1
|
Yang W, Cui Y, Pan Q, Peng Y, Li K, Huang W, Zhang Y, Hu H, Shao Z, Zhang Z. Biomimetic engineered nanoparticles target drug-resistant tumor cells and heterogeneous blood vessels for combination therapy of osteosarcoma. CHEMICAL ENGINEERING JOURNAL 2024; 485:149761. [DOI: 10.1016/j.cej.2024.149761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
2
|
Kikuchi H, Maishi N, Yu L, Jia Z, Li C, Sato M, Takeda R, Ishizuka K, Hida Y, Shinohara N, Hida K. Low-dose metronomic cisplatin as an antiangiogenic and anti-inflammatory strategy for cancer. Br J Cancer 2024; 130:336-345. [PMID: 38036665 PMCID: PMC10803316 DOI: 10.1038/s41416-023-02498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Conventional chemotherapy is based on the maximum tolerated dose (MTD) and requires treatment-free intervals to restore normal host cells. MTD chemotherapy may induce angiogenesis or immunosuppressive cell infiltration during treatment-free intervals. Low-dose metronomic (LDM) chemotherapy is defined as frequent administration at lower doses and causes less inflammatory change, whereas MTD chemotherapy induces an inflammatory change. Although several LDM regimens have been applied, LDM cisplatin (CDDP) has been rarely reported. This study addressed the efficacy of LDM CDDP on tumour endothelial cell phenotypic alteration compared to MTD CDDP. METHODS Tumour growth and metastasis were assessed in bladder cancer-bearing mice treated with LDM or MTD gemcitabine (GEM) and CDDP. To elucidate the therapeutic effects of LDM CDDP, the change of tumour vasculature, tumour-infiltrating immune cells and inflammatory changes were evaluated by histological analysis and mRNA expression in tumour tissues. RESULTS Tumour growth and bone metastasis were more suppressed by LDM CDDP + MTD GEM treatment than MTD CDDP + MTD GEM. Myeloid-derived suppressor cell accumulation was reduced by LDM CDDP, whereas inflammatory change was induced in the tumour microenvironment by MTD CDDP. CONCLUSION LDM CDDP does not cause inflammatory change unlike MTD CDDP, suggesting that it is a promising strategy in chemotherapy.
Collapse
Affiliation(s)
- Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Japan
| | - Li Yu
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Japan
| | - Zi Jia
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Japan
| | - Cong Li
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Japan
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Takeda
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Japan
| | - Keita Ishizuka
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Advanced Robotic and Endoscopic Surgery, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Japan.
| |
Collapse
|
3
|
Morimoto M, Maishi N, Hida K. Acquisition of drug resistance in endothelial cells by tumor-derived extracellular vesicles and cancer progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:1. [PMID: 38318528 PMCID: PMC10838380 DOI: 10.20517/cdr.2023.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
Angiogenesis by endothelial cells (ECs) is essential for tumor growth. Angiogenesis inhibitors are used in combination with anticancer drugs in many tumor types, but tumors eventually become resistant. Previously, the underlying mechanism for developing drug resistance was considered to be a change in the characteristics of tumor cells whereas ECs were thought to be genetically stable and do not contribute to drug resistance. However, tumor endothelial cells (TECs) have been shown to differ from normal endothelial cells (NECs) in that they exhibit chromosomal abnormalities, angiogenic potential, and drug resistance. Extracellular vesicles (EVs) secreted by tumor cells have recently attracted attention as a factor involved in the acquisition of such abnormalities. Various cells communicate with each other through EVs, and it has been reported that tumor-derived EVs act on other tumor cells or stromal cells to develop drug resistance. Drug-resistant tumor cells confer drug resistance to recipient cells by transporting mRNAs encoding ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily C member 1 (ABCC1) as well as miRNAs involved in signaling such as Akt, drug efflux transporters, and P-glycoprotein modulators via EVs. However, there are limited reports on the acquisition of drug resistance in ECs by tumor-derived EVs. Since drug resistance of ECs may induce tumor metastasis and support tumor cell proliferation, the mechanism underlying the development of resistance should be elucidated to find therapeutic application. This review provides insight into the acquisition of drug resistance in ECs via tumor EVs in the tumor microenvironment.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| |
Collapse
|
4
|
Liu Q, Yu M, Liao M, Ran Z, Tang X, Hu J, Su B, Fu G, Wu Q. The ratio of alpha-calcitonin gene-related peptide to substance P is associated with the transition of bone metabolic states during aging and healing. J Mol Histol 2023; 54:689-702. [PMID: 37857924 DOI: 10.1007/s10735-023-10167-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP) are functionally correlated sensory neuropeptides deeply involved in bone homeostasis. However, they are usually studied individually rather than as an organic whole. To figure out whether they are interdependent, we firstly recorded the real-time αCGRP and SP levels in aging bone and healing fracture, which revealed a moderate to high level of αCGRP coupled with a low αCGRP/SP ratio in an anabolic state, and a high level of αCGRP coupled with a high αCGRP/SP ratio in a catabolic state, suggesting the importance of αCGRP/SP ratio in driving aging and healing scenarios. During facture healing, increase in αCGRP/SP ratio by adding αCGRP led to better callus formation and faster callus remodeling, while simultaneous addition of αCGRP and SP resulted in hypertrophic callus and delayed remodeling. The characteristics in inflammation and osteoclast activation further confirmed the importance of high αCGRP/SP ratio during catabolic bone remodeling. In vitro assays using different mixtures of αCGRP-SP proved that the osteogenic potential of the mixtures depended mostly on αCGRP, while their effects on osteoclasts and neutrophils relied on both peptides. These results demonstrated that αCGRP and SP were spatiotemporally interdependent. The αCGRP/SP ratio may be more important than the dose of a single neuropeptide in managing age-related and trauma-related bone diseases.
Collapse
Affiliation(s)
- Qianzi Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Minxuan Yu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Menglin Liao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Zhiyue Ran
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Xiaofeng Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Jun Hu
- Department of Stomatology, Qijiang District People's Hospital, Chongqing, 401420, China
| | - Beiju Su
- Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing, 402360, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| |
Collapse
|
5
|
Brisson L, Henrique Geraldo L, Bikfalvi A, Mathivet T. The strange Microenvironment of Glioblastoma. Rev Neurol (Paris) 2023; 179:490-501. [PMID: 36964121 PMCID: PMC11195635 DOI: 10.1016/j.neurol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor, with poor patient survival and lack of effective therapies. Late advances trying to decipher the composition of the GB tumor microenvironment (TME) emphasized its role in tumor progression and potentialized it as a therapeutic target. Many components participate critically to tumor development and expansion such as blood vessels, immune cells or components of the nervous system. Dysmorphic tumor vasculature brings challenges to optimal delivery of cytotoxic agents currently used in clinics. Also, massive infiltration of immunosuppressive myeloid cells and limited recruitment of T cells limits the success of conventional immunotherapies. Neuronal input seems also be required for tumor expansion. In this review, we provide a comprehensive report of vascular and immune component of the GB TME and their cross talk during GB progression.
Collapse
Affiliation(s)
- L Brisson
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| | - L Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - A Bikfalvi
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France.
| | - T Mathivet
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| |
Collapse
|
6
|
Kozin SV. Vascular damage in tumors: a key player in stereotactic radiation therapy? Trends Cancer 2022; 8:806-819. [PMID: 35835699 DOI: 10.1016/j.trecan.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The use of stereotactic radiation therapy (SRT) for cancer treatment has grown in recent years, showing excellent results for some tumors. The greatly increased doses per fraction in SRT compared to conventional radiotherapy suggest a 'new biology' that determines treatment outcome. Proposed mechanisms include significant damage to tumor blood vessels and enhanced antitumor immune responses, which are also vasculature-dependent. These ideas are mostly based on the results of radiation studies in animal models because direct observations in humans are limited. However, even preclinical findings are somewhat incomplete and result in ambiguous conclusions. Current evidence of vasculature-related mechanisms of SRT is reviewed. Understanding them could result in better optimization of SRT alone or in combination with immune or other cancer therapies.
Collapse
Affiliation(s)
- Sergey V Kozin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Choi JU, Zhang X, Hasan MM, Karim M, Chung SW, Alam F, Alqahtani F, Reddy SY, Kim IS, Al-Hilal TA, Byun Y. Targeting angiogenic growth factors using therapeutic glycosaminoglycans on doppel-expressing endothelial cells for blocking angiogenic signaling in cancer. Biomaterials 2022; 283:121423. [DOI: 10.1016/j.biomaterials.2022.121423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
|
9
|
Maishi N, Sakurai Y, Hatakeyama H, Umeyama Y, Nakamura T, Endo R, Alam MT, Li C, Annan DAM, Kikuchi H, Morimoto H, Morimoto M, Akiyama K, Ohga N, Hida Y, Harashima H, Hida K. Novel antiangiogenic therapy targeting biglycan using tumor endothelial cell-specific liposomal siRNA delivery system. Cancer Sci 2022; 113:1855-1867. [PMID: 35266253 PMCID: PMC9128192 DOI: 10.1111/cas.15323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine‐rich proteoglycan, is highly expressed in TECs. TECs utilize biglycan in an autocrine manner for migration and angiogenesis. Furthermore, TEC‐derived biglycan stimulates tumor cell migration in a paracrine manner leading to tumor cell intravasation and metastasis. In this study, we explored the therapeutic effect of biglycan inhibition in the TECs of renal cell carcinoma using an in vivo siRNA delivery system known as a multifunctional envelope‐type nanodevice (MEND), which contains a unique pH‐sensitive cationic lipid. To specifically deliver MEND into TECs, we incorporated cyclo(Arg–Gly–Asp–d–Phe–Lys) (cRGD) into MEND because αVβ3 integrin, a receptor for cRGD, is selective and highly expressed in TECs. We developed RGD‐MEND‐encapsulating siRNA against biglycan. First, we confirmed that MEND was delivered into OS‐RC‐2 tumor‐derived TECs and induced in vitro RNAi‐mediated gene silencing. MEND was then injected intravenously into OS‐RC‐2 tumor‐bearing mice. Flow cytometry analysis demonstrated that MEND was specifically delivered into TECs. Quantitative RT‐PCR indicated that biglycan was knocked down by biglycan siRNA‐containing MEND. Finally, we analyzed the therapeutic effect of biglycan silencing by MEND in TECs. Tumor growth was inhibited by biglycan siRNA‐containing MEND. Tumor microenvironmental factors such as fibrosis were also normalized using biglycan inhibition in TECs. Biglycan in TECs can be a novel target for cancer treatment.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Membrane Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yui Umeyama
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Cong Li
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirofumi Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Morimoto
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
10
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
11
|
Desideri E, Ciccarone F, Ciriolo MR, Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med 2021; 172:508-520. [PMID: 34214634 DOI: 10.1016/j.freeradbiomed.2021.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released from most cell types that play a key role in cell-to-cell communication by carrying DNA, non-coding RNAs, proteins and lipids out of cells. The composition of EVs depends on the cell or tissue of origin and changes according to their pathophysiological conditions, making EVs a potential circulating biomarker of disease. Additionally, the natural tropism of EVs for specific organs and cells has raised the interest in their use as delivery vehicles. In this review, we provide an overview of EV biogenesis, isolation and characterization. We also discuss EVs in the context of endothelial pathophysiology, summarizing the current knowledge about their role in cell communication in quiescent and activated endothelial cells. In the last part, we describe the potential use of EVs as delivery vehicles of bioactive compounds and the current strategies to load exogenous cargo and to functionalize EVs to drive them to a specific tissue.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome; IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
12
|
Schupp JC, Adams TS, Cosme C, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, Sauler M, DeIuliis G, Ahangari F, Neumark N, Habermann AC, Gutierrez AJ, Bui LT, Lafyatis R, Pierce RW, Meyer KB, Nawijn MC, Teichmann SA, Banovich NE, Kropski JA, Niklason LE, Pe’er D, Yan X, Homer RJ, Rosas IO, Kaminski N. Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation 2021; 144:286-302. [PMID: 34030460 PMCID: PMC8300155 DOI: 10.1161/circulationaha.120.052318] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. METHODS We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. RESULTS Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). CONCLUSIONS Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.
Collapse
Affiliation(s)
- Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Taylor S. Adams
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering (M.S.B.R., L.E.N.), Yale University, New Haven, CT
- Vascular Biology and Therapeutics (M.S.B.R., Y.Y., L.E.N.), Yale University, New Haven, CT
| | - Yifan Yuan
- Vascular Biology and Therapeutics (M.S.B.R., Y.Y., L.E.N.), Yale University, New Haven, CT
- Department of Anesthesiology (Y.Y., L.E.N.), Yale University, New Haven, CT
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Sergio Poli
- Department of Medicine, Baylor College of Medicine, Houston, TX (S.P., I.O.R.)
- Division of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL (S.P.)
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Kadi-Ann Rose
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Edward P. Manning
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System (E.P.M.), West Haven
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Giuseppe DeIuliis
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Nir Neumark
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Arun C. Habermann
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (A.C.H., J.A.K.)
| | - Austin J. Gutierrez
- Translational Genomics Research Institute, Phoenix, AZ (A.J.G., L.T.B., N.E.B.)
| | - Linh T. Bui
- Translational Genomics Research Institute, Phoenix, AZ (A.J.G., L.T.B., N.E.B.)
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, PA (R.L.)
| | - Richard W. Pierce
- Department of Pediatrics (R.W.P.), Yale University School of Medicine, New Haven, CT
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (K.B.M., S.A.T.)
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology (M.C.N.), University Medical Center Groningen, University of Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (M.C.N.), University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (K.B.M., S.A.T.)
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, UK (S.A.T.)
| | | | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (A.C.H., J.A.K.)
- Department of Veterans Affairs Medical Center, Nashville, TN (J.A.K.)
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.A.K.)
| | - Laura E. Niklason
- Department of Biomedical Engineering (M.S.B.R., L.E.N.), Yale University, New Haven, CT
- Vascular Biology and Therapeutics (M.S.B.R., Y.Y., L.E.N.), Yale University, New Haven, CT
- Department of Anesthesiology (Y.Y., L.E.N.), Yale University, New Haven, CT
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York (D.P.)
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| | - Robert J. Homer
- Department of Pathology (R.J.H.), Yale University School of Medicine, New Haven, CT
- Pathology and Laboratory Medicine Service (R.J.H.), West Haven
| | - Ivan O. Rosas
- Department of Medicine, Baylor College of Medicine, Houston, TX (S.P., I.O.R.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine (J.C.S., T.S.A., C.C., N.O., M.C., K.-A.R., E.P.M., M.S., G.D., F.A., N.N., X.Y., N.K.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
13
|
Dömer P, Kayal J, Janssen-Bienhold U, Kewitz B, Kretschmer T, Heinen C. Rapid and efficient immunomagnetic isolation of endothelial cells from human peripheral nerves. Sci Rep 2021; 11:1951. [PMID: 33479384 PMCID: PMC7820485 DOI: 10.1038/s41598-021-81361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells (ECs) have gained an increased scientific focus since they were reported to provide guidance for Schwann cells and subsequently following axons after nerve injuries. However, previous protocols for the isolation of nerve-derived ECs from human nerves are ineffective regarding time and yield. Therefore, we established a novel and efficient protocol for the isolation of ECs from human peripheral nerves by means of immunomagnetic CD31-antibody conjugated Dynabeads and assessed the purity of the isolated cells. The easy-to-follow and time-effective isolation method allows the isolation of > 95% pure ECs. The isolated ECs were shown to express highly specific EC marker proteins and revealed functional properties by formation of CD31 and VE-cadherin positive adherens junctions, as well as ZO-1 positive tight-junctions. Moreover, the formation of capillary EC-tubes was observed in-vitro. The novel protocol for the isolation of human nerve-derived ECs allows and simplifies the usage of ECs in research of the human blood-nerve-barrier and peripheral nerve regeneration. Additionally, a potential experimental application of patient-derived nerve ECs in the in-vitro vascularization of artificial nerve grafts is feasible.
Collapse
Affiliation(s)
- Patrick Dömer
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany.
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Janine Kayal
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bettina Kewitz
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Kretschmer
- Department of Neurosurgery and Neurorestauration, Klinikum Klagenfurt Am Wörthersee, Klagenfurt, Austria
| | - Christian Heinen
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
15
|
Morone J, Lopes G, Preto M, Vasconcelos V, Martins R. Exploitation of Filamentous and Picoplanktonic Cyanobacteria for Cosmetic Applications: Potential to Improve Skin Structure and Preserve Dermal Matrix Components. Mar Drugs 2020; 18:md18090486. [PMID: 32972038 PMCID: PMC7551005 DOI: 10.3390/md18090486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023] Open
Abstract
The use of natural products in skin care formulations gained interest as a concern for modern societies. The undesirable side effects of synthetic compounds, as well as the associated environmental hazards, have driven investigation on photosynthetic organisms as sustainable sources of effective and environmentally friendly ingredients. The use of natural extracts in cosmetics has been highlighted and, along with plants and algae, cyanobacteria have come into focus. Due to their low culture demands, high grow rates and ability to produce a wide variability of bioactive metabolites, cyanobacteria emerged as an economic and sustainable base for the cosmetic industry. In this study, we evaluated the potential of ethanol extracts of picocyanobacteria strains of the genera Cyanobium and Synechocystis and filamentous strains of the genera Nodosilinea, Phormidium and Tychonema for skin applications, with focus in the field of anti-aging. The extracts were analyzed for their pigment profile, phenolic content, antioxidant potential, cytotoxicity against keratinocytes (HaCat), fibroblasts (3T3L1), endothelial cells (hCMEC/D3) and capacity to inhibit hyaluronidase (HAase). The total carotenoid content ranged from 118.69 to 383.89 μg g−1 of dry biomass, and the total phenolic content from 1.07 to 2.45 mg GAE g−1. Identified carotenoids consisted of zeaxanthin, lutein, canthaxanthin, echinenone and β-carotene, with zeaxanthin and lutein being the most representative (49.82 and 79.08 μg g−1, respectively). The highest antioxidant potential was found for Phormidium sp. LEGE 05292 and Tychonema sp. LEGE 07196 for superoxide anion radical (O2•−) scavenging (IC50 of 822.70 and 924 μg mL−1, respectively). Low or no cytotoxicity were registered. Regarding HAase inhibition, Tychonema sp. LEGE 07196 and Cyanobium sp. LEGE 07175 showed the best IC50 (182.74 and 208.36 μg mL−1, respectively). In addition, an increase in fibroblast proliferation was registered with these same strains. From this work, the ethanol extracts of the species Tychonema sp. and Cyanobium sp. are particularly interesting for their potential application in anti-aging formulations, once they stimulated fibroblast proliferation and inhibit hyaluronic acid digestion.
Collapse
Affiliation(s)
- Janaína Morone
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (G.L.); (M.P.); (V.V.)
- FCUP, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Graciliana Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (G.L.); (M.P.); (V.V.)
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (G.L.); (M.P.); (V.V.)
| | - Vítor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (G.L.); (M.P.); (V.V.)
- FCUP, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (G.L.); (M.P.); (V.V.)
- Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Correspondence: ; Tel.: +351-222-061-000; Fax: +351-222-061-001
| |
Collapse
|
16
|
Morphological Analysis of Blood Capillaries and Transport Function of Endothelial Cells in Hepatocellular Carcinoma-29. Bull Exp Biol Med 2020; 169:276-280. [PMID: 32651829 DOI: 10.1007/s10517-020-04867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 10/23/2022]
Abstract
Hepatocellular carcinoma is characterized by the pronounced vascularization, high levels of vascular endothelial growth factors, and intensive angiogenesis. Caveola-mediated endocytosis and clathrin-dependent endocytosis contribute to internalization of various growth factors, thus affecting blood supply to the tumor and neoangiogenesis. We performed a quantitative analysis of blood vessels in the tumor and evaluated the basal levels of endocytosis-associated vesicular structures in the endothelial cells of the hepatocellular carcinoma-29. The numbers of blood vessels and clathrin-coated vesicles in endothelial cells in the tumor tissue were significantly higher than in normal tissue. The association between clathrin-dependent endocytosis in the endotheliocytes of the capillaries and tumor angiogenesis can provide the basis for the development of new molecular targets for antiangiogenic antitumor therapy.
Collapse
|
17
|
Kikuchi H, Maishi N, Annan DA, Alam MT, Dawood RIH, Sato M, Morimoto M, Takeda R, Ishizuka K, Matsumoto R, Akino T, Tsuchiya K, Abe T, Osawa T, Miyajima N, Maruyama S, Harabayashi T, Azuma M, Yamashiro K, Ameda K, Kashiwagi A, Matsuno Y, Hida Y, Shinohara N, Hida K. Chemotherapy-Induced IL8 Upregulates MDR1/ABCB1 in Tumor Blood Vessels and Results in Unfavorable Outcome. Cancer Res 2020; 80:2996-3008. [PMID: 32536602 DOI: 10.1158/0008-5472.can-19-3791] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
Tumor endothelial cells (TEC) lining tumor blood vessels actively contribute to tumor progression and metastasis. In addition to tumor cells, TEC may develop drug resistance during cancer treatment, allowing the tumor cells to survive chemotherapy and metastasize. We previously reported that TECs resist paclitaxel treatment via upregulation of ABCB1. However, whether TEC phenotypes are altered by anticancer drugs remains to be clarified. Here, we show that ABCB1 expression increases after chemotherapy in urothelial carcinoma cases. The ratio of ABCB1-positive TEC before and after first-line chemotherapy in urothelial carcinoma tissues (n = 66) was analyzed by ABCB1 and CD31 immunostaining. In 42 cases (64%), this ratio increased after first-line chemotherapy. Chemotherapy elevated ABCB1 expression in endothelial cells by increasing tumor IL8 secretion. In clinical cases, ABCB1 expression in TEC correlated with IL8 expression in tumor cells after first-line chemotherapy, leading to poor prognosis. In vivo, the ABCB1 inhibitor combined with paclitaxel reduced tumor growth and metastasis compared with paclitaxel alone. Chemotherapy is suggested to cause inflammatory changes in tumors, inducing ABCB1 expression in TEC and conferring drug resistance. Overall, these findings indicate that TEC can survive during chemotherapy and provide a gateway for cancer metastasis. Targeting ABCB1 in TEC represents a novel strategy to overcome cancer drug resistance. SIGNIFICANCE: These findings show that inhibition of ABCB1 in tumor endothelial cells may improve clinical outcome, where ABCB1 expression contributes to drug resistance and metastasis following first-line chemotherapy.
Collapse
Affiliation(s)
- Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan.,Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Randa Ibrahim Hassan Dawood
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiro Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Ryo Takeda
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keita Ishizuka
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuji Matsumoto
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Tomoshige Akino
- Department of Urology, Sapporo City General Hospital, Sapporo, Hokkaido, Japan.,Department of Urology, Tonan Hospital, Sapporo, Hokkaido, Japan
| | - Kunihiko Tsuchiya
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoto Miyajima
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Satoru Maruyama
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Toru Harabayashi
- Department of Urology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Manabu Azuma
- Department of Pathology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | | | - Kaname Ameda
- Hokkaido Hinyokika Kinen Hospital, Sapporo, Hokkaido, Japan
| | - Akira Kashiwagi
- Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. .,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
18
|
Feng W, Chen L, Nguyen PK, Wu SM, Li G. Single Cell Analysis of Endothelial Cells Identified Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. Front Cardiovasc Med 2019; 6:165. [PMID: 31850371 PMCID: PMC6901932 DOI: 10.3389/fcvm.2019.00165] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/30/2019] [Indexed: 12/03/2022] Open
Abstract
Endothelial cells line the inner surface of vasculature and play an important role in normal physiology and disease progression. Although most tissue is known to have a heterogeneous population of endothelial cells, transcriptional differences in organ specific endothelial cells have not been systematically analyzed at the single cell level. The Tabula Muris project profiled mouse single cells from 20 organs. We found 10 of the organs profiled by this Consortium have endothelial cells. Unsupervised analysis of these endothelial cells revealed that they were mainly grouped by organs, and organ-specific cells were further partially correlated by germ layers. Unexpectedly, we found all lymphatic endothelial cells grouped together regardless of their resident organs. To further understand the cellular heterogeneity in organ-specific endothelial cells, we used the heart as an example. As a pump of the circulation system, the heart has multiple types of endothelial cells. Detailed analysis of these cells identified an endocardial endothelial cell population, a coronary vascular endothelial cell population, and an aorta-specific cell population. Through integrated analysis of the single cell data from another two studies analyzing the aorta, we identified conserved cell populations and molecular markers across the datasets. In summary, by reanalyzing the existing endothelial cell single-cell data, we identified organ-specific molecular signatures and heart-specific subpopulations and molecular markers. We expect these findings will pave the way for a deeper understanding of vascular biology and endothelial cell-related diseases.
Collapse
Affiliation(s)
- Wei Feng
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lyuqin Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patricia K Nguyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Veterans Affairs Palo Alto Health Care Administration, Palo Alto, CA, United States.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Guang Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Alveolar Septal Widening as an “Alert” Signal to Look Into Lung Antibody-mediated Rejection: A Multicenter Pilot Study. Transplantation 2019; 103:2440-2447. [DOI: 10.1097/tp.0000000000002688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Lin Y, Lin Y, Lin X, Sun X, Luo K. Combination of PET and CXCR4-Targeted Peptide Molecule Agents for Noninvasive Tumor Monitoring. J Cancer 2019; 10:3420-3426. [PMID: 31293645 PMCID: PMC6603417 DOI: 10.7150/jca.31087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Precision medicine is emphasizing not only at individual but also at disease molecule level in modern medicine. Therefore, target-specific molecular agents are crucial for precise diagnosis and treatment. We developed a peptide agent that binds a critical chemokine receptor-CXCR4 and could be used to detect tumor status. Confocal images showed binding of the peptide agent to human osteosarcoma cells. Clinical gold-standard molecular imaging agent PET showed tumors had high glucose metabolism, CT showed that these xenograft tumors were calcified and displayed hypervascularity. Peptide imaging demonstrated that these tumors were CXCR4 positive. However, Western blot protein analysis revealed a discordance between the tumor and the CXCR4 targeted agent, suggesting that small changes in peptide sequences have profound effect on binding to their targets. We also demonstrated the molecular screening by modifying the peptide sequence and thereby altering the binding properties of the agent. In conclusion, this study demonstrates that small molecule peptide agents can be used as an additional diagnostic tool for precision medicine.
Collapse
Affiliation(s)
- Yizi Lin
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yi Lin
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiao Lin
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaotian Sun
- Department of Internal Medicine, Clinic of August First Film Studio,301 Hospital, NO.1 Liuli Bridge, Beijing, China
| | - Kun Luo
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
21
|
Park W, Baek YY, Kim J, Jo DH, Choi S, Kim JH, Kim T, Kim S, Park M, Kim JY, Won MH, Ha KS, Kim JH, Kwon YG, Kim YM. Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway. Biomol Ther (Seoul) 2019; 27:474-483. [PMID: 31042676 PMCID: PMC6720534 DOI: 10.4062/biomolther.2019.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, β-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.
Collapse
Affiliation(s)
- Wonjin Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yi-Yong Baek
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seunghwan Choi
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Taesam Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Suji Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsik Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
22
|
Yanagihara K, Kubo T, Iino Y, Mihara K, Morimoto C, Seyama T, Kuwata T, Ochiai A, Yokozaki H. Development and characterization of a cancer cachexia model employing a rare human duodenal neuroendocrine carcinoma-originating cell line. Oncotarget 2019; 10:2435-2450. [PMID: 31069007 PMCID: PMC6497432 DOI: 10.18632/oncotarget.26764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cachexia interferes with therapy and worsens patients' quality of life. Therefore, for a better understanding of cachexia, we aimed to establish a reliable cell line to develop a cachexia model. We recently established and characterized the TCC-NECT-2 cell line, derived from a Japanese patient with poorly differentiated neuroendocrine carcinoma of the duodenum (D-NEC). Subcutaneous xenograft of TCC-NECT-2 cells in mice resulted in tumor formation, angiogenesis, and 20% incidence of body weight (BW)-loss. Subsequently, we isolated a potent cachexia-inducing subline using stepwise selection and designated as AkuNEC. Orthotopic and s.c. implantation of AkuNEC cells into mice led to diminished BW, anorexia, skeletal muscle atrophy, adipose tissue loss, and decreased locomotor activity at 100% incidence. Additionally, orthotopic implantation of AkuNEC cells resulted in metastasis and angiogenesis. Serum IL-8 overproduction was observed, and levels were positively correlated with BW-loss and reduced adipose tissue and muscle volumes in tumor-bearing mice. However, shRNA knockdown of the IL-8 gene did not suppress tumor growth and cachexia in the AkuNEC model, indicating that IL-8 is not directly involved in cachexia induction. In conclusion, AkuNEC cells may serve as a useful model to study cachexia and D-NEC.
Collapse
Affiliation(s)
- Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takanori Kubo
- Department of Life Sciences, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| | - Yuki Iino
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Keichiro Mihara
- Department of Hematology/Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Chie Morimoto
- Department of Living Science Nutrition Course, Matsuyama Shinonome Junior College, Matsuyama, Japan
| | - Toshio Seyama
- Department of Life Sciences, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
23
|
Kim JY, Kim YM. Tumor endothelial cells as a potential target of metronomic chemotherapy. Arch Pharm Res 2019; 42:1-13. [PMID: 30604201 DOI: 10.1007/s12272-018-01102-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Drug resistance and toxic side effects are major therapeutic hurdles affecting cancer patients receiving conventional chemotherapy based on the maximum tolerated dose. Metronomic chemotherapy (MCT), a new therapeutic approach developed to avoid these problems generally, consists of the continuous administration of low-dose cytotoxic agents without extended intervals. This therapy targets the tumor microenvironment, rather than exerting a direct effect on tumor cells. As a result, the MCT regimen functionally impairs tumor endothelial cells and circulating endothelial progenitor cells, leading to tumor dormancy via anti-angiogenesis. Over the past 10 years, several studies have highlighted the impact of MCT on the tumor microenvironment and angiogenesis and demonstrated its potential as a switch from the pro-angiogenic to the anti-angiogenic state. However, the mechanisms of action are still obscure. Here, we systematically review the evidence regarding the anti-angiogenic potential of MCT as a crucial determinant of tumor dormancy and cancer treatment.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry School of Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, South Korea.
| |
Collapse
|
24
|
Georganaki M, van Hooren L, Dimberg A. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Front Immunol 2018; 9:3081. [PMID: 30627131 PMCID: PMC6309238 DOI: 10.3389/fimmu.2018.03081] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Boosting natural immunity against malignant cells has had a major breakthrough in clinical cancer therapy. This is mainly due to the successful development of immune checkpoint blocking antibodies, which release a break on cytolytic anti-tumor-directed T-lymphocytes. However, immune checkpoint blockade is only effective for a proportion of cancer patients, and a major challenge in the field is to understand and overcome treatment resistance. Immune checkpoint blockade relies on successful trafficking of tumor-targeted T-lymphocytes from the secondary lymphoid organs, through the blood stream and into the tumor tissue. Resistance to therapy is often associated with a low density of T-lymphocytes residing within the tumor tissue prior to treatment. The recruitment of leukocytes to the tumor tissue relies on up-regulation of adhesion molecules and chemokines by the tumor vasculature, which is denoted as endothelial activation. Tumor vessels are often poorly activated due to constitutive pro-angiogenic signaling in the tumor microenvironment, and therefore constitute barriers to efficient leukocyte recruitment. An emerging possibility to enhance the efficiency of cancer immunotherapy is to combine pro-inflammatory drugs with anti-angiogenic therapy, which can enable tumor-targeted T-lymphocytes to access the tumor tissue by relieving endothelial anergy and increasing adhesion molecule expression. This would pave the way for efficient immune checkpoint blockade. Here, we review the current understanding of the biological basis of endothelial anergy within the tumor microenvironment, and discuss the challenges and opportunities of combining vascular targeting with immunotherapeutic drugs as suggested by data from key pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
25
|
Zhao W, Yang L, Chen X, Qian H, Zhang S, Chen Y, Luo R, Shao J, Liu H, Chen J. Phenotypic and functional characterization of tumor-derived endothelial cells isolated from primary human hepatocellular carcinoma. Hepatol Res 2018; 48:1149-1162. [PMID: 29956443 DOI: 10.1111/hepr.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
AIMS Tumor endothelial cells (TECs) have been investigated using human tumor xenografts in mice models. In order to provide pure human TECs for the updating of clinical anti-angiogenic cancer therapy, in the present study we established a protocol of purification of TECs derived from clinical hepatocellular carcinoma (HCC) and revealed the TEC features by in vitro and in vivo assays. METHODS We isolated TECs from fresh surgical resections of HCC by magnetic-activated cell sorting and purified by flow cytometry sorting upon CD31 expression, referred to as ECDHCCs. Next, we identified cultured ECDHCCs by morphology, phenotype, genotype, and functional assays. RESULTS The ECDHCCs appeared as Weibel-Palade bodies under electron microscopy. They expressed endothelial markers, such as CD31, CD105, and vascular endothelial growth factor receptor 2, and expressed the genes that are associated with pro-angiogenesis, especially vascular endothelial growth factor, epiregulin, and programmed cell death 10. Functionally, ECDHCCs were capable of tube formation, wound healing, and Transwell migration in vitro. These in vitro behaviors were validated by in vivo Matrigel plug assay in mice. Finally, comparison of ECDHCC with the Hep-G2 liver cancer cell line showed there was no similarity of phenotype or function between these two types of cells. CONCLUSIONS Tumor endothelial cells derived from human HCC can be isolated and purified from clinical samples by flow cytometer. They have the endothelial phenotype and morphologic features and are capable of tube formation and migration. This study provides a useful model for researchers to study tumor angiogenesis and screening of candidate targets.
Collapse
Affiliation(s)
- Wenjing Zhao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Liping Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xudong Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Suqing Zhang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Yali Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Runhua Luo
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Huanliang Liu
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jianguo Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Qidong Cancer Registry, Qidong Liver Cancer Institute, Qidong, China
| |
Collapse
|
26
|
van Keulen D, Pouwer MG, Pasterkamp G, van Gool AJ, Sollewijn Gelpke MD, Princen HMG, Tempel D. Inflammatory cytokine oncostatin M induces endothelial activation in macro- and microvascular endothelial cells and in APOE*3Leiden.CETP mice. PLoS One 2018; 13:e0204911. [PMID: 30273401 PMCID: PMC6166945 DOI: 10.1371/journal.pone.0204911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Endothelial activation is involved in many chronic inflammatory diseases, such as atherosclerosis, and is often initiated by cytokines. Oncostatin M (OSM) is a relatively unknown cytokine that has been suggested to play a role in both endothelial activation and atherosclerosis. We comprehensively investigated the effect of OSM on endothelial cell activation from different vascular beds and in APOE*3Leiden.CETP mice. METHODS AND RESULTS Human umbilical vein endothelial cells, human aortic endothelial cells and human microvascular endothelial cells cultured in the presence of OSM express elevated MCP-1, IL-6 and ICAM-1 mRNA levels. Human umbilical vein endothelial cells and human aortic endothelial cells additionally expressed increased VCAM-1 and E-selectin mRNA levels. Moreover, ICAM-1 membrane expression is increased as well as MCP-1, IL-6 and E-selectin protein release. A marked increase was observed in STAT1 and STAT3 phosphorylation indicating that the JAK/STAT pathway is involved in OSM signaling. OSM signals through the LIF receptor alfa (LIFR) and the OSM receptor (OSMR). siRNA knockdown of the LIFR and the OSMR revealed that simultaneous knockdown is necessary to significantly reduce MCP-1 and IL-6 secretion, VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphorylation after OSM stimulation. Moreover, OSM administration to APOE*3Leiden.CETP mice enhances plasma E-selectin levels and increases ICAM-1 expression and monocyte adhesion in the aortic root area. Furthermore, Il-6 mRNA expression was elevated in the aorta of OSM treated mice. CONCLUSION OSM induces endothelial activation in vitro in endothelial cells from different vascular beds through activation of the JAK/STAT cascade and in vivo in APOE*3Leiden.CETP mice. Since endothelial activation is an initial step in atherosclerosis development, OSM may play a role in the initiation of atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Danielle van Keulen
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Quorics B.V, Rotterdam, The Netherlands
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Marianne G. Pouwer
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alain J. van Gool
- TNO- Microbiology & Systems Biology, Zeist, The Netherlands
- Radboudumc, Nijmegen, The Netherlands
| | | | - Hans M. G. Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Dennie Tempel
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Quorics B.V, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Guarnaccia L, Navone SE, Trombetta E, Cordiglieri C, Cherubini A, Crisà FM, Rampini P, Miozzo M, Fontana L, Caroli M, Locatelli M, Riboni L, Campanella R, Marfia G. Angiogenesis in human brain tumors: screening of drug response through a patient-specific cell platform for personalized therapy. Sci Rep 2018; 8:8748. [PMID: 29884885 PMCID: PMC5993734 DOI: 10.1038/s41598-018-27116-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common brain tumors, with diverse biological behaviour. Glioblastoma (GBM), the most aggressive and with the worst prognosis, is characterized by an intense and aberrant angiogenesis, which distinguishes it from low-grade gliomas (LGGs) and benign expansive lesions, as meningiomas (MNGs). With increasing evidence for the importance of vascularization in tumor biology, we focused on the isolation and characterization of endothelial cells (ECs) from primary GBMs, LGGs and MNGs. Gene expression analysis by Real-Time PCR, immunofluorescence and flow cytometry analysis, tube-like structures formation and vascular permeability assays were performed. Our results showed a higher efficiency of ECs to form a complex vascular architecture, as well as a greater impairment of a brain blood barrier model, and an overexpression of pro-angiogenic mediators in GBM than in LGG and MNG. Furthermore, administration of temozolomide, bevacizumab, and sunitinib triggered a different proliferative, apoptotic and angiogenic response, in a dose and time-dependent manner. An increased resistance to temozolomide was observed in T98G cells co-cultured in GBM-EC conditioned media. Therefore, we developed a novel platform to reproduce tumor vascularization as “disease in a dish”, which allows us to perform screening of sensitivity/resistance to drugs, in order to optimize targeted approaches to GBM therapy.
Collapse
Affiliation(s)
- Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Laboratory of Clinical Chemistry and Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Chiara Cordiglieri
- Istituto di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandro Cherubini
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Maria Crisà
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Rampini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Hida K, Maishi N, Annan DA, Hida Y. Contribution of Tumor Endothelial Cells in Cancer Progression. Int J Mol Sci 2018; 19:ijms19051272. [PMID: 29695087 PMCID: PMC5983794 DOI: 10.3390/ijms19051272] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor progression depends on the process of angiogenesis, which is the formation of new blood vessels. These newly formed blood vessels supply oxygen and nutrients to the tumor, supporting its progression and providing a gateway for tumor metastasis. Tumor angiogenesis is regulated by the balance between angiogenic activators and inhibitors within the tumor microenvironment. Because the newly formed tumor blood vessels originate from preexisting normal vessels, tumor blood vessels, and tumor endothelial cells (TECs) have historically been considered to be the same as normal blood vessels and endothelial cells; however, evidence of TECs’ distinctive abnormal phenotypes has increased. In addition, it has been revealed that TECs constitute a heterogeneous population. Thus, TECs that line tumor blood vessels are important targets in cancer therapy. We have previously reported that TECs induce cancer metastasis. In this review, we describe recent studies on TEC abnormalities related to cancer progression to provide insight into new anticancer therapies.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-0815, Japan.
| |
Collapse
|
29
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
30
|
Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 2017; 142:112-123. [PMID: 28732246 DOI: 10.1016/j.biomaterials.2017.07.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023]
Abstract
Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair.
Collapse
|
31
|
Naschberger E, Liebl A, Schellerer VS, Schütz M, Britzen-Laurent N, Kölbel P, Schaal U, Haep L, Regensburger D, Wittmann T, Klein-Hitpass L, Rau TT, Dietel B, Méniel VS, Clarke AR, Merkel S, Croner RS, Hohenberger W, Stürzl M. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. J Clin Invest 2016; 126:4187-4204. [PMID: 27721236 PMCID: PMC5096916 DOI: 10.1172/jci78260] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Vera S. Schellerer
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manuela Schütz
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Patrick Kölbel
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ute Schaal
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Lisa Haep
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Thomas Wittmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University Medical Center Essen, Essen, Germany
| | - Tilman T. Rau
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Valérie S. Méniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Susanne Merkel
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland S. Croner
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Werner Hohenberger
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| |
Collapse
|
32
|
Lee DK, Nevo O. Microvascular endothelial cells from preeclamptic women exhibit altered expression of angiogenic and vasopressor factors. Am J Physiol Heart Circ Physiol 2016; 310:H1834-41. [DOI: 10.1152/ajpheart.00083.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/20/2016] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) is a severe complication of pregnancy associated with maternal and fetal morbidity and mortality. The underlying pathophysiology involves maternal systemic vascular and endothelial dysfunction associated with circulating antiangiogenic factors, although the specific etiology of the disease remains elusive. Our aim was to investigate the maternal endothelium in PE by exploring the expression of genes involved with endothelial function in a novel platform of maternal primary endothelial cells. Adipose tissue was sampled at the time of caesarean section from both normal and preeclamptic patients. Maternal microvascular endothelial cells were isolated by tissue digestion and CD31 magnetic Dynabeads. Cell purity was confirmed by immunofluorescence microscopy and flow cytometry. Western analyses revealed VEGF activation of VEGF receptor 2 (VEGFR2) and ERK in primary cells. Quantitative PCR analyses revealed significantly altered mRNA levels of various genes involved with angiogenesis and blood pressure control in preeclamptic cells, including soluble fms-like tyrosine kinase-1, endoglin, VEGFR2, angiotensin receptor 1, and endothelin compared with cells isolated from normal pregnancies. Overall, maternal endothelial cells from preeclamptic patients exhibit extensive alteration of expression of factors associated with antiangiogenic and vasoconstrictive phenotypes, shedding light on the underlying mechanisms associated with the vascular dysfunction characteristic of PE.
Collapse
Affiliation(s)
- Dennis K. Lee
- Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ori Nevo
- Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Hida K, Maishi N, Sakurai Y, Hida Y, Harashima H. Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev 2016; 99:140-147. [PMID: 26626622 DOI: 10.1016/j.addr.2015.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
To date anti-angiogenic therapy has been used for cancer therapy widely, yielding promising results. However, it has been elucidated that current anti-angiogenic drug has several issues to be solved, such as side-effects and drug resistance. It has been reported that tumor endothelial cells (TECs) differ from normal counterparts. In addition, it was shown that the TECs are heterogeneous according to the malignancy status of tumor. The development of novel strategy for targeting tumor vasculature is required. Recently, we have developed an active targeting system, which targets TECs specifically. In this review, we will discuss how TECs in tumor vasculature are heterogeneous and offer new perspectives on a drug delivery system, which can target heterogeneous tumor blood vessels from a viewpoint of personalized medicine.
Collapse
|
34
|
Tumor angiogenesis--characteristics of tumor endothelial cells. Int J Clin Oncol 2016; 21:206-212. [PMID: 26879652 DOI: 10.1007/s10147-016-0957-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
Tumor blood vessels provide nutrition and oxygen to the tumor, resulting in tumor progression. They also act as gatekeepers, inducing tumor metastasis. Thus, targeting tumor blood vessels is an important strategy in cancer therapy. Tumor endothelial cells (TECs), which line the inner layer of blood vessels of the tumor stromal tissue, are the main targets of anti-angiogenic therapy. Because new tumor blood vessels generally sprout from pre-existing vasculature, they have been considered to be the same as normal blood vessels. However, tumor blood vessels demonstrate a markedly abnormal phenotype that includes several important morphological changes. The degree of angiogenesis is determined by the balance between the angiogenic stimulators and inhibitors released by the tumor and host cells. Recent studies have revealed that TECs also exhibit altered characteristics which depend on the tumor microenvironment. Here, we review recent studies on TEC abnormalities and heterogeneity with respect to tumor progression and consider their therapeutic implications.
Collapse
|
35
|
Genova T, Munaron L, Carossa S, Mussano F. Overcoming physical constraints in bone engineering: ‘the importance of being vascularized’. J Biomater Appl 2015; 30:940-51. [DOI: 10.1177/0885328215616749] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone plays several physiological functions and is the second most commonly transplanted tissue after blood. Since the treatment of large bone defects is still unsatisfactory, researchers have endeavoured to obtain scaffolds able to release growth and differentiation factors for mesenchymal stem cells, osteoblasts and endothelial cells in order to obtain faster mineralization and prompt a reliable vascularization. Nowadays, the application of osteoblastic cultures spans from cell physiology and pharmacology to cytocompatibility measurement and osteogenic potential evaluation of novel biomaterials. To overcome the simple traditional monocultures in vitro, co-cultures of osteogenic and vasculogenic precursors were introduced with very interesting results. Increasingly complex culture systems have been developed, where cells are seeded on proper scaffolds and stimulated so as to mimic the physiological conditions more accurately. These bioreactors aim at enabling bone regeneration by incorporating different cells types into bio-inspired materials within a surveilled habitat. This review is focused on the most recent developments in the organomimetic cultures of osteoblasts and vascular endothelial cells for bone tissue engineering.
Collapse
Affiliation(s)
- T Genova
- Department of Life Sciences and Systems Biology, University of Turin, Italy
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Italy
| | - L Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Italy
| | - S Carossa
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Italy
| | - F Mussano
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Italy
| |
Collapse
|
36
|
Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 2015; 15:125-42. [PMID: 26612664 DOI: 10.1038/nrd.2015.2] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of vascular permeability, recruitment of leukocytes from blood to tissue and angiogenesis are all processes that occur at the level of the microvasculature during both physiological and pathological conditions. The interplay between microvascular cells and leukocytes during inflammation, together with the emerging roles of leukocytes in the modulation of the angiogenic process, make leukocyte-vascular interactions prime targets for therapeutics to potentially treat a wide range of diseases, including pathological and dysfunctional vessel growth, chronic inflammation and fibrosis. In this Review, we discuss how the different cell types that are present in and around microvessels interact, cooperate and instruct each other, and in this context we highlight drug targets as well as emerging druggable processes that can be exploited to restore tissue homeostasis.
Collapse
Affiliation(s)
- Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| |
Collapse
|
37
|
Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv Drug Deliv Rev 2015; 94:116-25. [PMID: 25817732 DOI: 10.1016/j.addr.2015.03.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 01/31/2023]
Abstract
One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models.
Collapse
|
38
|
Langenkamp E, Zhang L, Lugano R, Huang H, Elhassan TEA, Georganaki M, Bazzar W, Lööf J, Trendelenburg G, Essand M, Pontén F, Smits A, Dimberg A. Elevated Expression of the C-Type Lectin CD93 in the Glioblastoma Vasculature Regulates Cytoskeletal Rearrangements That Enhance Vessel Function and Reduce Host Survival. Cancer Res 2015; 75:4504-16. [DOI: 10.1158/0008-5472.can-14-3636] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/26/2015] [Indexed: 11/16/2022]
|
39
|
Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT. Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chem Soc Rev 2015; 44:8174-99. [PMID: 26239875 DOI: 10.1039/c5cs00499c] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the blood vessel is seldom the target tissue, almost all nanomedicine will interact with blood vessels and blood at some point of time along its life cycle in the human body regardless of their intended destination. Despite its importance, many bionanotechnologists do not feature endothelial cells (ECs), the blood vessel cells, or consider blood effects in their studies. Including blood vessel cells in the study can greatly increase our understanding of the behavior of any given nanomedicine at the tissue of interest or to understand side effects that may occur in vivo. In this review, we will first describe the diversity of EC types found in the human body and their unique behaviors and possibly how these important differences can implicate nanomedicine behavior. Subsequently, we will discuss about the protein corona derived from blood with foci on the physiochemical aspects of nanoparticles (NPs) that dictate the protein corona characteristics. We would also discuss about how NPs characteristics can affect uptake by the endothelium. Subsequently, mechanisms of how NPs could cross the endothelium to access the tissue of interest. Throughout the paper, we will share some novel nanomedicine related ideas and insights that were derived from the understanding of the NPs' interaction with the ECs. This review will inspire more exciting nanotechnologies that had accounted for the complexities of the real human body.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | |
Collapse
|
40
|
Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation. Shock 2015; 42:356-64. [PMID: 25051282 DOI: 10.1097/shk.0000000000000223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during hemorrhagic shock and resuscitation in vivo. We examined the kinetic responses of different endothelial genes in human umbilical vein endothelial cells preconditioned to 20 dyne/cm unidirectional laminar shear stress for 48 h to flow cessation and abrupt reflow, respectively, as well as the effect of flow cessation and reflow on tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory activation. Endothelial CD31 and VE-cadherin were not affected by the changes in flow in the absence or presence of TNF-α. The messenger RNA levels of proinflammatory molecules E-selectin, VCAM-1 (vascular cell adhesion molecule 1), and IL-8 (interleukin 8) were significantly induced by flow cessation respectively acute reflow, whereas ICAM-1 (intercellular adhesion molecule 1) was downregulated on flow cessation and induced by subsequent acute reflow. Flow cessation also affected the Ang/Tie2 (Angiopoietin/Tie2 receptor tyrosine kinase) system by downregulating Tie2 and inducing its endothelial ligand Ang2, an effect that was further extended on acute reflow. Furthermore, the induction of proinflammatory adhesion molecules by TNF-α under flow cessation was significantly enhanced on subsequent acute reflow. This study demonstrated that flow alterations per se during shock and resuscitation contribute to endothelial activation and that these alterations interact with proinflammatory factors coexisting in vivo such as TNF-α. The abrupt reflow-related enhancement of cytokine-induced endothelial proinflammatory activation supports the concept that sudden regain of flow during resuscitation has an aggravating effect on endothelial activation, which may play a significant role in vascular dysfunction and consequent organ injury. This study implies that the improvement of resuscitation strategies and the pharmacological interference with proinflammatory signaling cascades at the right time of resuscitation of shock patients may be beneficial to regain and/or maintain organ function in patients after circulatory shock.
Collapse
|
41
|
Amano H, Ito Y, Eshima K, Kato S, Ogawa F, Hosono K, Oba K, Tamaki H, Sakagami H, Shibuya M, Narumiya S, Majima M. Thromboxane A2induces blood flow recovery via platelet adhesion to ischaemic regions. Cardiovasc Res 2015; 107:509-21. [DOI: 10.1093/cvr/cvv139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/26/2015] [Indexed: 11/14/2022] Open
|
42
|
Danastas K, Combes V, Lindsay LA, Grau GER, Thompson MB, Murphy CR. VEGF111: new insights in tissue invasion. Front Physiol 2015; 6:2. [PMID: 25657624 PMCID: PMC4302830 DOI: 10.3389/fphys.2015.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 01/17/2023] Open
Abstract
Vascular endothelial growth factor is a secreted glycoprotein that acts on endothelial cells to induce developmental and physiological angiogenesis. It has also been implicated in angiogenesis occurring in several pathologies, most notably, cancer. Alternative splicing of VEGF mRNA transcripts results in several isoforms with distinct properties depending on their exon composition. Recently, a new isoform has been identified, VEGF111 with a unique exon composition responsible for its high angiogenic potential. In humans, the only known inducer of VEGF111 is DNA damage but its natural presence in the uterus of the viviparous lizard, Saiphos equalis, suggests other mechanisms of regulation. Most interestingly, the possible relationship between the evolution of viviparity and the associated increased risk in developing cancer may be important in understanding the mechanisms underlying tumor development.
Collapse
Affiliation(s)
- Kevin Danastas
- Discipline of Anatomy and Histology, School of Medical Sciences, Bosch Institute, The University of Sydney Sydney, NSW, Australia
| | - Valery Combes
- Discipline of Pathology, School of Medical Sciences, Bosch Institute, The University of Sydney Sydney, NSW, Australia
| | - Laura A Lindsay
- Discipline of Anatomy and Histology, School of Medical Sciences, Bosch Institute, The University of Sydney Sydney, NSW, Australia
| | - Georges E R Grau
- Discipline of Pathology, School of Medical Sciences, Bosch Institute, The University of Sydney Sydney, NSW, Australia
| | - Michael B Thompson
- School of Biological Sciences, The University of Sydney Sydney, NSW, Australia
| | - Christopher R Murphy
- Discipline of Anatomy and Histology, School of Medical Sciences, Bosch Institute, The University of Sydney Sydney, NSW, Australia
| |
Collapse
|
43
|
Biology and immunopathogenesis of vasculitis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 2014; 17:471-94. [PMID: 24482243 PMCID: PMC4061466 DOI: 10.1007/s10456-014-9420-y] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022]
Abstract
Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies.
Collapse
|
45
|
Liu Z, Vong QP, Liu C, Zheng Y. Borg5 is required for angiogenesis by regulating persistent directional migration of the cardiac microvascular endothelial cells. Mol Biol Cell 2014; 25:841-51. [PMID: 24451259 PMCID: PMC3952853 DOI: 10.1091/mbc.e13-09-0543] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using mouse knockout strategy, the authors uncovered a role for Borg5 in microvascular angiogenesis. In primary mouse cardiac endothelial cells, Borg5 interacts with septin cytoskeleton and colocalizes with perinuclear actomyosin fibers. The data presented suggest that Borg5 and septin regulate the actomyosin activity critical for persistent directional migration. The microvasculature is important for vertebrate organ development and homeostasis. However, the molecular mechanism of microvascular angiogenesis remains incompletely understood. Through studying Borg5 (Binder of the Rho GTPase 5), which belongs to a family of poorly understood effector proteins of the Cdc42 GTPase, we uncover a role for Borg5 in microvascular angiogenesis. Deletion of Borg5 in mice results in defects in retinal and cardiac microvasculature as well as heart development. Borg5 promotes angiogenesis by regulating persistent directional migration of the endothelial cells (ECs). In primary mouse cardiac ECs (MCECs), Borg5 associates with septins in the perinuclear region and colocalizes with actomyosin fibers. Both Borg5 deletion and septin 7 knockdown lead to a disruption of the perinuclear actomyosin and persistent directional migration. Our findings suggest that Borg5 and septin cytoskeleton spatially control actomyosin activity to ensure persistent directional migration of MCECs and efficient microvascular angiogenesis. Our studies reported here should offer a new avenue to further investigate the functions of Borg5, septin, and actomyosin in the microvasculature in the context of development and disease.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 iPSC and Genome Engineering Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
46
|
Kowalski PS, Zwiers PJ, Morselt HWM, Kuldo JM, Leus NGJ, Ruiters MHJ, Molema G, Kamps JAAM. Anti-VCAM-1 SAINT-O-Somes enable endothelial-specific delivery of siRNA and downregulation of inflammatory genes in activated endothelium in vivo. J Control Release 2014; 176:64-75. [PMID: 24389338 DOI: 10.1016/j.jconrel.2013.12.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023]
Abstract
The pivotal role of endothelial cells in the pathology of inflammatory diseases raised interest in the development of short interfering RNA (siRNA) delivery devices for selective pharmacological intervention in the inflamed endothelium. The current study demonstrates endothelial specific delivery of siRNAs and downregulation of inflammatory genes in activated endothelium in vivo by applying a novel type of targeted liposomes based on the cationic amphiphile SAINT-C18 (1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride). To create specificity for inflamed endothelial cells, these so-called SAINT-O-Somes were harnessed with antibodies against vascular cell adhesion protein 1 (VCAM-1). In TNFα challenged mice, intravenously administered anti-VCAM-1 SAINT-O-Somes exerted long circulation times and homed to VCAM-1 expressing endothelial cells in inflamed organs. The formulations were devoid of liver and kidney toxicity. Using anti-VCAM-1 SAINT-O-Somes we successfully delivered siRNA to knock down VE-cadherin mRNA in inflamed renal microvasculature, as demonstrated by using laser microdissection of different microvascular beds prior to analysis of gene expression. Using the same strategy, we demonstrated local attenuation of endothelial inflammatory response towards lipopolysaccharide in kidneys of mice treated with anti-VCAM-1 SAINT-O-Somes containing NFκB p65 specific siRNA. This study is the first demonstration of a novel, endothelial specific carrier that is suitable for selective in vivo delivery of siRNAs into inflamed microvascular segments and interference with disease associated endothelial activation.
Collapse
Affiliation(s)
- Piotr S Kowalski
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Peter J Zwiers
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Henriëtte W M Morselt
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Joanna M Kuldo
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Niek G J Leus
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Marcel H J Ruiters
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands; Synvolux Therapeutics, L.J. Zielstraweg 1, Groningen, The Netherlands
| | - Grietje Molema
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Jan A A M Kamps
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands.
| |
Collapse
|
47
|
Ever-changing cell interactions during the life span of the corpus luteum: Relevance to luteal regression. Reprod Biol 2014; 14:75-82. [DOI: 10.1016/j.repbio.2013.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022]
|
48
|
Umemoto E, Takeda A, Jin S, Luo Z, Nakahogi N, Hayasaka H, Lee CM, Tanaka T, Miyasaka M. Dynamic changes in endothelial cell adhesion molecule nepmucin/CD300LG expression under physiological and pathological conditions. PLoS One 2013; 8:e83681. [PMID: 24376728 PMCID: PMC3871519 DOI: 10.1371/journal.pone.0083681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/06/2013] [Indexed: 12/02/2022] Open
Abstract
Vascular endothelial cells often change their phenotype to adapt to their local microenvironment. Here we report that the vascular endothelial adhesion molecule nepmucin/CD300LG, which is implicated in lymphocyte binding and transmigration, shows unique expression patterns in the microvascular endothelial cells of different tissues. Under physiological conditions, nepmucin/CD300LG was constitutively and selectively expressed at the luminal surface of the small arterioles, venules, and capillaries of most tissues, but it was only weakly expressed in the microvessels of the splenic red pulp and thymic medulla. Furthermore, it was barely detectable in immunologically privileged sites such as the brain, testis, and uterus. The nepmucin/CD300LG expression rapidly decreased in lymph nodes receiving acute inflammatory signals, and this loss was mediated at least in part by TNF-α. It was also down-regulated in tumors and tumor-draining lymph nodes, indicating that nepmucin/CD300LG expression is negatively regulated by locally produced signals under these circumstances. In contrast, nepmucin/CD300LG was induced in the high endothelial venule-like blood vessels of chronically inflamed pancreatic islets in an animal model of non-obese diabetes. Interestingly, the activated CD4+ T cells infiltrating the inflamed pancreas expressed high levels of the nepmucin/CD300LG ligand(s), supporting the idea that nepmucin/CD300LG and its ligand interactions are locally involved in pathological T cell trafficking. Taken together, these observations indicate that the nepmucin/CD300LG expression in microvascular endothelial cells is influenced by factor(s) that are locally produced in tissues, and that its expression is closely correlated with the level of leukocyte infiltration in certain tissues.
Collapse
Affiliation(s)
- Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Laboratory of Immunodynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Akira Takeda
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Soojung Jin
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Zhijuan Luo
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Nakahogi
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Haruko Hayasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Laboratory of Immunodynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Chun Man Lee
- Medical Center for Translational Research, Osaka University Hospital, Suita, Osaka, Japan
| | - Toshiyuki Tanaka
- Laboratory of Immunobiology, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Masayuki Miyasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Laboratory of Immunodynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
49
|
Kurashige C, Hosono K, Matsuda H, Tsujikawa K, Okamoto H, Majima M. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice. FASEB J 2013; 28:1237-47. [PMID: 24308973 DOI: 10.1096/fj.13-238998] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor activity-modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). CGRP, a 37-aa neuropeptide, is widely distributed in neuronal tissues and exerts its biological effects via CLR/RAMP1; however, the pathophysiological roles of CLR/RAMP1 remain to be clarified. To study the functions of CLR/RAMP1, we generated RAMP1-knockout (RAMP1(-/-)) mice. Compared with those of wild-type (WT) mice, wound healing and wound-induced angiogenesis were significantly suppressed in RAMP1(-/-) mice, with reduced expression of vascular endothelial growth factor (VEGF)-A. Formation of the lymphatic vessels that drain interstitial fluids was also suppressed in RAMP1(-/-) mice, with reduced expression of VEGF-C and VEGFR-3 in wound granulation tissues. RAMP1 was expressed in endothelial cells (ECs) in the preexisting skin blood vessels, but was not observed in ECs in newly formed blood or lymphatic vessels. Macrophages in the wound granulation tissues expressed RAMP1 and produced substantial amounts of VEGF-C in response to CGRP in vitro. RAMP1(-/-) bone marrow chimeric mice showed delayed wound healing with reduced angiogenesis/lymphangiogenesis in wound granulation tissues. These findings suggest that RAMP1 plays a crucial role in wound healing and wound-induced angiogenesis and lymphangiogenesis and that it is a promising target for controlling angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Chie Kurashige
- 1Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Mesri M, Birse C, Heidbrink J, McKinnon K, Brand E, Bermingham CL, Feild B, FitzHugh W, He T, Ruben S, Moore PA. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues. PLoS One 2013; 8:e78885. [PMID: 24236063 PMCID: PMC3827283 DOI: 10.1371/journal.pone.0078885] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.
Collapse
Affiliation(s)
- Mehdi Mesri
- Celera, Alameda, California, United States of America
- * E-mail:
| | - Charlie Birse
- Celera, Alameda, California, United States of America
| | | | | | - Erin Brand
- Celera, Alameda, California, United States of America
| | | | - Brian Feild
- Celera, Alameda, California, United States of America
| | | | - Tao He
- Celera, Alameda, California, United States of America
| | - Steve Ruben
- Celera, Alameda, California, United States of America
| | - Paul A. Moore
- Celera, Alameda, California, United States of America
| |
Collapse
|