1
|
Adams JC, Tucker RP. The evolution of tenascins. BMC Ecol Evol 2024; 24:121. [PMID: 39277743 PMCID: PMC11401434 DOI: 10.1186/s12862-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The evolution of extracellular matrix is tightly linked to the evolution of organogenesis in metazoans. Tenascins are extracellular matrix glycoproteins of chordates that participate in integrin-signaling and morphogenetic events. Single tenascins are encoded by invertebrate chordates, and multiple tenascin paralogs are found in vertebrates (designated tenascin-C, tenascin-R, tenascin-W and tenascin-X) yet, overall, the evolution of this family has remained unclear. RESULTS This study examines the genomes of hemichordates, cephalochordates, tunicates, agnathans, cartilaginous fishes, lobe-finned fishes, ray-finned fishes and representative tetrapods to identify predicted tenascin proteins. We comprehensively assess their evolutionary relationships by sequence conservation, molecular phylogeny and examination of conservation of synteny of the encoding genes. The resulting new evolutionary model posits the origin of tenascin in an ancestral chordate, with tenascin-C-like and tenascin-R-like paralogs emerging after a whole genome duplication event in an ancestral vertebrate. Tenascin-X appeared following a second round of whole genome duplication in an ancestral gnathostome, most likely from duplication of the gene encoding the tenascin-R homolog. The fourth gene, encoding tenascin-W (also known as tenascin-N), apparently arose from a local duplication of tenascin-R. CONCLUSIONS The diversity of tenascin paralogs observed in agnathans and gnathostomes has evolved through selective retention of novel genes that arose from a combination of whole genome and local duplication events. The evolutionary appearance of specific tenascin paralogs coincides with the appearance of vertebrate-specific cell and tissue types where the paralogs are abundantly expressed, such as the endocranium and facial skeleton (tenascin-C), an expanded central nervous system (tenascin-R), and bone (tenascin-W).
Collapse
Affiliation(s)
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Zhang T, Wan L, Xiao H, Wang L, Hu J, Lu H. Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation. eLife 2023; 12:e85873. [PMID: 37698466 PMCID: PMC10513478 DOI: 10.7554/elife.85873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/10/2023] [Indexed: 09/13/2023] Open
Abstract
The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open-source GSE182997 datasets (three samples) provided by Fang et al., we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And, we furtherly performed single-cell spatial transcriptomic sequencing on postnatal day 1 mouse enthesis, in order to deconvolute bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital Central South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
3
|
Wei H, Bi Y, Wang Y, Zhao Q, Zhang R, Li J, Bao J. Serum bone remodeling parameters and transcriptome profiling reveal abnormal bone metabolism associated with keel bone fractures in laying hens. Poult Sci 2022; 102:102438. [PMID: 36780704 PMCID: PMC9947423 DOI: 10.1016/j.psj.2022.102438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Keel bone fractures affect welfare, health, and production performance in laying hens. A total of one hundred and twenty 35-wk-old Hy-line Brown laying hens with normal keel (NK) bone were housed in furnished cages and studied for ten weeks to investigate the underlying mechanism of keel bone fractures. At 45 wk of age, the keel bone state of birds was assessed by palpation and X-ray, and laying hens were recognized as NK and fractured keel (FK) birds according to the presence or absence of fractures in keel bone. The serum samples of 10 NK and 10 FK birds were collected to determine bone metabolism-related indexes and slaughtered to collect keel bones for RNA-sequencing (RNA-seq), Micro-CT, and histopathological staining analyses. The results showed that the concentrations of Ca, phosphorus, calcitonin, 25-hydroxyvitamin D3, and osteocalcin and activities of alkaline phosphatase and tartrate-resistant acid phosphatase (TRAP) in serum samples of FK birds were lower than those of NK birds (P < 0.05), but the concentrations of parathyroid hormone, osteoprotegerin, and corticosterone in serum samples of FK birds were higher than those of NK birds (P < 0.05). TRAP staining displayed that FK bone increased the number of osteoclasts (P < 0.05). Micro-CT analysis indicated that FK bone decreased bone mineral density (P < 0.05). Transcriptome sequencing analysis of NK and FK bones identified 214 differentially expressed genes (DEGs) (|log2FoldChange| > 1, P < 0.05), among which 88 were upregulated and 126 downregulated. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis indicated that 14 DEGs related to skeletal muscle movement and bone Ca transport (COL6A1, COL6A2, COL6A3, PDGFA, MYLK2, EGF, CAV3, ADRA1D, BDKRB1, CACNA1S, TNN, TNNC1, TNNC2, and RYR3) were enriched in focal adhesion and Ca signaling pathway, regulating bone quality. This study suggests that abnormal bone metabolism related to keel bone fractures is possibly responded to fracture healing in laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
4
|
Tucker RP, Degen M. Revisiting the Tenascins: Exploitable as Cancer Targets? Front Oncol 2022; 12:908247. [PMID: 35785162 PMCID: PMC9248440 DOI: 10.3389/fonc.2022.908247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
For their full manifestation, tumors require support from the surrounding tumor microenvironment (TME), which includes a specific extracellular matrix (ECM), vasculature, and a variety of non-malignant host cells. Together, these components form a tumor-permissive niche that significantly differs from physiological conditions. While the TME helps to promote tumor progression, its special composition also provides potential targets for anti-cancer therapy. Targeting tumor-specific ECM molecules and stromal cells or disrupting aberrant mesenchyme-cancer communications might normalize the TME and improve cancer treatment outcome. The tenascins are a family of large, multifunctional extracellular glycoproteins consisting of four members. Although each have been described to be expressed in the ECM surrounding cancer cells, tenascin-C and tenascin-W are currently the most promising candidates for exploitability and clinical use as they are highly expressed in various tumor stroma with relatively low abundance in healthy tissues. Here, we review what is known about expression of all four tenascin family members in tumors, followed by a more thorough discussion on tenascin-C and tenascin-W focusing on their oncogenic functions and their potential as diagnostic and/or targetable molecules for anti-cancer treatment purposes.
Collapse
Affiliation(s)
- Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- *Correspondence: Martin Degen,
| |
Collapse
|
5
|
Hendaoui I, Lahmar A, Campo L, Mebarki S, Bichet S, Hess D, Degen M, Kchir N, Charrada-Ben Farhat L, Hefaiedh R, Ruiz C, Terracciano LM, Tucker RP, Hendaoui L, Chiquet-Ehrismann R. Tenascin-W Is a Novel Stromal Marker in Biliary Tract Cancers. Front Immunol 2021; 11:630139. [PMID: 33692777 PMCID: PMC7937617 DOI: 10.3389/fimmu.2020.630139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023] Open
Abstract
Extrahepatic cancers of the biliary system are typically asymptomatic until after metastasis, which contributes to their poor prognosis. Here we examined intrahepatic cholangiocarcinomas (n = 8), carcinomas of perihilar bile ducts (n = 7), carcinomas of the gallbladder (n = 11) and hepatic metastasis from carcinomas of the gallbladder (n = 4) for the expression of the extracellular matrix glycoproteins tenascin-C and tenascin-W. Anti-tenascin-C and anti-tenascin-W immunoreactivity was found in all biliary tract tumors examined. Unlike tenascin-C, tenascin-W was not detected in normal hepatobiliary tissue. Tenascin-W was also expressed by the cholangiocarcinoma-derived cell line Huh-28. However, co-culture of Huh-28 cells with immortalized bone marrow-derived stromal cells was necessary for the formation and organization of tenascin-W fibrils in vitro. Our results indicate that tenascin-W may be a novel marker of hepatobiliary tumor stroma, and its absence from many normal tissues suggests that it may be a potential target for biotherapies.
Collapse
Affiliation(s)
- Ismaïl Hendaoui
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahlem Lahmar
- Department of Pathology, Mongi Slim University Hospital, La Marsa, Tunisia
- Medical School, University of Tunis El Manar, Tunis, Tunisia
| | - Luca Campo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sihem Mebarki
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sandrine Bichet
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Nidhameddine Kchir
- Medical School, University of Tunis El Manar, Tunis, Tunisia
- Pathology Department, La Rabta University Hospital, Tunis, Tunisia
| | - Leila Charrada-Ben Farhat
- Medical School, University of Tunis El Manar, Tunis, Tunisia
- Department of Diagnostic and Interventional Radiology, Mongi Slim University Hospital, La Marsa, Tunisia
| | - Rania Hefaiedh
- Department of Hepato-gastro-enterology, Mongi Slim University Hospital, Tunis, Tunisia
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, United States
| | - Lotfi Hendaoui
- Medical School, University of Tunis El Manar, Tunis, Tunisia
- Department of Diagnostic and Interventional Radiology, Mongi Slim University Hospital, La Marsa, Tunisia
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Degen M, Scherberich A, Tucker RP. Tenascin-W: Discovery, Evolution, and Future Prospects. Front Immunol 2021; 11:623305. [PMID: 33603752 PMCID: PMC7884750 DOI: 10.3389/fimmu.2020.623305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Of the four tenascins found in bony fish and tetrapods, tenascin-W is the least understood. It was first discovered in the zebrafish and later in mouse, where it was mistakenly named tenascin-N. Tenascin-W is expressed primarily in developing and mature bone, in a subset of stem cell niches, and in the stroma of many solid tumors. Phylogenetic studies show that it is the most recent tenascin to evolve, appearing first in bony fishes. Its expression in bone and the timing of its evolutionary appearance should direct future studies to its role in bone formation, in stem cell niches, and in the treatment and detection of cancer.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Arnaud Scherberich
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, United States
| |
Collapse
|
7
|
Tucker RP, Degen M. The Expression and Possible Functions of Tenascin-W During Development and Disease. Front Cell Dev Biol 2019; 7:53. [PMID: 31032255 PMCID: PMC6473177 DOI: 10.3389/fcell.2019.00053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 01/18/2023] Open
Abstract
Tenascins are a family of multifunctional glycoproteins found in the extracellular matrix of chordates. Two of the tenascins, tenascin-C and tenascin-W, form hexabrachions. In this review, we describe the discovery and domain architecture of tenascin-W, its evolution and patterns of expression during embryogenesis and in tumors, and its effects on cells in culture. In avian and mammalian embryos tenascin-W is primarily expressed at sites of osteogenesis, and in the adult tenascin-W is abundant in certain stem cell niches. In primary cultures of osteoblasts tenascin-W promotes cell migration, the formation of mineralized foci and increases alkaline phosphatase activity. Tenascin-W is also prominent in many solid tumors, yet it is missing from the extracellular matrix of most adult tissues. This makes it a potential candidate for use as a marker of tumor stroma and a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Bierbaum S, Hintze V, Scharnweber D. 2.8 Artificial Extracellular Matrices to Functionalize Biomaterial Surfaces ☆. COMPREHENSIVE BIOMATERIALS II 2017:147-178. [DOI: 10.1016/b978-0-12-803581-8.10206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Abstract
Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an “oncofetal” protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog
- ALK, anaplastic lymphoma kinase
- AP-1, activator protein-1
- ATF, activating transcription factor
- BMP, bone morphogenetic protein
- CBP, CREB binding protein
- CREB, cAMP response element-binding protein
- CREB-RP, CREB-related protein
- CYP21A2, cytochrome P450 family 21 subfamily A polypeptide 2
- ChIP, chromatin immunoprecipitation
- EBS, Ets binding site
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ERK1/2, extracellular signal-regulated kinase 1/2
- ETS, E26 transformation-specific
- EWS-ETS, Ewing sarcoma-Ets fusion protein
- Evx1, even skipped homeobox 1
- FGF, fibroblast growth factor
- HBS, homeodomain binding sequence
- IL, interleukin
- ILK, integrin-linked kinase
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MHCIII, major histocompatibility complex class III
- MKL1, megakaryoblastic leukemia-1
- NFκB, nuclear factor kappa B
- NGF, nerve growth factor; NFAT, nuclear factor of activated T-cells
- OTX2, orthodenticle homolog 2
- PDGF, platelet-derived growth factor
- PI3K, phosphatidylinositol 3-kinase
- POU3F2, POU domain class 3 transcription factor 2
- PRRX1, paired-related homeobox 1
- RBPJk, recombining binding protein suppressor of hairless
- ROCK, Rho-associated, coiled-coil-containing protein kinase
- RhoA, ras homolog gene family member A
- SAP, SAF-A/B, Acinus, and PIAS
- SCX, scleraxix
- SEAP, secreted alkaline phosphatase
- SMAD, small body size - mothers against decapentaplegic
- SOX4, sex determining region Y-box 4
- SRE, serum response element
- SRF, serum response factor
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-β
- TNC, tenascin-C
- TNF-α, tumor necrosis factor-α
- TNR, tenascin-R
- TNW, tenascin-W
- TNX, tenascin-X
- TSS, transcription start site
- UTR, untranslated region
- WNT, wingless-related integration site
- cancer
- cytokine
- development
- extracellular matrix
- gene promoter
- gene regulation
- glucocorticoid
- growth factor
- homeobox gene
- matricellular
- mechanical stress
- miR, micro RNA
- p38 MAPK, p38 mitogen activated protein kinase
- tenascin
- transcription factor
Collapse
Affiliation(s)
- Francesca Chiovaro
- a Friedrich Miescher Institute for Biomedical Research ; Basel , Switzerland
| | | | | |
Collapse
|
10
|
Abstract
Tenascins are extracellular matrix glycoproteins that act both as integrin ligands and as modifiers of fibronectin-integrin interactions to regulate cell adhesion, migration, proliferation and differentiation. In tetrapods, both tenascins and fibronectin bind to integrins via RGD and LDV-type tripeptide motifs found in exposed loops in their fibronectin-type III domains. We previously showed that tenascins appeared early in the chordate lineage and are represented by single genes in extant cephalochordates and tunicates. Here we have examined the genomes of the coelacanth Latimeria chalumnae, the elephant shark Callorhinchus milii as well as the lampreys Petromyzon marinus and Lethenteron japonicum to learn more about the evolution of the tenascin gene family as well as the timing of the appearance of fibronectin during chordate evolution. The coelacanth has 4 tenascins that are more similar to tetrapod tenascins than are tenascins from ray-finned fishes. In contrast, only 2 tenascins were identified in the elephant shark and the Japanese lamprey L. japonicum. An RGD motif exposed to integrin binding is observed in tenascins from many, but not all, classes of chordates. Tetrapods that lack this RGD motif in tenascin-C have a similar motif in the paralog tenascin-W, suggesting the potential for some overlapping function. A predicted fibronectin with the same domain organization as the fibronectin from tetrapods is found in the sea lamprey P. marinus but not in tunicates, leading us to infer that fibronectin first appeared in vertebrates. The motifs that recognize LDV-type integrin receptors are conserved in fibronectins from a broad spectrum of vertebrates, but the RGD integrin-binding motif may have evolved in gnathostomes.
Collapse
|
11
|
Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS. Tenascins in stem cell niches. Matrix Biol 2014; 37:112-23. [DOI: 10.1016/j.matbio.2014.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
|
12
|
Chatakun P, Núñez-Toldrà R, Díaz López EJ, Gil-Recio C, Martínez-Sarrà E, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 2014; 71:113-42. [PMID: 23568025 PMCID: PMC11113514 DOI: 10.1007/s00018-013-1326-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/04/2023]
Abstract
Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.
Collapse
Affiliation(s)
- P. Chatakun
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Police General Hospital, Bangkok, Thailand
| | - R. Núñez-Toldrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. J. Díaz López
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - C. Gil-Recio
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Martínez-Sarrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - F. Hernández-Alfaro
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Ferrés-Padró
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
- Oral and Maxillofacial Surgery Department, Fundacio Hospital de Nens de Barcelona, Barcelona, Spain
| | - L. Giner-Tarrida
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M. Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
13
|
Capra V, Severino M, Rossi A, Nozza P, Doneda C, Perri K, Pavanello M, Fiorio P, Gimelli G, Tassano E, Di Battista E. Pituitary deficiency and congenital infiltrating lipomatosis of the face in a girl with deletion of chromosome 1q24.3q31.1. Am J Med Genet A 2013; 164A:495-9. [DOI: 10.1002/ajmg.a.36283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/14/2013] [Indexed: 01/19/2023]
Affiliation(s)
- V. Capra
- U.O. Neurochirurgia; Istituto G. Gaslini; Genova Italy
| | - M. Severino
- Dipartimento di Neuroradiologia; Istituto G. Gaslini; Genova Italy
| | - A. Rossi
- Dipartimento di Neuroradiologia; Istituto G. Gaslini; Genova Italy
| | - P. Nozza
- U.O. Anatomia Patologica; Istituto G. Gaslini; Genova Italy
| | - C. Doneda
- Dipartimento di Radiologia e Neuroradiologia; Ospedale dei bambini V. Buzzi; Milano Italy
| | - K. Perri
- Clinica Pediatrica; Istituto G. Gaslini; Università di Genova; Genova Italy
| | - M. Pavanello
- U.O. Neurochirurgia; Istituto G. Gaslini; Genova Italy
| | - P. Fiorio
- Laboratorio di Citogenetica; Istituto G. Gaslini; Genova Italy
| | - G. Gimelli
- Laboratorio di Citogenetica; Istituto G. Gaslini; Genova Italy
| | - E. Tassano
- Laboratorio di Citogenetica; Istituto G. Gaslini; Genova Italy
| | - E. Di Battista
- Clinica Pediatrica; Istituto G. Gaslini; Università di Genova; Genova Italy
| |
Collapse
|
14
|
Brenner M, Laragione T, Gulko PS. Analyses of synovial tissues from arthritic and protected congenic rat strains reveal a new core set of genes associated with disease severity. Physiol Genomics 2013; 45:1109-22. [PMID: 24046282 DOI: 10.1152/physiolgenomics.00108.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Little is known about the genes regulating disease severity and joint damage in rheumatoid arthritis (RA). In the present study we analyzed the gene expression characteristics of synovial tissues from four different strains congenic for non-MHC loci that develop mild and nonerosive arthritis compared with severe and erosive DA rats. DA.F344(Cia3d), DA.F344(Cia5a), DA.ACI(Cia10), and DA.ACI(Cia25) rats developed mild arthritis compared with DA. We found 685 genes with significantly different expression between congenics and DA, independent of the specific congenic interval, suggesting that these genes represent a new nongenetic core group of mediators of arthritis severity. This core group includes genes not previously implicated or with unclear role in arthritis severity, such as Tnn, Clec4m, and Spond1 among others, increased in DA. The core genes also included Scd1, Selenbp1, and Slc7a10, increased in congenics. Genes implicated in nuclear receptor activity, xenobiotic and lipid metabolism were also increased in the congenics, correlating with protection. Several disease mediators were among the core genes reduced in congenics, including IL-6, IL-17, and Ccl2. Analyses of upstream regulators (genes, pathways, or chemicals) suggested reduced activation of Stat3 and TLR-related genes and chemicals in congenics. Additionally, cigarette smoking was among the upstream regulators activated in DA, while p53 was an upstream regulator activated in congenics. We observed congenic-specific differential expression and detection in each individual strain. In conclusion, this new nongenetically regulated core genes of disease severity or protection in arthritis should provide new insight into critical pathways and potential new environmental risk factor for arthritis.
Collapse
Affiliation(s)
- Max Brenner
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset New York
| | | | | |
Collapse
|
15
|
Tucker RP, Ferralli J, Schittny JC, Chiquet-Ehrismann R. Tenascin-C and tenascin-W in whisker follicle stem cell niches: possible roles in regulating stem cell proliferation and migration. J Cell Sci 2013; 126:5111-5. [DOI: 10.1242/jcs.134650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The whisker follicle has CD34-positive stem cells that migrate from their niche near the bulge along the glassy membrane to the whisker bulb, where they participate in the formation of the whisker shaft. Using immunohistochemistry we found the glycoprotein tenascin-C in the fibrous capsule of mouse whisker follicles, along the glassy membrane and in the trabecular region surrounding keratin-15-negative, CD34-positive stem cells. The related glycoprotein tenascin-W is found in the CD34-positive stem cell niche, in nearby trabeculae, and along the glassy membrane. Tenascin-W is also found in the neural stem cell niche of nearby hair follicles. The formation of stress fibers and focal adhesion complexes in CD34-positive whisker-derived stem cells cultured on fibronectin was inhibited by both tenascin-C and tenascin-W, which is consistent with a role for these glycoproteins in promoting the migration of these cells from the niche to the whisker bulb. Tenascin-C, but not tenascin-W, increased the proliferation of whisker follicle stem cells in vitro. Thus, the CD34-positive whisker follicle stem cell niche contains both tenascin-C and tenascin-W, and these glycoproteins may play a role in directing the migration and proliferation of these stem cells.
Collapse
|
16
|
Morgan JM, Wong A, Yellowley CE, Genetos DC. Regulation of tenascin expression in bone. J Cell Biochem 2012; 112:3354-63. [PMID: 21751239 DOI: 10.1002/jcb.23265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tenascins regulate cell interaction with the surrounding pericellular matrix. Within bone, tenascins C and W influence osteoblast adhesion and differentiation, although little is known about the regulation of tenascin expression. In this study we examined the effect of osteogenic differentiation, bone morphogenetic protein (BMP) and Wnt growth factors, and mechanical loading on tenascin expression in osteogenic cells. Osteogenic differentiation increased tenascin C (TnC), and decreased tenascin W (TnW), expression. Both growth factors and mechanical loading increased both TnC and TnW expression, albeit via distinct signaling mechanisms. Both BMP-2 and Wnt5a induction of tenascin expression were mediated by MAP kinases. These data establish a role for BMP, Wnts, and mechanical loading in the regulation of tenascin expression in osteoblasts.
Collapse
Affiliation(s)
- Jessica M Morgan
- Department of Anatomy, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
17
|
Brellier F, Martina E, Chiquet M, Ferralli J, van der Heyden M, Orend G, Schittny JC, Chiquet-Ehrismann R, Tucker RP. The adhesion modulating properties of tenascin-W. Int J Biol Sci 2011; 8:187-94. [PMID: 22211116 PMCID: PMC3248703 DOI: 10.7150/ijbs.8.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/13/2011] [Indexed: 01/23/2023] Open
Abstract
Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.
Collapse
Affiliation(s)
- Florence Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004960. [PMID: 21441591 DOI: 10.1101/cshperspect.a004960] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.
| | | |
Collapse
|
19
|
Fraichard S, Bougé AL, Kendall T, Chauvel I, Bouhin H, Bunch TA. Tenectin is a novel alphaPS2betaPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila. Dev Biol 2010; 340:504-17. [PMID: 20152825 DOI: 10.1016/j.ydbio.2010.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.
Collapse
Affiliation(s)
- Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR-6265 CNRS, INRA, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
20
|
Mikura A, Okuhara S, Saito M, Ota M, Ueda K, Iseki S. Association of tenascin-W expression with mineralization in mouse calvarial development. Congenit Anom (Kyoto) 2009; 49:77-84. [PMID: 19489959 DOI: 10.1111/j.1741-4520.2009.00227.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tenascin-W is a tenascin family member that forms part of a complex extracellular matrix, and previous studies have suggested its association with osteogenesis. In the present study we investigated the roles of tenascin-W in osteogenesis. We found that tenascin-W is expressed in osteoblasts at the edge of the developing bone domain prior to mineralization in mouse fetuses. Expression of tenascin-W was induced during the course of mineralization of the Kusa-A1 osteoblast cell line. In the interfrontal suture of postnatal mice, the anterior portion remains patent and the posterior portion closes by 4 weeks of age. Tenascin-W expression was downregulated at 1 week of age in the posterior frontal suture, whereas in the anterior suture, expression was maintained until the mice reached 4 weeks of age. Fibroblast growth factor 2 (FGF2)-bead application to the mouse fetal skull by ex-utero surgery accelerated osteoblast differentiation, but inhibited mineralization with a downregulation of tenascin-W expression. These results suggest that tenascin-W is involved in osteoblast maturation (i.e. mineralization).
Collapse
Affiliation(s)
- Ayako Mikura
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|