1
|
Filice M, Mazza R, Gattuso A, Caferro A, Napolitano G, Fasciolo G, Venditti P, Imbrogno S, Cerra MC. The cardiac response of the goldfish Carassius auratus to environmental hypoxia: from hemodynamics to mitochondria. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:36. [PMID: 39849270 PMCID: PMC11759273 DOI: 10.1007/s10695-025-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Under low O2, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment. To date, little is known about the putative influence of hypoxia on the mitochondrial contribution to cardiac energy metabolism. Similarly, it remains unexplored whether the exposure to environmental low O2 affects the cardiac response to preload increases (i.e., the Frank-Starling mechanism). We here observed, on ex vivo isolated and perfused goldfish heart, that 20 days of exposure to moderate water hypoxia are accompanied by a potentiated cardiac performance, analyzed as stroke volume, cardiac output, and stroke work. The sensitivity to preload increases significantly improved after 20 days of hypoxia, while it is similar to normoxia after 4 days of exposure. This suggested a time-dependent response. Mitochondrial O2 consumption initially decreased during short-term hypoxia but returned to normoxia-like levels after 20 days of exposure. Biomolecular analyses of ventricular extracts revealed a time-dependent regulation of key proteins involved in the mitochondrial biogenesis, including PGC1α, NRF1/2, and TFAM, as well as cytochrome c. Additionally, mitochondrial DNA content was notably increased after 20 days of hypoxia. Our data revealed that, when challenged by chronic environmental hypoxia, the goldfish heart improves its pumping behavior under both basal and loading-stimulated conditions. This is accompanied by a mitochondrial remodeling which likely supports adequate energy supply for the working myocardium.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy.
| | - Alessia Caferro
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Gaetana Napolitano
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| |
Collapse
|
2
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
3
|
Filice M, Gattuso A, Imbrogno S, Mazza R, Amelio D, Caferro A, Agnisola C, Icardo JM, Cerra MC. Functional, structural, and molecular remodelling of the goldfish (Carassius auratus) heart under moderate hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:667-685. [PMID: 38198074 PMCID: PMC11021278 DOI: 10.1007/s10695-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The goldfish (Carassius auratus) is known for its physiologic ability to survive even long periods of oxygen limitation (hypoxia), adapting the cardiac performance to the requirements of peripheral tissue perfusion. We here investigated the effects of short-term moderate hypoxia on the heart, focusing on ventricular adaptation, in terms of hemodynamics and structural traits. Functional evaluations revealed that animals exposed to 4 days of environmental hypoxia increased the hemodynamic performance evaluated on ex vivo cardiac preparations. This was associated with a thicker and more vascularized ventricular compact layer and a reduced luminal lacunary space. Compared to normoxic animals, ventricular cardiomyocytes of goldfish exposed to hypoxia showed an extended mitochondrial compartment and a modulation of proteins involved in mitochondria dynamics. The enhanced expression of the pro-fission markers DRP1 and OMA1, and the modulation of the short and long forms of OPA1, suggested a hypoxia-related mitochondria fission. Our data propose that under hypoxia, the goldfish heart undergoes a structural remodelling associated with a potentiated cardiac activity. The energy demand for the highly performant myocardium is supported by an increased number of mitochondria, likely occurring through fission events.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Daniela Amelio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Alessia Caferro
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Claudio Agnisola
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | - José Manuel Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
5
|
Mackrill JJ. Evolution of the cardiac dyad. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210329. [PMID: 36189805 PMCID: PMC9527923 DOI: 10.1098/rstb.2021.0329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac dyads are the site of communication between the sarcoplasmic reticulum (SR) and infoldings of the sarcolemma called transverse-tubules (TT). During heart excitation-contraction coupling, Ca2+-influx through L-type Ca2+ channels in the TT is amplified by release of Ca2+-from the SR via type 2 ryanodine receptors, activating the contractile apparatus. Key proteins involved in cardiac dyad function are bridging integrator 1 (BIN1), junctophilin 2 and caveolin 3. The work presented here aims to reconstruct the evolutionary history of the cardiac dyad, by surveying the scientific literature for ultrastructural evidence of these junctions across all animal taxa; phylogenetically reconstructing the evolutionary history of BIN1; and by comparing peptide motifs involved in TT formation by this protein across metazoans. Key findings are that cardiac dyads have been identified in mammals, arthropods and molluscs, but not in other animals. Vertebrate BIN1 does not group with members of this protein family from other taxa, suggesting that invertebrate BINs are paralogues rather orthologues of this gene. Comparisons of BIN1 peptide sequences of mammals with those of other vertebrates reveals novel features that might contribute to TT and dyad formation. The analyses presented here suggest that the cardiac dyad evolved independently several times during metazoan evolution: an unexpected observation given the diversity of heart structure and function between different animal taxa. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Republic of Ireland
| |
Collapse
|
6
|
Shiels HA. Avian cardiomyocyte architecture and what it reveals about the evolution of the vertebrate heart. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210332. [PMID: 36189815 PMCID: PMC9527935 DOI: 10.1098/rstb.2021.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bird cardiomyocytes are long, thin and lack transverse (t)-tubules, which is akin to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are typified by low maximum heart rates and low pressure development. However, birds can achieve greater contractile rates and developed pressures than mammals, whose wide cardiomyocytes contain a dense t-tubular network allowing for uniform excitation-contraction coupling and strong contractile force. To address this apparent paradox, this paper functionally links recent electrophysiological studies on bird cardiomyocytes with decades of ultrastructure measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release relay system, that facilitates the strong fast contractions in the long thin bird cardiomyocytes, without the need for t-tubules. The maintenance of an elongated myocyte morphology following the post-hatch transition from ectothermy to endothermy in birds is discussed in relation to cardiac load, myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes. Overall, the paper shows how little we know about cellular Ca2+ dynamics in the bird heart and suggests how increased research efforts in this area would provide vital information in our quest to understand the role of myocyte architecture in the evolution of the vertebrate heart. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'. Please see glossary at the end of the paper for definitions of specialized terms.
Collapse
Affiliation(s)
- Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Ciezarek A, Gardner L, Savolainen V, Block B. Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis. BMC Genomics 2020; 21:642. [PMID: 32942994 PMCID: PMC7499911 DOI: 10.1186/s12864-020-07058-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. Results Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. Conclusions We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.
Collapse
Affiliation(s)
- Adam Ciezarek
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK. .,Earlham Institute, Norwich Research Park, Norwich, UK.
| | - Luke Gardner
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Barbara Block
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
8
|
Imbrogno S, Filice M, Cerra MC. Exploring cardiac plasticity in teleost: the role of humoral modulation. Gen Comp Endocrinol 2019; 283:113236. [PMID: 31369729 DOI: 10.1016/j.ygcen.2019.113236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022]
Abstract
The fish heart represents an established natural model for evaluating basic mechanisms of the coordinated physiological reactions which maintain cardiac steady-state. This is due to its relatively simple design, but also to its multilevel morpho-functional flexibility which allows adequate responses to a variety of intrinsic (body size and shape, swimming performance, etc.), and extrinsic (temperature, salinity, oxygen level, water chemistry, etc.) factors related to the animal life style. Nowadays, although many gaps are still present, a huge literature is available about the mechanisms that fine-tune fish cardiac performance, particularly in relation to the influence exerted by substances possessing cardio-modulatory properties. Based on these premises, this review will provide an overview of the existing current knowledge regarding the humoral control of cardiac performance in fish. The role of both classic (i.e. catecholamines, angiotensin II and natriuretic peptides), and emerging cardioactive substances (i.e. the chromogranin-A-derived peptides vasostatins, catestatin and serpinin) will be illustrated and discussed. Moreover, an example of cardiomodulation elicited by peptides (e.g., nesfatin-1) associated to the regulation of feeding and metabolism will be provided. The picture will hopefully emphasize the complex circuits that sustain fish cardiac performance, also highliting the power of the teleost heart as an experimental model to deciphering mechanisms that could be difficult to explore in more elaborated cardiac morpho-functional designs.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Mariacristina Filice
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| |
Collapse
|
9
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
10
|
Ultracytochemical visualization of calcium distribution in heart cells and erythrocytes of zebrafish Danio rerio. Micron 2018; 111:19-27. [DOI: 10.1016/j.micron.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023]
|
11
|
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW, Hove-Madsen L, Tibbits GF. The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol 2016; 171:99-136. [PMID: 27538987 DOI: 10.1007/112_2016_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.
Collapse
Affiliation(s)
- Christine E Genge
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Ling Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - XiaoYe Sheng
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Charles M Stevens
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Sanam Shafaat Talab
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Thomas W Claydon
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Leif Hove-Madsen
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
12
|
Shiels HA, Sitsapesan R. Is there something fishy about the regulation of the ryanodine receptor in the fish heart? Exp Physiol 2015. [DOI: 10.1113/ep085136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences; University of Manchester; Manchester M13 9NT UK
| | | |
Collapse
|
13
|
Kochová P, Cimrman R, Štengl M, Ošťádal B, Tonar Z. A mathematical model of the carp heart ventricle during the cardiac cycle. J Theor Biol 2015; 373:12-25. [PMID: 25797310 DOI: 10.1016/j.jtbi.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
The poikilothermic heart has been suggested as a model for studying some of the mechanisms of early postnatal mammalian heart adaptations. We assessed morphological parameters of the carp heart (Cyprinus carpio L.) with diastolic dimensions: heart radius (5.73mm), thickness of the compact (0.50mm) and spongy myocardium (4.34mm), in two conditions (systole, diastole): volume fraction of the compact myocardium (20.7% systole, 19.6% diastole), spongy myocardium (58.9% systole, 62.8% diastole), trabeculae (37.8% systole, 28.6% diastole), and cavities (41.5% systole, 51.9% diastole) within the ventricle; volume fraction of the trabeculae (64.1% systole, 45.5% diastole) and sinuses (35.9% systole, 54.5% diastole) within the spongy myocardium; ratio between the volume of compact and spongy myocardium (0.35 systole, 0.31 diastole); ratio between compact myocardium and trabeculae (0.55 systole, 0.69 diastole); and surface density of the trabeculae (0.095μm(-1) systole, 0.147μm(-1) diastole). We created a mathematical model of the carp heart based on actual morphometric data to simulate how the compact/spongy myocardium ratio, the permeability of the spongy myocardium, and sinus-trabeculae volume fractions within the spongy myocardium influence stroke volume, stroke work, ejection fraction and p-V diagram. Increasing permeability led to increasing and then decreasing stroke volume and work, and increasing ejection fraction. An increased amount of spongy myocardium led to an increased stroke volume, work, and ejection fraction. Varying sinus-trabeculae volume fractions within the spongy myocardium showed that an increased sinus volume fraction led to an increased stroke volume and work, and a decreased ejection fraction.
Collapse
Affiliation(s)
- Petra Kochová
- European Centre of Excellence NTIS-New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic.
| | - Robert Cimrman
- New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic.
| | - Milan Štengl
- Department of Physiology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Lidická 1, 301 66 Pilsen, Czech Republic.
| | - Bohuslav Ošťádal
- Instutite of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Zbyněk Tonar
- European Centre of Excellence NTIS-New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic.
| |
Collapse
|
14
|
Shiels HA, Galli GL. The Sarcoplasmic Reticulum and the Evolution of the Vertebrate Heart. Physiology (Bethesda) 2014; 29:456-69. [DOI: 10.1152/physiol.00015.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sarcoplasmic reticulum (SR) is crucial for contraction and relaxation of the mammalian cardiomyocyte, but its role in other vertebrate classes is equivocal. Recent evidence suggests differences in SR function across species may have an underlying structural basis. Here, we discuss how SR recruitment relates to the structural organization of the cardiomyocyte to provide new insight into the evolution of cardiac design and function in vertebrates.
Collapse
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Gina L.J. Galli
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Nitric oxide improves the hemodynamic performance of the hypoxic goldfish (Carassius auratus) heart. Nitric Oxide 2014; 42:24-31. [DOI: 10.1016/j.niox.2014.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 11/24/2022]
|
16
|
Jensen B, Moorman AFM, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc 2013; 89:302-36. [DOI: 10.1111/brv.12056] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Bjarke Jensen
- Department of Bioscience, Zoophysiology; Aarhus University; Aarhus C 8000 Denmark
- Department of Anatomy, Embryology & Physiology, Academic Medical Center; University of Amsterdam; Amsterdam 1105 The Netherlands
| | - Antoon F. M. Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Center; University of Amsterdam; Amsterdam 1105 The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology; Aarhus University; Aarhus C 8000 Denmark
| |
Collapse
|
17
|
Amelio D, Garofalo F, Capria C, Tota B, Imbrogno S. Effects of temperature on the nitric oxide-dependent modulation of the Frank-Starling mechanism: the fish heart as a case study. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:356-62. [PMID: 23123761 DOI: 10.1016/j.cbpa.2012.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023]
Abstract
The Frank-Starling law is a fundamental property of the vertebrate myocardium which allows, when the end-diastolic volume increases, that the consequent stretch of the myocardial fibers generates a more forceful contraction. It has been shown that in the eel (Anguilla anguilla) heart, nitric oxide (NO) exerts a direct myocardial relaxant effect, increasing the sensitivity of the Frank-Starling response (Garofalo et al., 2009). With the use of isolated working heart preparations, this study investigated the relationship between NO modulation of Frank-Starling response and temperature challenges in the eel. The results showed that while, in long-term acclimated fish (spring animals perfused at 20 °C and winter animals perfused at 10 °C) the inhibition of NO production by L-N5 (1-iminoethyl)ornithine (L-NIO) significantly reduced the Frank-Starling response, under thermal shock conditions (spring animals perfused at 10 or 15 °C and winter animals perfused at 15 or 20 °C) L-NIO treatment resulted without effect. Western blotting analysis revealed a decrease of peNOS and pAkt expressions in samples subjected to thermal shock. Moreover, an increase in Hsp90 protein levels was observed under heat thermal stress. Together, these data suggest that the NO synthase/NO-dependent modulation of the Frank-Starling mechanism in fish is sensitive to thermal stress.
Collapse
Affiliation(s)
- D Amelio
- Dept. of Cell Biology, University of Calabria, Italy
| | | | | | | | | |
Collapse
|
18
|
Cerra MC, Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 2012; 205:9-25. [PMID: 22463608 DOI: 10.1111/j.1748-1716.2012.02389.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholamban (PLN) is a small phosphoprotein closely associated with the cardiac sarcoplasmic reticulum (SR). Dephosphorylated PLN tonically inhibits the SR Ca-ATPase (SERCA2a), while phosphorylation at Ser16 by PKA and Thr17 by Ca(2+) /calmodulin-dependent protein kinase (CaMKII) relieves the inhibition, and this increases SR Ca(2+) uptake. For this reason, PLN is one of the major determinants of cardiac contractility and relaxation. In this review, we attempted to highlight the functional significance of PLN in vertebrate cardiac physiology. We will refer to the huge literature on mammals in order to describe the molecular characteristics of this protein, its interaction with SERCA2a and its role in the regulation of the mechanic and the electric performance of the heart under basal conditions, in the presence of chemical and physical stresses, such as β-adrenergic stimulation, response to stretch, force-frequency relationship and intracellular acidosis. Our aim is to provide the basis to discuss the role of PLN also on the cardiac function of nonmammalian vertebrates, because so far this aspect has been almost neglected. Accordingly, when possible, the literature on PLN will be analysed taking into account the nonuniform cardiac structural and functional characteristics encountered in ectothermic vertebrates, such as the peculiar and variable organization of the SR, the large spectrum of response to stresses and the disaptive absence of crucial proteins (i.e. haemoglobinless and myoglobinless species).
Collapse
Affiliation(s)
| | - S. Imbrogno
- Department of Cell Biology; University of Calabria; Arcavacata di Rende (CS); Italy
| |
Collapse
|
19
|
Landeira-Fernandez AM, Castilho PC, Block BA. Thermal dependence of cardiac SR Ca2+-ATPase from fish and mammals. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Cerra MC, Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 2012. [DOI: 10.1111/j.1748-1716.2011.02389.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - S. Imbrogno
- Department of Cell Biology; University of Calabria; Arcavacata di Rende (CS); Italy
| |
Collapse
|
21
|
Da Silva D, Costa DCF, Alves CM, Block BA, Landeira-Fernandez AM. Temperature dependence of cardiac sarcoplasmic reticulum Ca²⁺-ATPase from rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2011; 79:789-800. [PMID: 21884113 DOI: 10.1111/j.1095-8649.2011.03076.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, the temperature dependence of the sarco-endoplasmic reticulum Ca(2+) -ATPase (SERCA2) activity from rainbow trout Oncorhynchus mykiss cardiac ventricles was measured and compared with the mammalian SERCA2 isoform. The rate of ATP-dependent Ca(2+) transport catalysed by O. mykiss vesicles was totally abolished by thapsigargin and the Ca(2+) ionophore A(23187) . At warm temperatures (25 and 30° C), the SERCA2 from O. mykiss ventricles displayed the same rate of Ca(2+) uptake. At 35° C, the activity of the O. mykiss enzyme decreased after 20 min of reaction time. The rate of Ca(2+) uptake catalysed by the mammalian SERCA2 was temperature dependent exhibiting its maximal activity at 35° C. In contrast to the rate of Ca(2+) uptake, the rate of ATP hydrolysis catalysed by O. mykiss SERCA2 was not significantly different at 25 and 35° C, but the rate of ATP hydrolysis catalysed by the rat Rattus norvegicus SERCA2 isoform at 35° C was two-fold higher than at 25° C. At low temperatures (5 to 20° C), the rate of Ca(2+) uptake from O. mykiss SR was less temperature dependent than the R. norvegicus isoform, being able to sustain a high activity even at 5° C. The mean ±s.e. Q(10) values calculated from 25 to 35° C for ATP hydrolysis were 1·112 ± 0·026 (n = 3) and 2·759 ± 0·240 (n = 5) for O. mykiss and R. norvegicus, respectively. Taken together, the results show that the O. mykiss SERCA2 was not temperature dependent over the 10 to 25° C temperature interval commonly experienced by the animal in vivo. The Q(10) value of SERCA2 was significantly lower in O. mykiss than R. norvegicus which may be key for cardiac function over the wide environmental temperatures experienced in this eurythermal fish.
Collapse
Affiliation(s)
- D Da Silva
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho, 373, Bl H2-sl 025, CCS/ICB/UFRJ Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | |
Collapse
|
22
|
Coxon SE, Davison W. Structure and function of the velar muscle in the New Zealand hagfish Eptatretus cirrhatus: response to temperature change and hypoxia. JOURNAL OF FISH BIOLOGY 2011; 79:280-289. [PMID: 21722124 DOI: 10.1111/j.1095-8649.2011.03028.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The rate of velar movement in Eptatretus cirrhatus, as determined by electromyography, increased with Q(10) 3·2 during exposure to temperatures between 7 and 19° C and increased 3·9 fold during exposure to hypoxia (oxygen partial pressure = 6·67 kPa). This confirms the role of the velum in generating respiratory currents and modification of its activity in response to changes in metabolic demand or environmental oxygen availability. The maximum velar rate observed was 168 beats min(-1) , higher than that recorded in any hagfish species to date. Fibres of musculus craniovelaris were exclusively small, red (slow-twitch) fibres, consistent with a high aerobic capacity required by fibres involved in rhythmic, ongoing activity.
Collapse
Affiliation(s)
- S E Coxon
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | |
Collapse
|
23
|
Iorga B, Neacsu CD, Neiss WF, Wagener R, Paulsson M, Stehle R, Pfitzer G. Micromechanical function of myofibrils isolated from skeletal and cardiac muscles of the zebrafish. ACTA ACUST UNITED AC 2011; 137:255-70. [PMID: 21357732 PMCID: PMC3047611 DOI: 10.1085/jgp.201010568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zebrafish is a potentially important and cost-effective model for studies of development, motility, regeneration, and inherited human diseases. The object of our work was to show whether myofibrils isolated from zebrafish striated muscle represent a valid subcellular contractile model. These organelles, which determine contractile function in muscle, were used in a fast kinetic mechanical technique based on an atomic force probe and video microscopy. Mechanical variables measured included rate constants of force development (kACT) after Ca2+ activation and of force decay (τREL−1) during relaxation upon Ca2+ removal, isometric force at maximal (Fmax) or partial Ca2+ activations, and force response to an external stretch applied to the relaxed myofibril (Fpass). Myotomal myofibrils from larvae developed greater active and passive forces, and contracted and relaxed faster than skeletal myofibrils from adult zebrafish, indicating developmental changes in the contractile organelles of the myotomal muscles. Compared with murine cardiac myofibrils, measurements of adult zebrafish ventricular myofibrils show that kACT, Fmax, Ca2+ sensitivity of the force, and Fpass were comparable and τREL−1 was smaller. These results suggest that cardiac myofibrils from zebrafish, like those from mice, are suitable contractile models to study cardiac function at the sarcomeric level. The results prove the practicability and usefulness of mechanical and kinetic investigations on myofibrils isolated from larval and adult zebrafish muscles. This novel approach for investigating myotomal and myocardial function in zebrafish at the subcellular level, combined with the powerful genetic manipulations that are possible in the zebrafish, will allow the investigation of the functional primary consequences of human disease–related mutations in sarcomeric proteins in the zebrafish model.
Collapse
Affiliation(s)
- Bogdan Iorga
- Institute of Vegetative Physiology, University of Cologne, Cologne 50931, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Galli GLJ, Lipnick MS, Shiels HA, Block BA. Temperature effects on Ca2+ cycling in scombrid cardiomyocytes: a phylogenetic comparison. J Exp Biol 2011; 214:1068-76. [PMID: 21389190 PMCID: PMC3052253 DOI: 10.1242/jeb.048231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 11/20/2022]
Abstract
Specialisations in excitation-contraction coupling may have played an important role in the evolution of endothermy and high cardiac performance in scombrid fishes. We examined aspects of Ca(2+) handling in cardiomyocytes from Pacific bonito (Sarda chiliensis), Pacific mackerel (Scomber japonicus), yellowfin tuna (Thunnus albacares) and Pacific bluefin tuna (Thunnus orientalis). The whole-cell voltage-clamp technique was used to measure the temperature sensitivity of the L-type Ca(2+) channel current (I(Ca)), density, and steady-state and maximal sarcoplasmic reticulum (SR) Ca(2+) content (ssSR(load) and maxSR(load)). Current-voltage relations, peak I(Ca) density and charge density of I(Ca) were greatest in mackerel and yellowfin at all temperatures tested. I(Ca) density and kinetics were temperature sensitive in all species studied, and the magnitude of this response was not related to the thermal preference of the species. SR(load) was greater in atrial than in ventricular myocytes in the Pacific bluefin tuna, and in species that are more cold tolerant (bluefin tuna and mackerel). I(Ca) and SR(load) were particularly small in bonito, suggesting the Na(+)/Ca(2+) exchanger plays a more pivotal role in Ca(2+) entry into cardiomyocytes of this species. Our comparative approach reveals that the SR of cold-tolerant scombrid fishes has a greater capacity for Ca(2+) storage. This specialisation may contribute to the temperature tolerance and thermal niche expansion of the bluefin tuna and mackerel.
Collapse
Affiliation(s)
- Gina L J Galli
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
25
|
Tota B, Angelone T, Mancardi D, Cerra MC. Hypoxia and anoxia tolerance of vertebrate hearts: an evolutionary perspective. Antioxid Redox Signal 2011; 14:851-62. [PMID: 20518703 DOI: 10.1089/ars.2010.3310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extreme changes in environmental oxygen (O(2)) is a constant issue that ectotherm vertebrates have to deal with, whereas for endotherms severe hypoxia and reoxygenation are usually related to a pathological state. The physiological mechanisms of hypoxia tolerance in ectotherms are based on biochemical evolutionary adaptations and may serve in understanding endogenous phenomena of protection against diminished O(2) availability in the heart. In this review, we will, therefore, describe different species of fish, amphibian, and reptile that are well-known examples of cardiac tolerance to O(2) deficiency. We will then focus on a subset of Antarctic fishes which have lost physiological transporters of O(2) such as hemoglobin and myoglobin (Mb) and that have reached a surprising adaptation to this extreme environment. Moreover, we will concentrate on the cardio-protective effects of the interaction between Mb and nitric oxide with particular emphasis on the nitrite-reductase function of Mb. Finally, the role of a recently described gasotransmitter, the free diffusible hydrogen sulfide, will be briefly discussed in relation to hypoxia. This evolutionary and comparative perspective may provide a useful and heuristic stimulus for medically oriented research aimed at elucidating the environmental and genetic risk factors underlying the vulnerability of the human heart.
Collapse
Affiliation(s)
- Bruno Tota
- Laboratory of Cardiovascular Physiology, Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
26
|
Shiels HA, Di Maio A, Thompson S, Block BA. Warm fish with cold hearts: thermal plasticity of excitation-contraction coupling in bluefin tuna. Proc Biol Sci 2010; 278:18-27. [PMID: 20667881 DOI: 10.1098/rspb.2010.1274] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac function in the cold despite the elevated metabolic demands of endothermic tissues. In this study, we used laser scanning confocal microscopy and electron microscopy to investigate how acute and chronic temperature change affects tuna cardiac function. We examined the temporal and spatial properties of the intracellular Ca2+ transient (Δ[Ca2+]i) in Pacific bluefin tuna (Thunnus orientalis) ventricular myocytes at the acclimation temperatures of 14°C and 24°C and at a common test temperature of 19°C. Acute (less than 5 min) warming and cooling accelerated and slowed the kinetics of Δ[Ca2+]i, indicating that temperature change limits cardiac myocyte performance. Importantly, we show that thermal acclimation offered partial compensation for these direct effects of temperature. Prolonged cold exposure (more than four weeks) increased the amplitude and kinetics of Δ[Ca2+]i by increasing intracellular Ca2+ cycling through the sarcoplasmic reticulum (SR). These functional findings are supported by electron microscopy, which revealed a greater volume fraction of ventricular SR in cold-acclimated tuna myocytes. The results indicate that SR function is crucial to the performance of the bluefin tuna heart in the cold. We suggest that SR Ca2+ cycling is the malleable unit of cellular Ca2+ flux, offering a mechanism for thermal plasticity in fish hearts. These findings have implications beyond endothermic fish and may help to delineate the key steps required to protect vertebrate cardiac function in the cold.
Collapse
Affiliation(s)
- H A Shiels
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
27
|
Abstract
Heart failure is a chronic progressive disorder in which frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance are developing vectors and delivery methods that can efficiently transduce most of the cardiomyocytes that can offer a long-term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
28
|
Pieperhoff S, Bennett W, Farrell AP. The intercellular organization of the two muscular systems in the adult salmonid heart, the compact and the spongy myocardium. J Anat 2009; 215:536-47. [PMID: 19627390 PMCID: PMC2780571 DOI: 10.1111/j.1469-7580.2009.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2009] [Indexed: 01/12/2023] Open
Abstract
The ventricle of the salmonid heart consists of an outer compact layer of circumferentially arranged cardiomyocytes encasing a spongy myocardium that spans the lumen of the ventricle with a fine arrangement of muscular trabeculae. While many studies have detailed the anatomical structure of fish hearts, few have considered how these two cardiac muscle architectures are attached to form a functional working unit. The present study considers how the spindle-like cardiomyocytes, unlike the more rectangular structure of adult mammalian cardiomyocytes, form perpendicular connections between the two muscle layers that withstand the mechanical forces generated during cardiac systole and permit a simultaneous, coordinated contraction of both ventricular components. Therefore, hearts of rainbow trout (Oncorhynchus mykiss) and sockeye salmon (Oncorhynchus nerka) were investigated in detail using scanning electron microscopy (SEM) and various light microscopic techniques. In contrast to earlier suggestions, we found no evidence for a distinct connective tissue layer between the two muscle architectures that might 'glue' together the compact and the spongy myocardium. Instead, the contact layer between the compact and the spongy myocardium was characterized by a significantly higher amount of desmosome-like (D) and fascia adhaerens-like (FA) adhering junctions compared with either region alone. In addition, we observed that the trabeculae form muscular sheets of fairly uniform thickness and variable width rather than thick cylinders of variable diameter. This sheet-like trabecular anatomy would minimize diffusion distance while maximizing the area of contact between the trabecular muscle and the venous blood as well as the muscle tension generated by a single trabecular sheet.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
29
|
Birkedal R, Christopher J, Thistlethwaite A, Shiels HA. Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart. J Comp Physiol B 2009; 179:961-9. [PMID: 19544062 DOI: 10.1007/s00360-009-0377-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
Abstract
In cardiomyocytes, ryanodine receptors (RYRs) mediate Ca(2+)-induced Ca(2+)-release (CICR) from the sarcoplasmic reticulum (SR) during excitation-contraction (e-c) coupling. In rainbow trout heart, the relative importance of CICR increases with cold-acclimation. Thus, the aim of this study was to investigate the effect of temperature acclimation (4, 11 and 18 degrees C) on RYR intracellular localization and expression density. We used immunocytochemistry to assess intracellular localization in ventricular myocytes and Western blotting to assess RYR expression in both atrial and ventricular tissue. In ventricular myocytes, RYRs were localized peripherally in transverse bands aligning with sarcomeric m-lines and centrally around mitochondria and the nucleus. Localization did not change with temperature acclimation. RYR expression was also unaffected by temperature acclimation. The localization of RYRs at the m-line is similar to neonatal mammalian cardiomyocytes. We suggest this positioning is indicative of myocytes which rely predominantly on transsarcolemmal Ca(2+)-influx, rather than CICR, during e-c coupling.
Collapse
Affiliation(s)
- Rikke Birkedal
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility 46 Grafton Street, Manchester, M13 9NT, UK.
| | | | | | | |
Collapse
|
30
|
Garofalo F, Parisella ML, Amelio D, Tota B, Imbrogno S. Phospholamban S-nitrosylation modulates Starling response in fish heart. Proc Biol Sci 2009; 276:4043-52. [PMID: 19726482 DOI: 10.1098/rspb.2009.1189] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Frank-Starling mechanism is a fundamental property of the vertebrate heart, which allows the myocardium to respond to increased filling pressure with a more vigorous contraction of its lengthened fibres. In mammals, myocardial stretch increases cardiac nitric oxide (NO) release from both vascular endothelium and cardiomyocytes. This facilitates myocardial relaxation and ventricular diastolic distensibility, thus influencing the Frank-Starling mechanism. In the in vitro working heart of the eel Anguilla anguilla, we previously showed that an endogenous NO release affects the Frank-Starling response making the heart more sensitive to preload. Using the same bioassay, we now demonstrate that this effect is confirmed in the presence of the exogenous NO donor S-nitroso-N-acetyl penicillamine, is independent from endocardial endothelium and guanylate cyclase/cGMP/protein kinase G and cAMP/protein kinase A pathways, involves a PI(3)kinase-mediated activation of endothelial NO synthase and a modulation of the SR-CA(2+)ATPase (SERCA2a) pumps. Furthermore, we show that NO influences cardiac response to preload through S-nitrosylation of phospholamban and consequent activation of SERCA2a. This suggests that in the fish heart NO modulates the Frank-Starling response through a beat-to-beat regulation of calcium reuptake and thus of myocardial relaxation. We propose that this mechanism represents an important evolutionary step for the stretch-induced intrinsic regulation of the vertebrate heart, providing, at the same time, a stimulus for mammalian-oriented studies.
Collapse
Affiliation(s)
- F Garofalo
- Department of Cell Biology, University of Calabria, , 87030 Arcavacata di Rende, Cosenza, Italy
| | | | | | | | | |
Collapse
|