1
|
Doğanyiğit Z, Erbakan K, Akyuz E, Polat AK, Arulsamy A, Shaikh MF. The Role of Neuroinflammatory Mediators in the Pathogenesis of Traumatic Brain Injury: A Narrative Review. ACS Chem Neurosci 2022; 13:1835-1848. [PMID: 35732021 DOI: 10.1021/acschemneuro.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a debilitating acquired neurological disorder that afflicts nearly 74 million people worldwide annually. TBI has been classified as more than just a single insult because of its associated risk toward various long-term neurological and neurodegenerative disorders. This risk may be triggered by a series of postinjury secondary molecular and cellular pathology, which may be dependent on the severity of the TBI. Among the secondary injury mechanisms, neuroinflammation may be the most crucial as it may exacerbate brain damage and lead to fatal consequences when prolonged. This Review aimed to elucidate the influence of neuroinflammatory mediators on the TBI functional and pathological outcomes, particularly focusing on inflammatory cytokines which were associated with neuronal dysfunctions in the acute and chronic stages of TBI. These cytokines include interleukins (IL) such as IL-1(beta)β, IL-4, IL-6, IL8, IL-10, IL-18, IL-33 and tumor necrosis factor alpha (TNF-α), which have been extensively studied. Apart from these, IL-2, interferon gamma (IFN-γ), and transforming growth factor-beta (TGF-β) may also play a significant role in the pathogenesis of TBI. These neuroinflammatory mediators may trigger a series of pathological events such as cell death, microglial suppression, and increased catecholaminergic activity. Interestingly, in the acute phase of TBI, most of these mediators may also play a neuroprotective role by displaying anti-inflammatory properties, which may convert to a pro-inflammatory action in the chronic stages post TBI. Early identification and treatment of these mediators may help the development of more effective treatment options for TBI.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Kaan Erbakan
- Ordu University, Faculty of Medicine, Ordu 52200, Turkey
| | - Enes Akyuz
- University of Health Sciences, Hamidiye International Faculty of Medicine, Department of Biophysics, Istanbul 34668, Turkey
| | | | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
2
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Baumann J, Huang SF, Gassmann M, Tsao CC, Ogunshola OO. Furin inhibition prevents hypoxic and TGFβ-mediated blood-brain barrier disruption. Exp Cell Res 2019; 383:111503. [PMID: 31336100 DOI: 10.1016/j.yexcr.2019.111503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor β (TGFβ), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise. We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFβ (0.4 nM) exposure potentiated this effect and increased Furin expression in a TGFβ type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10 μM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFβ-induced potentiation suggesting existence of a feedback loop. TGFβ and Furin were also critical for hypoxia-induced BBB dysfunction. TGFβ treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFβ. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease.
Collapse
Affiliation(s)
- Julia Baumann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Chih-Chieh Tsao
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Omolara O Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Casault C, Al Sultan AS, Banoei M, Couillard P, Kramer A, Winston BW. Cytokine Responses in Severe Traumatic Brain Injury: Where There Is Smoke, Is There Fire? Neurocrit Care 2019; 30:22-32. [PMID: 29569129 DOI: 10.1007/s12028-018-0522-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This scoping review will discuss the basic functions and prognostic significance of the commonly researched cytokines implicated in severe traumatic brain injury (sTBI), including tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), transforming growth factor-β (TGF-β), substance P, and soluble CD40 ligand (sCD40L). A scoping review was undertaken with an electronic search for articles from the Ovid MEDLINE, PUBMED and EMBASE databases from 1995 to 2017. Inclusion criteria were original research articles, and reviews including both animal models and human clinical studies of acute (< 3 months) sTBI. Selected articles included both isolated sTBI and sTBI with systemic injury. After applying the inclusion criteria and removing duplicates, 141 full-text articles, 126 original research articles and 15 review articles, were evaluated in compiling this review paper. A single reviewer, CC, completed the review in two phases. During the first phase, titles and abstracts of selected articles were reviewed for inclusion. A second evaluation was then conducted on the full text of all selected articles to ensure relevancy. From our current understanding of the literature, it is unlikely a single biomarker will be sufficient in accurately prognosticating patients with sTBI. Intuitively, a more severe injury will demonstrate higher levels of inflammatory cytokines which may correlate as a marker of severe injury. This does not mean, necessarily, these cytokines have a direct and causal role in the poor outcome of the patient. Further research is required to better delineate the complex systemic inflammatory and CNS interactions that occur during sTBI before they can be applied as a reliable prognostic tool.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. .,Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Abdulaziz S Al Sultan
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mohammad Banoei
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Philippe Couillard
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Andreas Kramer
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brent W Winston
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Departments of Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Abstract
While stroke research represents the primary interface between circulation and brain research, the hemostasis system also carries a pivotal role in the mechanism of vascular brain injury. The complex interrelated events triggered by the energy crisis have a specific spatial and temporal pattern arching from the initial damage to the final events of brain repair. The complexity of the pathophysiology make it difficult to model this disease, therefore it is challenging to find appropriate therapeutic targets. The ever-persistent antagonism between the positive results of drug candidates in the experimental stroke models and the failures of the clinical trials prompts changes in the research strategy, especially in the field of potential neuroprotective therapies. System biology approach could initiate new directions in the future for both preclinical and clinical research. Incentive methods aimed at anti-apoptosis mechanisms and the augmentation of post-ischemic brain repair could benefit the facts, that these processes can be targeted much longer following the cell-necrosis in the hyper-acute phase. Sequential monitoring of candidate genes and proteins responsible for stroke progression and post-stroke repair seems to be useful both in therapeutic target-identification, and in clinical testing. Understanding the mechanism behind the effect of selegiline and other drugs capable of activating the anti-apoptotic gene expression could help to find new approaches to enhance the regenerative potential in the remodeling of neuronal and microvascular networks.
Collapse
Affiliation(s)
- Z Nagy
- Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Városmajor Street 68, 1122, Hungary; National Institute of Clinical Neurosciences, Budapest, Amerikai Street 57, 1145, Hungary.
| | - S Nardai
- Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Városmajor Street 68, 1122, Hungary; National Institute of Clinical Neurosciences, Budapest, Amerikai Street 57, 1145, Hungary
| |
Collapse
|
6
|
Lok J, Wang XS, Xing CH, Maki TK, Wu LM, Guo SZ, Noviski N, Arai K, Whalen MJ, Lo EH, Wang XY. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther 2014; 21:304-8. [PMID: 25475543 DOI: 10.1111/cns.12359] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 01/22/2023] Open
Abstract
Although the neurovascular unit was originally developed as a conceptual framework for stroke, it is now recognized that these cell-cell interactions play critical roles in many other CNS disorders as well. In brain trauma, perturbations within the neurovascular unit may be especially important. Changes in neurovascular coupling may disrupt blood flow and metabolic regulation. Disruption of transmitter release-reuptake kinetics in neurons and astrocytes may augment excitotoxicity. Alterations in gliovascular signaling may underlie blood-brain barrier disruptions and traumatic edema. Perturbations in cell-cell signaling between all neuronal, glial, and vascular compartments may increase susceptibility to cell death. Finally, repairing the brain after trauma requires the integrated restoration of all neural, glial, and vascular connectivity for effective functional recovery. Just as in stroke, saving neurons alone may also be insufficient for treating brain trauma. In this minireview, we attempt to briefly highlight some of these pathways to underscore the importance of rescuing the entire neurovascular unit in brain trauma.
Collapse
Affiliation(s)
- Josephine Lok
- Departments of Radiology, Neurology and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nozaki H, Nishizawa M, Onodera O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2014; 45:3447-53. [PMID: 25116877 DOI: 10.1161/strokeaha.114.004236] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroaki Nozaki
- From the Department of Medical Technology, School of Health Sciences Faculty of Medicine (H.N.), Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute (M.N.), and Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute (O.O.), Niigata University, Niigata, Japan
| | - Masatoyo Nishizawa
- From the Department of Medical Technology, School of Health Sciences Faculty of Medicine (H.N.), Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute (M.N.), and Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute (O.O.), Niigata University, Niigata, Japan
| | - Osamu Onodera
- From the Department of Medical Technology, School of Health Sciences Faculty of Medicine (H.N.), Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute (M.N.), and Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute (O.O.), Niigata University, Niigata, Japan.
| |
Collapse
|
8
|
Shoemaker RC, House D, Ryan JC. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®. Neurotoxicol Teratol 2014; 45:18-26. [PMID: 24946038 DOI: 10.1016/j.ntt.2014.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation.
Collapse
Affiliation(s)
- Ritchie C Shoemaker
- Center for Research on Biotoxin Associated Illnesses, Pocomoke, MD, United States.
| | - Dennis House
- Center for Research on Biotoxin Associated Illnesses, Pocomoke, MD, United States
| | | |
Collapse
|
9
|
Effects of acupuncture at GV20 and ST36 on the expression of matrix metalloproteinase 2, aquaporin 4, and aquaporin 9 in rats subjected to cerebral ischemia/reperfusion injury. PLoS One 2014; 9:e97488. [PMID: 24828425 PMCID: PMC4020847 DOI: 10.1371/journal.pone.0097488] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background/Purpose Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2), aquaporin (AQP) 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB) in cerebral ischemia/reperfusion injury (CIRI). BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO) by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration. Methods Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20) and ST36 (stomach-36). Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score), infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion. Results Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels. Conclusions Acupuncture and electroacupuncture at GV20 and ST36 both exercised neuroprotective actions in a rat model of MCAO, with no clear differences between groups A and EA. Therefore, acupuncture and electroacupuncture might find utility as adjunctive and complementary treatments to supplement conventional therapy for ischemic stroke.
Collapse
|
10
|
Takeshita T, Nakagawa S, Tatsumi R, So G, Hayashi K, Tanaka K, Deli MA, Nagata I, Niwa M. Cilostazol attenuates ischemia–reperfusion-induced blood–brain barrier dysfunction enhanced by advanced glycation endproducts via transforming growth factor-β1 signaling. Mol Cell Neurosci 2014; 60:1-9. [DOI: 10.1016/j.mcn.2014.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 01/19/2014] [Indexed: 11/30/2022] Open
|
11
|
Immunological demyelination triggers macrophage/microglial cells activation without inducing astrogliosis. Clin Dev Immunol 2013; 2013:812456. [PMID: 24319469 PMCID: PMC3844255 DOI: 10.1155/2013/812456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS) injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP). Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.
Collapse
|
12
|
Hsiao TW, Swarup VP, Kuberan B, Tresco PA, Hlady V. Astrocytes specifically remove surface-adsorbed fibrinogen and locally express chondroitin sulfate proteoglycans. Acta Biomater 2013; 9:7200-8. [PMID: 23499985 DOI: 10.1016/j.actbio.2013.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/28/2013] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
Surface-adsorbed fibrinogen (FBG) was recognized by adhering astrocytes, and was removed from the substrates in vitro by a two-phase removal process. The cells removed adsorbed FBG from binary proteins' surface patterns (FBG+laminin, or FBG+albumin) while leaving the other protein behind. Astrocytes preferentially expressed chondroitin sulfate proteoglycan (CSPG) at the loci of fibrinogen stimuli; however, no differences in overall CSPG production as a function of FBG surface coverage were identified. Removal of FBG by astrocytes was also found to be independent of transforming growth factor type β (TGF-β) receptor based signaling as cells maintained CSPG production in the presence of TGF-β receptor kinase inhibitor, SB 431542. The inhibitor decreased CSPG expression, but did not abolish it entirely. Because blood contact and subsequent FBG adsorption are unavoidable in neural implantations, the results indicate that implant-adsorbed FBG may contribute to reactive astrogliosis around the implant as astrocytes specifically recognize adsorbed FBG.
Collapse
|
13
|
Innate Immunity in the CNS: Redefining the Relationship between the CNS and Its Environment. Neuron 2013; 78:214-32. [DOI: 10.1016/j.neuron.2013.04.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
|
14
|
Logan TT, Villapol S, Symes AJ. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One 2013; 8:e59250. [PMID: 23555640 PMCID: PMC3605457 DOI: 10.1371/journal.pone.0059250] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases neurogenesis in the forebrain subventricular zone (SVZ) and the hippocampal dentate gyrus (DG). Transforming growth factor-β (TGF-β) superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI) injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1), which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Trevor T. Logan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Neurotrophic molecules in the treatment of neurodegenerative disease with focus on the retina: status and perspectives. Cell Tissue Res 2013; 353:205-18. [PMID: 23463189 DOI: 10.1007/s00441-013-1585-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/07/2013] [Indexed: 01/19/2023]
Abstract
Neurotrophic factors are operationally defined as molecules that promote the survival and differentiation of neurons. Chemically, they belong to divergent classes of molecules but most of the classic neurotrophic factors are proteins. Together with stem cells, viral vectors and genetically engineered cells, they constitute important tools in neuroprotective and regenerative neurobiology. Protein neurotrophic molecules signal through receptors located on the cell membrane. Their downstream signaling exploits pathways that are often common to chemically different factors and frequently target a relatively restricted set of transcription factors, RNA interference and diverse molecular machinery involved in the life vs. death decisions of neurons. Application of neurotrophic factors with the aim of curing or, at least, improving the outcome of neurodegenerative diseases requires (1) profound knowledge of the complex molecular pathology of the disease, (2) the development of animal models as closely as possible resembling the human disease, (3) the identification of target cells to be addressed, (4) intense efforts in chemical engineering to ensure the stability of molecules or to design carriers and small analogs with the ability to cross the blood-brain barrier and (5) scrutinity with regard to possible side effects. Last, but not least, engineering efforts to optimize administration, e.g., by designing the right canulae and infusion devices, are important for the successful translation of preclinical advances into clinical benefit. This article presents selected examples of neurotrophic factors that are currently being tested in animal models or developed for transfer to the clinic, with a major focus on factors with the potential of becoming applicable in various forms of retinal degeneration.
Collapse
|
16
|
Schildge S, Bohrer C, Beck K, Schachtrup C. Isolation and culture of mouse cortical astrocytes. J Vis Exp 2013:50079. [PMID: 23380713 DOI: 10.3791/50079] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.
Collapse
|
17
|
Krieglstein K, Miyazono K, ten Dijke P, Unsicker K. TGF-β in aging and disease. Cell Tissue Res 2011; 347:5-9. [PMID: 22183203 DOI: 10.1007/s00441-011-1278-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 12/12/2022]
|