models and metabolic markers that track tumor progression. Hyperpolarized (HP) (13) C MR spectroscopy has emerged as a new technology to investigate the metabolic shifts in prostate cancer. In this study, we investigate the glucose reprogramming using HP (13) C pyruvate MR in a patient-derived prostate tissue slice culture (TSC) model. METHODS The steady-state metabolite concentrations in freshly excised human prostate TSCs were assessed and compared to those from snap-frozen biopsy samples. The TSCs were then applied to a perfused cell (bioreactor) platform, and the bioenergetics and the dynamic pyruvate flux of the TSCs were investigated by (31) P and HP (13) C MR, respectively. RESULTS The prostate TSCs demonstrated steady-state glycolytic and phospholipid metabolism, and bioenergetics that recapitulate features of prostate cancer in vivo. (13) C spectra following injection of HP (13) C pyruvate showed significantly increased pyruvate to lactate flux in malignant as compared to the benign prostate TSCs. This increased flux in the malignant prostate TSCs correlated with both increased expression of monocarboxylate transporters (MCT) and activity of lactate dehydrogenase (LDH). CONCLUSIONS We provide the first mechanistic evidence for HP (13) C lactate as a prostate cancer biomarker in living human tissues, critical for the interpretation of in vivo studies. More broadly, the clinically relevant metabolic model system in combination with HP MR can facilitate the identification of clinically translatable biomarkers of prostate cancer presence, aggressiveness, and treatment response.
Collapse
Affiliation(s)
- Kayvan R. Keshari
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Correspondence to: Prof. John Kurhanewicz, PhD, Departments of Radiology and Biomedical Imaging, Urology and Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th St., Byers Hall 203, San Francisco, CA 94158.
| |
Collapse
|
12
|
Grosso SHG, Katayama MLH, Roela RA, Nonogaki S, Soares FA, Brentani H, Lima L, Folgueira MAAK, Waitzberg AFL, Pasini FS, Góes JCGS, Brentani MM. Breast cancer tissue slices as a model for evaluation of response to rapamycin. Cell Tissue Res 2013; 352:671-84. [DOI: 10.1007/s00441-013-1608-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/04/2013] [Indexed: 01/20/2023]
|
13
|
Zhao H, Nolley R, Chen Z, Peehl DM. Tissue slice grafts: an in vivo model of human prostate androgen signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:229-39. [PMID: 20472887 DOI: 10.2353/ajpath.2010.090821] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a tissue slice graft (TSG) model by implanting thin, precision-cut tissue slices derived from fresh primary prostatic adenocarcinomas under the renal capsule of immunodeficient mice. This new in vivo model not only allows analysis of approximately all of the cell types present in prostate cancer within an intact tissue microenvironment, but also provides a more accurate assessment of the effects of interventions when tissues from the same specimen with similar cell composition and histology are used as control and experimental samples. The thinness of the slices ensures that sufficient samples can be obtained for large experiments as well as permits optimal exchange of nutrients, oxygen, and drugs between the grafted tissue and the host. Both benign and cancer tissues displayed characteristic histology and expression of cell-type specific markers for up to 3 months. Moreover, androgen-regulated protein expression diminished in TSGs after androgen ablation of the host and was restored after androgen repletion. Finally, many normal secretory epithelial cells and cancer cells in TSGs remained viable 2 months after androgen ablation, consistent with similar observations in postprostatectomy specimens following neoadjuvant androgen ablation. Among these were putative Nkx3.1(+) stem cells. Our novel TSG model has the appropriate characteristics to serve as a useful tool to model all stages of disease, including normal tissue, premalignant lesions, well-differentiated cancer, and poorly differentiated cancer.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5118, USA
| | | | | | | |
Collapse
|
14
|
Precision-cut slice cultures of tumors from MMTV-neu mice for the study of the ex vivo response to cytokines and cytotoxic drugs. In Vitro Cell Dev Biol Anim 2009; 45:442-50. [PMID: 19533258 DOI: 10.1007/s11626-009-9212-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/21/2009] [Indexed: 01/08/2023]
Abstract
Ex vivo analysis of signaling pathways operating in tumor tissue is complicated by the three-dimensional structure, in particular by stroma-epithelial interactions. Studies performed with pure populations of tumor cells usually do not take into account this issue. One possibility to preserve the tissue architecture is the use of tumor slices. However, diffusion of oxygen and nutrients may become limiting factors, resulting in decreased cell viability and change of tissue morphology, especially after long-term incubation of slices. By using precision cut slices of defined thickness, we were able to establish culture conditions for tumor material obtained from MMTV-neu transgenic mice, which allow the study of the action of cytokines and cytotoxic drugs for up to 24 h. A slice thickness of 160 mum was found to be optimal for viability and handling of material. These slices were highly responsive to the action of the cytokine IFN-gamma, as evident form the increase of pY701 STAT1, detected by both immunohistochemistry and western blotting, and by the increase of mRNA levels of the IFN-gamma response genes IRF-1, SOCS-1, and STAT1, analyzed by reverse transcriptase-polymerase chain reaction. Furthermore, induction of apoptosis and increase of DNA damage could be monitored after treatment with IFN-gamma or doxorubicin. The slices were also a convenient source for the establishment of explant cultures of tumor epithelial cells. It is concluded that cultivation of precision-cut tumor slices provides a convenient way for the ex vivo molecular analysis of MMTV-neu tumor tissue under conditions which closely simulate the situation in vivo and can provide an alternative to in vivo experiments.
Collapse
|