1
|
Ginieis R, Abeywickrema S, Oey I, Peng M. Testing Links of Food-Related Olfactory Perception to Peripheral Ghrelin and Leptin Concentrations. Front Nutr 2022; 9:888608. [PMID: 35634372 PMCID: PMC9130723 DOI: 10.3389/fnut.2022.888608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The peptide hormones ghrelin and leptin play major roles in the regulation of appetite and food intake. However, the precise effects of these hormones on sensory processing remain a subject of debate, particularly with food related stimuli and its small body of evidence. Here, we test for relationships between ghrelin and leptin levels against olfactory performance with multiple food-related odours. Specifically, a total of 94 Caucasian males were tested for their supra-threshold sensitivity (i.e., d′), intensity, and valence perception to three odour compounds (i.e., vanilla, potato, and dairy odours). These sensory data were then analysed against peripheral ghrelin and leptin levels, both assessed in plasma samples. Participants’ body adiposity measures were also obtained. Results lent strong support to one of our original hypotheses, with ghrelin levels being positively correlated to the supra-threshold sensitivity of the dairy odour, (r = 0.241, p = 0.020), and intensity ratings to most of the food odours tested [dairy (r = 0.216, p = 0.037) and vanilla (r = 0.241, p = 0.020)]. By contrast, peripheral leptin levels were not significantly linked to any of the olfactory measures (p > 0.05). These relationships remained similar after controlling for variabilities of adiposity measures. The present study brings novel insights by identifying positive links between supra-threshold olfactory perception and ghrelin. This new knowledge is highly relevant for future research linking olfactory shifts to hormonal dysregulation and obesity.
Collapse
Affiliation(s)
- Rachel Ginieis
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Sashie Abeywickrema
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Indrawati Oey
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Mei Peng
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
- *Correspondence: Mei Peng,
| |
Collapse
|
2
|
Bryche B, Dewaele A, Saint-Albin A, Le Poupon Schlegel C, Congar P, Meunier N. IL-17c is involved in olfactory mucosa responses to Poly(I:C) mimicking virus presence. Brain Behav Immun 2019; 79:274-283. [PMID: 30776474 DOI: 10.1016/j.bbi.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023] Open
Abstract
At the interface of the environment and the nervous system, the olfactory mucosa (OM) is a privileged pathway for environmental toxicants and pathogens towards the central nervous system. The OM is known to produce antimicrobial and immunological components but the mechanisms of action of the immune system on the OM remain poorly explored. IL-17c is a potent mediator of respiratory epithelial innate immune responses, whose receptors are highly expressed in the OM of mice. We first characterized the presence of the IL-17c and its receptors in the OM. While IL-17c was weakly expressed in the control condition, it was strongly expressed in vivo after intranasal administration of polyinosinic-polycytidylic (Poly I:C), a Toll Like Receptor 3 agonist, mimicking a viral infection. Using calcium imaging and electrophysiological recordings, we found that IL-17c can effectively activate OM cells through the release of ATP. In the longer term, intranasal chronic instillations of IL-17c increased the cellular dynamics of the epithelium and promoted immune cells infiltrations. Finally, IL-17c decreased cell death induced by Poly(I:C) in an OM primary culture. The OM is thus a tissue highly responsive to immune mediators, proving its central role as a barrier against airway pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Patrice Congar
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Meunier
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France; Université de Versailles Saint-Quentin en Yvelines, 78000 Versailles, France.
| |
Collapse
|
3
|
Bruno A, Di Sano C, Lorusso F, Dino P, Russo D, Ballacchino A, Gallina S, Modica DM, Chiappara G, Simon HU, Pace E. Notch-1 decreased expression contributes to leptin receptor downregulation in nasal epithelium from allergic turbinates. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1642-1650. [PMID: 30951821 DOI: 10.1016/j.bbadis.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allergic rhinitis is characterized by a remodeling of nasal epithelium. Since the Notch and TGF-β signaling pathways are known to be involved in cell differentiation and remodeling processes and leptin adipokine has already been identified as a marker for homeostasis in human bronchial and nasal epithelial cells of asthmatics, roles played by these pathways have been investigated for chronic allergic rhinitis. METHODS The leptin/leptin receptor expression has been investigated in a study with 40 biopsies from allergic (AR, n = 18) and non-allergic (C, n = 22) inferior turbinates, using immunohistochemistry, immunofluorescence staining and RT-PCR. In addition, extracts from in vitro samples prepared from primary cells of inferior turbinates as well as in vitro cultured human nasal epithelial RPMI 2650 cells (ATCC-CCL-30) were also tested for leptin expression and activation of the Notch-1 pathway. RESULTS With regards to AR, in vivo expression levels of both leptin and its receptor significantly decreased in comparison to C. Furthermore, leptin receptor mRNA was significantly reduced in AR as compared to C. Immunofluorescence showed an apparent co-expression of leptin receptor with Notch-1, which was not seen with TGF-β. In vitro, in primary turbinate epithelial cells, the expression of leptin receptor and Notch-1 significantly decreased in AR as compared to C. Moreover, in RPMI 2650 cells, leptin receptor expression was shown to be induced by Notch-1 ligand signaling. CONCLUSION Thus, both the leptin and Notch-1 pathways appear to represent markers for epithelial homeostasis in allergic rhinitis.
Collapse
Affiliation(s)
- Andreina Bruno
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | - Caterina Di Sano
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | - Francesco Lorusso
- Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences, (BioNeC), University of Palermo, Italy
| | - Paola Dino
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | - Domenica Russo
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | | | - Salvatore Gallina
- Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences, (BioNeC), University of Palermo, Italy
| | - Domenico Michele Modica
- Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences, (BioNeC), University of Palermo, Italy
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Elisabetta Pace
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| |
Collapse
|
4
|
Soria-Gomez E, Bellocchio L, Marsicano G. New insights on food intake control by olfactory processes: the emerging role of the endocannabinoid system. Mol Cell Endocrinol 2014; 397:59-66. [PMID: 25261796 DOI: 10.1016/j.mce.2014.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
Abstract
The internal state of the organism is an important modulator of perception and behavior. The link between hunger, olfaction and feeding behavior is one of the clearest examples of these connections. At the neurobiological level, olfactory circuits are the targets of several signals (i.e. hormones and nutrients) involved in energy balance. This indicates that olfactory areas are potential sensors of the internal state of the organism. Thus, the aim of this manuscript is to review the literature showing the interplay between metabolic signals in olfactory circuits and its impact on food intake.
Collapse
Affiliation(s)
- Edgar Soria-Gomez
- INSERM, U862 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France.
| | - Luigi Bellocchio
- Dept. of Biochemistry and Molecular Biology I, Sch. of Biology, Complutense Univ. and CIBERNED, Madrid, Spain
| | - Giovanni Marsicano
- INSERM, U862 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| |
Collapse
|
5
|
Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012; 37:769-97. [PMID: 22832483 PMCID: PMC3529618 DOI: 10.1093/chemse/bjs059] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis.
Collapse
Affiliation(s)
- Brigitte Palouzier-Paulignan
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
- Equal contribution
| | - Marie-Christine Lacroix
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
- Equal contribution
| | - Pascaline Aimé
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - A. Karyn Julliard
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Kristal Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA 15261USAand
| | - Debra Ann Fadool
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State UniversityTallahassee, FL 32306-4295USA
| |
Collapse
|
6
|
Tucker KR, Godbey SJ, Thiebaud N, Fadool DA. Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity. Physiol Behav 2012; 107:424-32. [PMID: 22995978 PMCID: PMC3513555 DOI: 10.1016/j.physbeh.2012.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/18/2012] [Accepted: 09/11/2012] [Indexed: 01/15/2023]
Abstract
Physiological and nutritional state can modify sensory ability and perception through hormone signaling. Obesity and related metabolic disorders present a chronic imbalance in hormonal signaling that could impact sensory systems. In the olfactory system, external chemical cues are transduced into electrical signals to encode information. It is becoming evident that this system can also detect internal chemical cues in the form of molecules of energy homeostasis and endocrine hormones, whereby neurons of the olfactory system are modulated to change animal behavior towards olfactory cues. We hypothesized that chronic imbalance in hormonal signaling and energy homeostasis due to obesity would thereby disrupt olfactory behaviors in mice. To test this idea, we utilized three mouse models of varying body weight, metabolic hormones, and visceral adiposity - 1) C57BL6/J mice maintained on a condensed-milk based, moderately high-fat diet (MHF) of 32% fat for 6 months as the diet-induced obesity model, 2) an obesity-resistant, lean line of mice due to a gene-targeted deletion of a voltage-dependent potassium channel (Kv 1.3-null), and 3) a genetic model of obesity as a result of a gene-targeted deletion of the melanocortin 4 receptor (MC4R-null). Diet-induced obese (DIO) mice failed to find a fatty-scented hidden peanut butter cracker, based solely on olfactory cues, any faster than an unscented hidden marble, initially suggesting general anosmia. However, when these DIO mice were challenged to find a sweet-scented hidden chocolate candy, they had no difficulty. Furthermore, DIO mice were able to discriminate between fatty acids that differ by a single double bond and are components of the MHF diet (linoleic and oleic acid) in a habituation-dishabituation paradigm. Obesity-resistant, Kv1.3-null mice exhibited no change in scented object retrieval when placed on the MHF-diet, nor did they perform differently than wild-type mice in parallel habituation-dishabituation paradigms of fatty food-related odor components. Genetically obese, MC4R-null mice successfully found hidden scented objects, but did so more slowly than lean, wild-type mice, in an object-dependent fashion. In habituation-dishabituation trials of general odorants, MC4R-null mice failed to discriminate a novel odor, but were able to distinguish two fatty acids. Object memory recognition tests for short- and long-term memory retention demonstrated that maintenance on the MHF diet did not modify the ability to perform these tasks independent of whether mice became obese or were resistant to weight gain (Kv1.3-null), however, the genetically predisposed obese mice (MC4R-null) failed the long-term object memory recognition performed at 24h. These results demonstrate that even though both the DIO mice and genetically predisposed obese mice are obese, they vary in the degree to which they exhibit behavioral deficits in odor detection, odor discrimination, and long-term memory.
Collapse
Affiliation(s)
- Kristal R Tucker
- Department of Biological Science, 319 Stadium Drive, Suite 3008, King Life Sciences Building, The Florida State University, Tallahassee, FL 32306-4295, United States; Program in Neuroscience, 319 Stadium Drive, Suite 3008, King Life Sciences Building, The Florida State University, Tallahassee, FL 32306-4295, United States.
| | | | | | | |
Collapse
|
7
|
Berthoud HR. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol 2011; 21:888-96. [PMID: 21981809 DOI: 10.1016/j.conb.2011.09.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/26/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022]
Abstract
Obesity is on the rise in all developed countries, and a large part of this epidemic has been attributed to excess caloric intake, induced by ever present food cues and the easy availability of energy dense foods in an environment of plenty. Clearly, there are strong homeostatic regulatory mechanisms keeping body weight of many individuals exposed to this environment remarkably stable over their adult life. Other individuals, however, seem to eat not only because of metabolic need, but also because of excessive hedonic drive to make them feel better and relieve stress. In the extreme, some individuals exhibit addiction-like behavior toward food, and parallels have been drawn to drug and alcohol addiction. However, there is an important distinction in that, unlike drugs and alcohol, food is a daily necessity. Considerable advances have been made recently in the identification of neural circuits that represent the interface between the metabolic and hedonic drives of eating. We will cover these new findings by focusing first on the capacity of metabolic signals to modulate processing of cognitive and reward functions in cortico-limbic systems (bottom-up) and then on pathways by which the cognitive and emotional brain may override homeostatic regulation (top-down).
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| |
Collapse
|