1
|
Lim SY, Boyd SC, Diefenbach RJ, Rizos H. Circulating MicroRNAs: functional biomarkers for melanoma prognosis and treatment. Mol Cancer 2025; 24:99. [PMID: 40156012 PMCID: PMC11951542 DOI: 10.1186/s12943-025-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
MicroRNAs (miRNAs) hold significant promise as circulating cancer biomarkers and unlike many other molecular markers, they can provide valuable insights that extend beyond tumour biology. The expression of circulating miRNAs may parallel the cellular composition and dynamic activity within the tumour microenvironment and reveal systemic immune responses. The functional complexity of miRNAs-where a single miRNA can regulate multiple messenger RNAs (mRNAs) to fine tune fundamental processes, and a single mRNA can be targeted by multiple miRNAs-underscores their broad significance and impact. However, this complexity poses significant challenges for translating miRNA research into clinical practice. In melanoma, specific miRNA signatures have shown notable diagnostic, prognostic and predictive value, with lineage-specific and immune-related miRNAs frequently identified as valuable markers. In this review, we explore the role of circulating miRNAs as potential biomarkers in melanoma, and highlight the current status and advances required to translate miRNA research into therapeutic opportunities.
Collapse
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Suzanah C Boyd
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Russell J Diefenbach
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Schaft N, Dörrie J. The Role of Non-coding RNAs in Tumorigenesis, Diagnosis/Prognosis, and Therapeutic Strategies for Cutaneous Melanoma. Methods Mol Biol 2025; 2883:79-107. [PMID: 39702705 DOI: 10.1007/978-1-0716-4290-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
RNA is a substance with various biological functions. It serves as blueprint for proteins and shuttles information from the genes to the protein factories of the cells. However, these factories-the ribosomes-are also composed mainly of RNA, whose purpose is not storing information but enzymatic action. In addition, there is a cornucopia of RNA molecules within our cells that form a complex regulatory network, connected with all aspects of cellular development and maintenance. These non-coding RNAs can be used for diagnostics and therapeutic strategies in cancer. In this chapter we give an overview of recent developments in non-coding RNA-based diagnostics and therapies for cutaneous melanoma. It is not meant to be comprehensive; however, it describes examples based on some of the most recent publications in this field.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
3
|
Prodan M, Dema A, Nataras BR, Seclaman E, Bloanca V, Crainiceanu Z, Deak IE, Virzob CRB, Toma AO, Fericean RM. Prognostic Significance of miRNA Subtypes in Melanoma: A Survival Analysis and Correlation with Treatment Response Across Patient Stages. Biomedicines 2024; 12:2809. [PMID: 39767714 PMCID: PMC11673173 DOI: 10.3390/biomedicines12122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Melanoma remains a leading cause of skin cancer mortality despite advancements in targeted therapies and immunotherapies. MicroRNAs (miRNAs) have emerged as potential biomarkers for cancer prognosis and treatment response. This study aims to analyze survival outcomes according to various miRNA subtypes, assess the association between specific miRNAs and treatment response, and include patient staging to evaluate their prognostic significance. METHODS A retrospective cohort study was conducted on 90 patients from the Pius Brinzeu County Emergency Clinical Hospital, Timisoara, between 2019 and 2022. The cohort included 45 patients with advanced-stage melanoma and 45 with benign nevi. miRNA expression levels were quantified using the miRNeasy Kit and the Human Cancer PathwayFinder miScript miRNA PCR Array. Survival analysis was performed using the Kaplan-Meier method, and Cox proportional hazards models were used to assess the impact of miRNA expression on survival. Logistic regression analyzed the association between miRNA markers and treatment response, adjusting for patient staging. RESULTS Elevated levels of hsa-miR-200a-3p and hsa-miR-335-5p were significantly associated with poorer overall survival (p < 0.01), particularly in stage III and IV patients. Conversely, higher expression of hsa-miR-451a correlated with improved survival rates (p = 0.02). Patients with increased hsa-miR-29b-3p expression showed a better response to immunotherapy (OR = 2.35, 95% CI: 1.15-4.79). Multivariate analysis confirmed that miRNA expression levels and patient staging were independent predictors of survival and treatment response. CONCLUSIONS Specific miRNA subtypes are significant prognostic markers in melanoma, influencing survival outcomes and treatment responses across different patient stages. Incorporating miRNA profiling into clinical practice could enhance personalized treatment strategies and improve patient prognoses.
Collapse
Affiliation(s)
- Mihaela Prodan
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Department of Plastic Surgery, “Pius Brinzeu” Timis County Emergency Clinical Hospital, 300723 Timisoara, Romania
| | - Alis Dema
- ANAPATMOL Research Center, Department of Microscopic Morphology-Morphopathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.D.)
- Department of Pathology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Bianca Roxana Nataras
- ANAPATMOL Research Center, Department of Microscopic Morphology-Morphopathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.D.)
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Center for Complex Networks Science, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Vlad Bloanca
- Department of Plastic Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (V.B.); (Z.C.); (I.E.D.); (C.R.B.V.)
| | - Zorin Crainiceanu
- Department of Plastic Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (V.B.); (Z.C.); (I.E.D.); (C.R.B.V.)
| | - Ilona Emoke Deak
- Department of Plastic Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (V.B.); (Z.C.); (I.E.D.); (C.R.B.V.)
| | - Claudia Raluca Balasa Virzob
- Department of Plastic Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (V.B.); (Z.C.); (I.E.D.); (C.R.B.V.)
| | - Ana-Olivia Toma
- Discipline of Dermatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Department of Dermatology, Timisoara Municipal Emergency Hospital, 300254 Timisoara, Romania
| | - Roxana Manuela Fericean
- Discipline of Dermatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Department of Dermatology, Timisoara Municipal Emergency Hospital, 300254 Timisoara, Romania
| |
Collapse
|
4
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
5
|
Yang S, Zou Q, Liang Y, Zhang D, Peng L, Li W, Li W, Liu M, Tong Y, Chen L, Xu P, Yang Z, Zhou K, Xiao J, Wang H, Yu W. miR-1246 promotes osteosarcoma cell migration via NamiRNA-enhancer network dependent on Argonaute 2. MedComm (Beijing) 2024; 5:e543. [PMID: 38585233 PMCID: PMC10999177 DOI: 10.1002/mco2.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.
Collapse
Affiliation(s)
- Shuai Yang
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qingping Zou
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ying Liang
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Centre for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Lina Peng
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wei Li
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wenxuan Li
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mengxing Liu
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ying Tong
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lu Chen
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Peng Xu
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhicong Yang
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Kaicheng Zhou
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jianru Xiao
- Department of Orthopaedic OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Centre for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Wenqiang Yu
- Shanghai Public Health Clinical Centre and Department of General SurgeryHuashan HospitalCancer Metastasis Institute and Laboratory of RNA EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Ramírez-Solano MA, Córdova EJ, Orozco L, Tejero ME. Plasma MicroRNAs Related to Metabolic Syndrome in Mexican Women. Lifestyle Genom 2023; 16:165-176. [PMID: 37708875 DOI: 10.1159/000534041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION The metabolic syndrome (MetS) is a cluster of abnormalities related to cardiovascular disease (CVD). Circulating miRNAs (c-miRNAs) are non-coding RNAs associated with different phenotypes, some of them integrating the MetS. The aim of the study was to compare the c-miRNAs profile in plasma between women with MetS and controls and explore their possible association with dysregulation of metabolic pathways. METHODS The study was conducted in two phases. At the screening phase, miRNA composition in fasting plasma was compared between 8 participants with MetS and 10 healthy controls, using microarray technology. The validation phase included the analysis by qRT-PCR of 10 selected c-miRNAs in an independent sample (n = 29). RESULTS We found 21 c-miRNAs differentially expressed between cases and controls. The concentration in plasma of the c-miRNAs hsa-miR-1260a, hsa-miR-4514, and hsa-miR-4687-5p were also correlated with risk factors for CVD. Differences of hsa-miR-1260a between cases and controls were validated using qRT-PCR (fold-change = 7.0; p = 0.003). CONCLUSION The signature of plasma c-miRNAs differed between women with MetS and controls. The identified miRNAs regulate pathways related to the MetS such as insulin resistance and adipokine activity. The role of c-miR-1260a in the MetS remains to be elucidated.
Collapse
Affiliation(s)
- Marisol Adelina Ramírez-Solano
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Bioquímica Clínica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emilio J Córdova
- Consorcio Oncogenómica y Enfermedades Óseas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Complejas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - María Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
7
|
Kobeissi I, Eljilany I, Achkar T, LaFramboise WA, Santana-Santos L, Tarhini AA. A Tumor and Immune-Related Micro-RNA Signature Predicts Relapse-Free Survival of Melanoma Patients Treated with Ipilimumab. Int J Mol Sci 2023; 24:ijms24098167. [PMID: 37175874 PMCID: PMC10179521 DOI: 10.3390/ijms24098167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the unprecedented advances in the treatment of melanoma with immunotherapy, there continues to be a major need for biomarkers of clinical benefits and immune resistance associated with immune checkpoint inhibitors; microRNA could play a vital role in these efforts. This study planned to identify differentially expressed miRNA molecules that may have prognostic value for clinical benefits. Patients with surgically operable regionally advanced melanoma were treated with neoadjuvant ipilimumab (10 mg/kg intravenously every 3 weeks × two doses) bracketing surgery. Tumor biospecimens were obtained at baseline and surgery, and microRNA (miRNA) expression profiling was performed on the tumor biopsies. We found that an expression profile consisting of a 4-miRNA signature was significantly associated with improved relapse-free survival (RFS). The signature consisted of biologically relevant molecules previously reported to have prognostic value in melanoma and other malignancies, including miR-34c, miR-711, miR-641, and miR-22. Functional annotation analysis of target genes for the 4-miRNA signature was significantly enriched for various cancer-related pathways, including cell proliferation regulation, apoptosis, the MAPK signaling pathway, and the positive regulation of T cell activation. Our results presented miRNAs as potential biomarkers that can guide the treatment of melanoma with immune checkpoint inhibitors. These findings warrant further investigation in relation to CTLA4 blockade and other immune checkpoint inhibitors. ClinicalTrials.gov NCT00972933.
Collapse
Affiliation(s)
- Iyad Kobeissi
- Cutaneous Oncology and Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Islam Eljilany
- Cutaneous Oncology and Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tala Achkar
- Hematology Department, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William A LaFramboise
- Pathology and Laboratory Medicine Department, Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15524, USA
| | - Lucas Santana-Santos
- Pathology Department, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ahmad A Tarhini
- Cutaneous Oncology and Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Oncologic Sciences Department, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
8
|
Vand-Rajabpour F, Savage M, Belote RL, Judson-Torres RL. Critical Considerations for Investigating MicroRNAs during Tumorigenesis: A Case Study in Conceptual and Contextual Nuances of miR-211-5p in Melanoma. EPIGENOMES 2023; 7:9. [PMID: 37218870 PMCID: PMC10204420 DOI: 10.3390/epigenomes7020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs are non-coding RNAs fundamental to metazoan development and disease. Although the aberrant regulation of microRNAs during mammalian tumorigenesis is well established, investigations into the contributions of individual microRNAs are wrought with conflicting observations. The underlying cause of these inconsistencies is often attributed to context-specific functions of microRNAs. We propose that consideration of both context-specific factors, as well as underappreciated fundamental concepts of microRNA biology, will permit a more harmonious interpretation of ostensibly diverging data. We discuss the theory that the biological function of microRNAs is to confer robustness to specific cell states. Through this lens, we then consider the role of miR-211-5p in melanoma progression. Using literature review and meta-analyses, we demonstrate how a deep understating of domain-specific contexts is critical for moving toward a concordant understanding of miR-211-5p and other microRNAs in cancer biology.
Collapse
Affiliation(s)
- Fatemeh Vand-Rajabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran 14176-13151, Iran
| | - Meghan Savage
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert L. Judson-Torres
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Abd-Allah GM, Ismail A, El-Mahdy HA, Elsakka EG, El-Husseiny AA, Abdelmaksoud NM, Salman A, Elkhawaga SY, Doghish AS. miRNAs as potential game-changers in melanoma: A comprehensive review. Pathol Res Pract 2023; 244:154424. [PMID: 36989843 DOI: 10.1016/j.prp.2023.154424] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- β, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.
Collapse
|
10
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
11
|
López‐Cuevas P, Xu C, Severn CE, Oates TCL, Cross SJ, Toye AM, Mann S, Martin P. Macrophage Reprogramming with Anti-miR223-Loaded Artificial Protocells Enhances In Vivo Cancer Therapeutic Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202717. [PMID: 36314048 PMCID: PMC9762313 DOI: 10.1002/advs.202202717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Several immune cell-expressed miRNAs (miRs) are associated with altered prognostic outcome in cancer patients, suggesting that they may be potential targets for development of cancer therapies. Here, translucent zebrafish (Danio rerio) is utilized to demonstrate that genetic knockout or knockdown of one such miR, microRNA-223 (miR223), globally or specifically in leukocytes, does indeed lead to reduced cancer progression. As a first step toward potential translation to a clinical therapy, a novel strategy is described for reprogramming neutrophils and macrophages utilizing miniature artificial protocells (PCs) to deliver anti-miRs against the anti-inflammatory miR223. Using genetic and live imaging approaches, it is shown that phagocytic uptake of anti-miR223-loaded PCs by leukocytes in zebrafish (and by human macrophages in vitro) effectively prolongs their pro-inflammatory state by blocking the suppression of pro-inflammatory cytokines, which, in turn, drives altered immune cell-cancer cell interactions and ultimately leads to a reduced cancer burden by driving reduced proliferation and increased cell death of tumor cells. This PC cargo delivery strategy for reprogramming leukocytes toward beneficial phenotypes has implications also for treating other systemic or local immune-mediated pathologies.
Collapse
Affiliation(s)
- Paco López‐Cuevas
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Can Xu
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Charlotte E. Severn
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Tiah C. L. Oates
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen J. Cross
- Wolfson Bioimaging FacilityBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Ashley M. Toye
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen Mann
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- Max Planck Bristol Centre for Minimal BiologySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Paul Martin
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
12
|
Relationship Between the MicroRNAs and PI3K/AKT/mTOR Axis: Focus on Non-Small Cell Lung Cancer. Pathol Res Pract 2022; 239:154093. [DOI: 10.1016/j.prp.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
13
|
Pecorelli A, Valacchi G. Oxidative-Stress-Sensitive microRNAs in UV-Promoted Development of Melanoma. Cancers (Basel) 2022; 14:3224. [PMID: 35804995 PMCID: PMC9265047 DOI: 10.3390/cancers14133224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma is the most aggressive and life-threatening form of skin cancer. Key molecular events underlying the melanocytic transformation into malignant melanoma mainly involve gene mutations in which exposure to ultraviolet (UV) radiation plays a prominent role. However, several aspects of UV-induced melanomagenesis remain to be explored. Interestingly, redox-mediated signaling and perturbed microRNA (miRNA) profiles appear to be interconnected contributing factors able to act synergistically in melanoma initiation and progression. Since UV radiation can promote both redox imbalance and miRNA dysregulation, a harmful crosstalk between these two key cellular networks, with UV as central hub among them, is likely to occur in skin tissue. Therefore, decoding the complex circuits that orchestrate the interaction of UV exposure, oxidative stress, and dysregulated miRNA profiling can provide a deep understanding of the molecular basis of the melanomagenesis process. Furthermore, these mechanistic insights into the reciprocal regulation between these systems could have relevant implications for future therapeutic approaches aimed at counteracting UV-induced redox and miRNome imbalances for the prevention and treatment of malignant melanoma. In this review, we illustrate current information on the intricate connection between UV-induced dysregulation of redox-sensitive miRNAs and well-known signaling pathways involved in the malignant transformation of normal melanocytes to malignant melanoma.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Giuseppe Valacchi
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
14
|
Identification of Keratinocyte Differentiation-Involved Genes for Metastatic Melanoma by Gene Expression Profiles. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:9652768. [PMID: 35003328 PMCID: PMC8728391 DOI: 10.1155/2021/9652768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Background Melanoma is the deadliest type of skin cancer. Until now, its pathological mechanisms, particularly the mechanism of metastasis, remain largely unknown. Our study on the identification of genes in association with metastasis for melanoma provides a novel understanding of melanoma. Methods From the Gene Expression Omnibus (GEO) database, the gene expression microarray datasets GSE46517, GSE7553, and GSE8401 were downloaded. We made use of R aiming at analyzing the differentially expressed genes (DEGs) between metastatic and nonmetastatic melanoma. R was also used in differentially expressed miRNA (DEM) data mining from GSE18509, GSE19387, GSE24996, GSE34460, GSE35579, GSE36236, and GSE54492 datasets referring to Li's study. Based on the DEG and DEM data, we performed functional enrichment analysis through the application of the DAVID database. Furthermore, we constructed the protein-protein interaction (PPI) network and established functional modules by making use of the STRING database. Through making use of Cytoscape, the PPI results were visualized. We predicted the targets of the DEMs through applying TargetScan, miRanda, and PITA databases and identified the overlapping genes between DEGs and predicted targets, followed by the construction of DEM-DEG pair network. The expressions of these keratinocyte differentiation-involved genes in Module 1 were identified based on the data from TCGA. Results 239 DEGs were screened out in all 3 datasets, which were inclusive of 21 positively regulated genes and 218 negatively regulated genes. Based on these 239 DEGs, we finished constructing the PPI network which was formed from 225 nodes and 846 edges. We finished establishing 3 functional modules. And we analyzed 92 overlapping genes and 26 miRNA, including 11 upregulated genes targeted by 11 negatively regulated DEMs and 81 downregulated genes targeted by 15 positively regulated DEMs. As proof of the differential expression of metastasis-associated genes, eleven keratinocyte differentiation-involved genes, including LOR, EVPL, SPRR1A, FLG, SPRR1B, SPRR2B, TGM1, DSP, CSTA, CDSN, and IVL in Module 1, were obviously downregulated in metastatic melanoma tissue in comparison with primary melanoma tissue based on the data from TCGA. Conclusion 239 melanoma metastasis-associated genes and 26 differentially expressed miRNA were identified in our study. The keratinocyte differentiation-involved genes may take part in melanoma metastasis, providing a latent molecular mechanism for this disease.
Collapse
|
15
|
He W, Yang G, Liu S, Maghsoudloo M, Shasaltaneh MD, Kaboli PJ, Zhang C, Zhang J, Entezari M, Imani S, Wen Q. Comparative mRNA/micro-RNA co-expression network drives melanomagenesis by promoting epithelial-mesenchymal transition and vasculogenic mimicry signaling. Transl Oncol 2021; 14:101237. [PMID: 34626953 PMCID: PMC8512639 DOI: 10.1016/j.tranon.2021.101237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770-5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770-5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.
Collapse
Affiliation(s)
- WenFeng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Oncology, Anyue Hospital of Traditional Chinese Medicine, Second Ziyang Hospital of Traditional Chinese Medicine, Ziyang, Sichuan, China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, Sichuan, China
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - JingHeng Zhang
- Oncology Department, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
16
|
Zhang L, Chang S, Zhao Y, Cao G, Zhang D. MicroRNA-4317 suppresses the progression of hepatocellular carcinoma by targeting ZNF436-mediated PI3K/AKT signaling pathway. Tissue Cell 2021; 74:101696. [PMID: 34861581 DOI: 10.1016/j.tice.2021.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer with high mortality, which is a prevalent common cancer in the world. Aberrant miRNAs contribute to the progression and development of HCC. Currently, our study demonstrated that miR-4317 was decreased in HCC patient samples tissues and HCC cell lines, which was related to poor clinical features, including tumor size, advanced TNM stage and vascular invasion. Furthermore, we confirmed that miR-4317 suppressed cell viability, proliferation, invasion and migration through loss- and gain-of-function experiment in vitro. In addition, miR-4317 inhibited tumor growth in vivo experiment. Luciferase reporter assays confirmed that ZNF436 was a direct target of miR-4317. Restoration of ZNF436 reversed the role of miR-4317 on HCC. ZNF436 expression was increased in HCC tissues and cell lines, which was negatively correlated with miR-4317 expression. ZNF436 overexpression obviously promoted the cell proliferation, viability, invasion and migration of HCC cells. ZNF436 mediated the regulatory function of miR-4317 on PI3K/AKT pathway. Overall, our data suggest that miR-4317 is a novel tumor suppressor to suppress HCC progression through PI3K/AKT pathway by targeting ZNF436, and may serve as a prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Li Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Shuai Chang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Yao Zhao
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
17
|
Yuan Y, Zhu B, Su X, Chen X. Comprehensive Analysis of the Mechanism of Periodontitis-Related mRNA Expression Combined with Upstream Methylation and ceRNA Regulation. Genet Test Mol Biomarkers 2021; 25:707-719. [PMID: 34788142 DOI: 10.1089/gtmb.2021.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Periodontitis is a multifactorial disease mainly caused by the formation of plaque biofilm, which can lead to the gradual destruction of tooth-supporting tissues. Current research on the genetics and epigenetics of periodontitis remains relatively limited, and the molecular mechanisms remain largely unknown. Objective: Our aims were to construct competitive endogenous RNA (ceRNA) network and determine DNA methylation patterns of target genes to help elucidate the pathogenesis of periodontitis. Methods: We analyzed the expression profiles of the GSE16134, GSE54710, GSE10334, and GSE59932 datasets from the Gene Expression Omnibus database through the weighted gene coexpression network analysis system and screened mRNAs that are regulated by the level of methylation and are associated with the occurrence of periodontitis. Next, a lncRNA-miRNA-mRNA ceRNA network was constructed using databases including miRanda and TargetScan. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted for genes in the clinically significant modules. Finally, a protein-protein interaction network was built. Results: We finally identified four mRNAs, four miRNAs, and six lncRNAs as shared differentially expressed genes related to the periodontitis inflammation pathway. IL-6, IFNA17, CXCL12, and TNFRSF13C were identified as key genes whose expression was significantly enriched in the nuclear factor κB and TLR4 pathways. Moreover, the expression of 28 genes were downregulated by hypermethylation and 70 genes were upregulated by hypomethylation. Conclusions: The constructed ceRNA network can improve our understanding of the pathogenesis of periodontitis. Candidate mRNAs from the ceRNA network could serve as new therapeutic targets and prognostic biomarkers in periodontitis.
Collapse
Affiliation(s)
- Yifang Yuan
- School of Stomatology, Xinjiang Medical University, Urumqi, China
| | - Bo Zhu
- Department of Gastroenterology and Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Xu Su
- Department of Stomatology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Xiaotao Chen
- Department of Stomatology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| |
Collapse
|
18
|
Ghafour AA, Odemis DA, Tuncer SB, Kurt B, Saral MA, Erciyas SK, Erdogan OS, Celik B, Saip P, Yazici H. High expression level of miR-1260 family in the peripheral blood of patients with ovarian carcinoma. J Ovarian Res 2021; 14:131. [PMID: 34629107 PMCID: PMC8504092 DOI: 10.1186/s13048-021-00878-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
The most common gynecologic cancers detected in women in Turkey are uterine cancer, ovarian cancer, and cervical cancer. These data reported that a mean of 3800 individuals were diagnosed with uterine cancer, 2790 were diagnosed with ovarian cancer, and 1950 were diagnosed with cervical cancer, and 400 individuals were diagnosed with other gynecologic cancers each year in Turkey. A mean of 14.270 individuals were detected to have been diagnosed with gynecologic cancers each year in the United States of America (USA). Ovarian cancer treatment is generally composed of chemotherapy, and surgery. In general, chemotherapy is administered after surgery. The identification of the molecular pathogenesis of ovarian cancer, and discovery of new moleculer biomarkers which facilitate the ovarian cancer treatment are required for an effective ovarian cancer treatment in clinics. miRNAs are reported to be the possible biologic indicators for various cancer types. We aimed to investigate 2 miRNAs which were suggested to have effect in ovarian cancer in our (previous) monozygotic twin study from miR-1260 microRNA family whose association with ovarian cancer yet has not been reported in the literature. We investigated the expression levels of miR-1260a, and miR-1260b miRNAs, in the peripheral blood lymphocytes of 150 familial and sporadic ovarian cancer patients, and of 100 healthy individuals of the control group who were matched for age, sex, and ethnicity with the patient group, and investigated their possible property of being a biologic indicator for ovarian cancer. The expression results of ovarian cancer patients were evaluated by comparison of the results of the control group in the study. The expression levels of miR-1260a, and miR-1260b in ovarian cancer patients were found highly increased compared with the levels in the control group. miR-1260a expression level in ovarian cancer patients was detected to have increased approximately 17 fold compared with the control group, and miR-1260b expression level in ovarian cancer patients was detected to have increased approximately 33 fold compared with the levels in the control group. The String Analyses showed that the miR-1260a was associated with the ribosomal protein family which was known to be effective in the translation stage of cell and that miR-1260b was associated with CHEK2 protein which was a member of the serine/threonine-protein kinase family. It should be investigated for larger cohorts in benign ovarian diseases and in different stages of patients receiving ovarian cancer treatment whether these two molecules are a noninvasive biomarker and therapeutic target to be used especially in the early diagnosis and prognosis of ovarian cancer in future.
Collapse
Affiliation(s)
- Arash Adamnejad Ghafour
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey.,Health Science Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Busra Kurt
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Mukaddes Avsar Saral
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy, Kucukcekmece, 34295, Istanbul, Turkey
| | - Seda Kilic Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Betul Celik
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Pinar Saip
- Department of Medical Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Hulya Yazici
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey. .,Medical Biology and Genetics Department, Medical Faculty, Istanbul Arel University, Istanbul, Zeytiburnu, 34010, Turkey.
| |
Collapse
|
19
|
MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers (Basel) 2021; 13:cancers13184649. [PMID: 34572876 PMCID: PMC8468667 DOI: 10.3390/cancers13184649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The three-tiered American Thyroid Association (ATA) risk stratification helps clinicians tailor decisions regarding follow-up modalities and the need for postoperative radioactive iodine (RAI) ablation and radiotherapy. However, a significant number of well-differentiated thyroid cancers (DTC) progress after treatment. Current follow-up modalities have also been proposed to detect disease relapse and recurrence but have failed to be sufficiently sensitive or specific to detect, monitor, or determine progression. Therefore, we assessed the predictive accuracy of the microRNA-based risk score in DTC with and without postoperative RAI. We confirm the prognostic role of triad biomarkers (miR-2f04, miR-221, and miR-222) with higher sensitivity and specificity for predicting disease progression than the ATA risk score. Compared to indolent tumors, a higher risk score was found in progressive samples and was associated with shorter survival. Consequently, our prognostic microRNA signature and nomogram provide a clinically practical and reliable ancillary measure to determine the prognosis of DTC patients. Abstract To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86–3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.
Collapse
|
20
|
Liao Y, Jia X, Ren Y, Deji Z, Gesang Y, Ning N, Feng H, Yu H, Wei A. Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation. Hum Cell 2021; 34:1532-1544. [PMID: 34117611 DOI: 10.1007/s13577-021-00557-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Cell death pathways related to ferroptosis are implicated in the progression of melanoma. Emerging data reporting the upregulation of microRNA (miR)-130b-3p in melanoma indicate the potential implication of miR-130b-3p in this malignancy. Herein, we aimed to identify whether and how miR-130b-3p regulated ferroptosis in melanoma cells. Melanoma cells (A375, G-361) were treated with erastin or RSL3 to mimic ferroptosis in vitro. Viability, lipid peroxidation level and ferrous ion content in melanoma cells were then assessed in response to manipulation of miR-130b-3p expression. Luciferase assay was conducted to determine the binding of miR-130b-3p to Dickkopf1 (DKK1). Western blot assay was conducted to determine the expression of molecules related to nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. The results indicated that miR-130b-3p exerted an inhibitory role in erastin or RSL3-induced ferroptosis, evidenced by reductions in lipid peroxidation and ferrous ion content. By suppressing the expression of target gene DKK1, miR-130b-3p activated the Nrf2/HO-1 pathway, whereby repressing ferroptosis. miR-130b-3p blocked the antitumor activity of erastin. Further, in vitro findings were reproduced in an in vivo murine model. Together, these data suggest the potential of miR-130b-3p to inhibit ferroptosis in melanoma cells and the mechanism was related to DKK1-mediated Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yangying Liao
- Department of Dermatology, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal University)Hunan Province, No. 61, Jiefang West Road, Changsha, 410005, People's Republic of China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| | - Yi Ren
- Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Zhuoga Deji
- Department of Pathology, Lhasa People's Hospital of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| | - Yuzhen Gesang
- Department of Pathology, Lhasa People's Hospital of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| | - Ning Ning
- Medical Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, People's Republic of China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal University)Hunan Province, No. 61, Jiefang West Road, Changsha, 410005, People's Republic of China.
| | - Hong Yu
- Department of Pathology, The Third People's Hospital of Shenzhen, Shenzhen, 518100, People's Republic of China
| | - An Wei
- Department of Ultrasound, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China.
| |
Collapse
|
21
|
Tian J, Li J, Bie B, Sun J, Mu Y, Shi M, Zhang S, Kong G, Li Z, Guo Y. MiR-3663-3p participates in the anti-hepatocellular carcinoma proliferation activity of baicalein by targeting SH3GL1 and negatively regulating EGFR/ERK/NF-κB signaling. Toxicol Appl Pharmacol 2021; 420:115522. [PMID: 33838155 DOI: 10.1016/j.taap.2021.115522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 02/09/2023]
Abstract
Baicalein is a purified flavonoid that exhibits anticancer effects in hepatocellular carcinoma (HCC). However, its underlying molecular mechanisms remain largely unclear. In this study, we found that baicalein inhibited HCC cell growth, induced apoptosis, and blocked cell cycle arrest at the S phase in vitro, as well as reduced HCC tumor volume and weight in vivo. Quantitative reverse transcriptase-PCR (qRT-PCR) results suggested that miR-3663-3p was downregulated in HCC tissues. After baicalein treatment, miR-3663-3p expression was upregulated in HCC cells. Transfection of miR-3663-3p suppressed HCC cell proliferation and colony formation, increased the proportion of apoptotic cells in vitro, and reduced the volume and weight of tumors in vivo. The results of dual-luciferase reporter assay showed that miR-3663-3p could directly bind to the 3'-UTR of SH3GL1. SH3GL1 overexpression partly reduced the growth-inhibiting effect of miR-3663-3p. Both baicalein treatment and miR-3663-3p overexpression downregulated the expression of SH3GL1 and inactivated the Erk1/2, p-NF-κB/p65, and EGFR signaling pathways. Overall, our data suggest that baicalein may act as a novel HCC suppressor, and that the miR-3663-3p/SH3GL1/EGFR/ERK/NF-κB pathway plays a vital role in HCC progression. Thus, baicalein treatment or miR-3663-3p induction may be a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Jing Tian
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Beibei Bie
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yanhua Mu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China
| | - Shuqun Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Geriatric General Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Ying Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, Shaanxi 710004, China; Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
22
|
Jiang R, Xie J, Hong X, Man T, Yang M, Qin Y, Tang C, Lan Q, Rong Z, Mo C. The Novel Target of Liver Cancer: MicroRNA-4324 Regulates Cell Proliferation and Migration via Targeting Neuraminidase 3. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: MicroRNA-4324 has been reported to regulate various biological malignant cancer. Nonetheless, the expression and molecular mechanism of miR-4324 in liver cancer remain rarely known. This study aimed to investigate the effect miR-4324 on the proliferation, invasion
and migration of hepatoma cells. Methods: The mRNA level of miR-4324 was assessed in four hepatoma cell lines (HepG2, Huh7, MHCC97, HB611) and human embryonic liver cell, HHL5. MiR-4324 was over-expressed in hepatoma cells. Subsequently, the effects of miR-4324 on cell proliferation,
migration and invasion and the underlying molecular mechanisms were detected. Results: Our data indicated that miR-4324 was down-regulation in hepatoma cell lines compared with HHL5. Overexpression of miR-4324 inhibits cellular proliferation, colony-formation, migration and invasion
abilities of hepatoma cells. However, the biological effects of miR-4324 overexpression on hepatoma cells were reversed after overexpressing NEU3. Conclusions: Our findings concluded that miR-4324 inhibits biological functions of hepatoma cells by targeting NEU3 and it might be a potential
target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ruiyuan Jiang
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Jiacheng Xie
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Xiaohua Hong
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Tingting Man
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Mengna Yang
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Yanchun Qin
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Cuijuan Tang
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Qiaoyu Lan
- Department of Graduate Student, Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Zhen Rong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| | - Chunmei Mo
- Department of Hepatology The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Province, 530000, China
| |
Collapse
|
23
|
Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021; 22:ijms22041591. [PMID: 33562431 PMCID: PMC7914888 DOI: 10.3390/ijms22041591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
Collapse
Affiliation(s)
- Hernán Mauricio Rivera
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Esther Natalia Muñoz
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Daniel Osuna
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Mauro Florez
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Michael Carvajal
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Luis Alberto Gómez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
24
|
Murria Estal R, de Unamuno Bustos B, Pérez Simó G, Simarro Farinos J, Torres Navarro I, Alegre de Miquel V, Ballester Sánchez R, Sabater Marco V, Llavador Ros M, Palanca Suela S, Botella Estrada R. MicroRNAs expression associated with aggressive clinicopathological features and poor prognosis in primary cutaneous melanomas. Melanoma Res 2021; 31:18-26. [PMID: 33234848 DOI: 10.1097/cmr.0000000000000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several studies have focused on identifying microRNAs involved in the pathogenesis of melanoma. However, its association with clinicopathological features has been scarcely addressed. The aim of this study is to identify microRNAs expression profiles related to aggressive clinicopathological and molecular features, and to analyze the association with melanoma survival. A retrospective and observational study was performed in a series of 179 formalin-fixed paraffin embedded primary cutaneous melanomas. First, a screening analysis on a discovery set (n = 22) using miRNA gene chip array (Affymetrix, Santa Clara, California, USA) was performed. Differentially expressed microRNAs were detected employing the software Partek Genomic Suite. Validation of four microRNAs was subsequently performed in the entire series (n = 179) by quantitative real time PCR (qRT-PCR). MicroRNAs expression screening analysis identified 101 microRNAs differentially expressed according to Breslow thickness (≤1 mm vs. >1 mm), 79 according to the presence or absence of ulceration, 78 according to mitosis/mm2 (<1 mitosis vs. ≥1 mitosis) and 97 according to the TERT promoter status (wt vs. mutated). Six microRNAs (miR-138-5p, miR-130b-3p, miR-30b-5p, miR-34a-5p, miR-500a-5p, miR-339-5p) were selected for being validated by qRT-PCR in the discovery set (n = 22). Of those, miR-138-5p, miR-130b-3p, miR-30b-5p, miR-34a-5p were selected for further analysis in the entire series (n = 179). Overexpression of miR-138-5p and miR-130b-3p was significantly associated with greater Breslow thickness, ulceration, and mitosis. TERT mutated melanomas overexpressed miR-138-5p. Kaplan-Meier survival analysis showed poorer survival in melanomas with miR-130b-3p overexpression. Our findings provide support for the existence of a microRNA expression profile in melanomas with aggressive clinicopathological features and poor prognosis.
Collapse
Affiliation(s)
- Rosa Murria Estal
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Blanca de Unamuno Bustos
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Gema Pérez Simó
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Javier Simarro Farinos
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | | | | | | | - Vicente Sabater Marco
- Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Sarai Palanca Suela
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Rafael Botella Estrada
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
- Department of Medicine, School of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
25
|
Papiewska-Pająk I, Przygodzka P, Krzyżanowski D, Soboska K, Szulc-Kiełbik I, Stasikowska-Kanicka O, Boncela J, Wągrowska-Danilewicz M, Kowalska MA. Snail Overexpression Alters the microRNA Content of Extracellular Vesicles Released from HT29 Colorectal Cancer Cells and Activates Pro-Inflammatory State In Vivo. Cancers (Basel) 2021; 13:cancers13020172. [PMID: 33419021 PMCID: PMC7830966 DOI: 10.3390/cancers13020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Knowledge of the factors that help migration of carcinoma cells is important for prevention of metastasis. Cancer cells release small particles, extracellular vesicles (EVs) that contain such factors. The aim of this study was to assess if the content of EVs changes through different stages of colorectal cancer (CRC) and evaluate how this process affects cancer progression in vivo in mouse CRC model. We found that EVs released from cells that have migratory properties contain different factors then EVs released from original tumor cells. We also show here that EVs can be incorporated into other cells that facilitate metastasis and change their properties depending on the EVs content. The content of cell-released EVs may also serve as a biomarker that denotes the stage of CRC and may be a target to prevent cancer progression. Abstract During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.
Collapse
Affiliation(s)
- Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Correspondence: (I.P.-P.); (M.A.K.)
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Damian Krzyżanowski
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Kamila Soboska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Izabela Szulc-Kiełbik
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Olga Stasikowska-Kanicka
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, 90-419 Lodz, Poland; (O.S.-K.); (M.W.-D.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Małgorzata Wągrowska-Danilewicz
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, 90-419 Lodz, Poland; (O.S.-K.); (M.W.-D.)
| | - M. Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: (I.P.-P.); (M.A.K.)
| |
Collapse
|
26
|
Hellberg T, Mohr R, Geisler L, Knorr J, Wree A, Demir M, Benz F, Lambrecht J, Loosen SH, Tacke F, Roderburg C, Jann H, Özdirik B. Serum levels of miR-223 but not miR-21 are decreased in patients with neuroendocrine tumors. PLoS One 2020; 15:e0244504. [PMID: 33382770 PMCID: PMC7775044 DOI: 10.1371/journal.pone.0244504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023] Open
Abstract
Background and aims MicroRNAs (miRNAs) are profoundly involved into the pathophysiology of manifold cancers. Recent data suggested a pivotal role of miRNAs as biomarkers in different biological processes including carcinogenesis. However, their role in neuroendocrine tumors (NETs) is only poorly understood. Methods We determined circulating levels of miR-21 and miR-223 in 45 samples from patients with NET treated between 2010 and 2019 at our department and compared them to healthy controls. Results were correlated with clinical records. Results In the total cohort of Patients with NET, miR-223 presented significantly lower levels compared to healthy control samples. In contrast, levels of miR-21 indicated no significant changes between the two groups. Interestingly, despite being significantly downregulated in all NET patients, concentrations of miR-223 were independent of clinical or histopathological factors such as proliferation activity according to Ki-67 index, tumor grading, TNM stage, somatostatin receptor expression, presence of functional/ non-functional disease or tumor relapse. Moreover, in contrast to data from recent publications analyzing other tumor entities, levels of miR-223 serum levels did not reflect prognosis of patients with NET. Conclusion Lower concentrations of circulating miR-223 rather reflect the presence of NET itself than certain tumor characteristics. The value of miR-223 as a biomarker in NET might be limited to diagnostic, but not prognostic purposes.
Collapse
Affiliation(s)
- Teresa Hellberg
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Lukas Geisler
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Jana Knorr
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Alexander Wree
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Fabian Benz
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Joeri Lambrecht
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Sven H. Loosen
- Medical Faculty of Heinrich Heine University Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- * E-mail:
| | - Henning Jann
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
27
|
Cinar O, Iyigun C, Ilk O. An evaluation of a novel approach for clustering genes with dissimilar replicates. COMMUN STAT-SIMUL C 2020. [DOI: 10.1080/03610918.2020.1839092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ozan Cinar
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Cem Iyigun
- Department of Industrial Engineering, Middle East Technical University, Ankara, Turkey
| | - Ozlem Ilk
- Department of Statistics, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
28
|
Bengone-Abogourin JG, Chelkha N, Verdin E, Colson P. Sequence Similarities between Viroids and Human MicroRNAs. Intervirology 2020; 62:227-234. [PMID: 32640450 DOI: 10.1159/000509212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/06/2020] [Indexed: 11/19/2022] Open
Abstract
Viroids are minute unencapsidated non-coding circular RNAs known to be present and to cause diseases only in plants. Infections were associated with the occurrence of specific single-stranded RNAs similar in size to miRNAs and endogenous small interfering RNAs, and viroid pathogenicity is suspected to occur through RNA interference. We looked for sequence similarities between viroids and the seed region of human microRNAs (hsa-miRNAs). Viroid genomes were retrieved from GenBank and mature hsa-mi-RNAs were retrieved from miRBase. Two hundred 300-nucleotide-long sequences were randomly generated as controls. BLAST searches were performed using viroids as queries and hsa-miRNAs as subjects with relaxed parameters, and matches involving hsa-miRNA seed regions were considered. A total of 81,021 matches were found, and 1,501 that showed 100% identity with whole hsa-miRNA seed regions were selected. The most frequent matches involved Chrysanthemum stunt viroid or Hop stunt viroidspecies with hsa-miR-4286, in 365 and 207 cases, respectively. Three hsa-mi-RNAs (miR-4286, miR-6808-5p, and miR-3622a-3p) were involved in 47% of all matches between viroids and hsa-mi-RNAs. Taken together, these findings warrant further investigation on the potential of viroids and their derived small RNAs to cross kingdoms and interact with nucleic acids in humans.
Collapse
Affiliation(s)
- Jessica Grace Bengone-Abogourin
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Nisrine Chelkha
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Eric Verdin
- INRA, UR407, Unité de Pathologie Végétale, Montfavet, France
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France, .,IHU Méditerranée Infection, Marseille, France,
| |
Collapse
|
29
|
Gencia I, Baderca F, Avram S, Gogulescu A, Marcu A, Seclaman E, Marian C, Solovan C. A preliminary study of microRNA expression in different types of primary melanoma. Bosn J Basic Med Sci 2020; 20:197-208. [PMID: 31479413 PMCID: PMC7202197 DOI: 10.17305/bjbms.2019.4271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have been proven to regulate the development and progression of cancer through various mechanisms. The aim of the present study was to compare miRNA expression between primary melanomas from different sites. We analyzed the expression of 84 miRNAs in 27 primary melanoma and 5 nevus formalin-fixed paraffin-embedded (FFPE) samples using the Human Cancer PathwayFinder miScript miRNA PCR Array. The FFPE samples were obtained from the archives of the Municipal Clinical Emergency Hospital of Timisoara and included 10 cutaneous melanomas, 10 uveal melanomas, 7 mucosal melanomas, and 5 cutaneous nevi. Out of 84 miRNAs, 11 miRNAs showed altered expression in all types of melanoma compared with the nevi. Among these, miR-155-5p, miR-9-5p, miR-142-5p, miR-19a-3p, miR-134-5p, and miR-301a-3p were upregulated, while miR-205-5p, miR-203a-3p, miR-27b-3p, miR-218-5p, and miR-23b-3p were downregulated. The highest similarity in miRNA expression pattern was found between uveal and mucosal melanoma groups, i.e., 15 miRNAs had altered expression in both groups. Overall, we identified several miRNAs with significantly altered expression in primary melanomas, including those reported for the first time in this type of cancer. Among them, mir-9-5p, mir-203a-3p, mir-19a-3p, mir-27b-3p, and mir-218-5p showed altered expression in all three melanoma types vs. nevi. Further research should explore the potential of these miRNAs in melanoma.
Collapse
Affiliation(s)
- Ioana Gencia
- Department of Dermatology, "Victor Babeş" University of Medicine and Pharmacy; University Clinic of Dermatology and Venereology, Municipal Clinical Emergency Hospital of Timisoara, Timisoara, Romania
| | - Flavia Baderca
- Department of Microscopic Morphology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara, Romania
| | - Stefania Avram
- Department of Dermatology, "Victor Babeş" University of Medicine and Pharmacy; University Clinic of Dermatology and Venereology, Municipal Clinical Emergency Hospital of Timisoara, Timisoara, Romania
| | - Armand Gogulescu
- Department of Balneology, Medical Rehabilitation and Rheumatology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Marcu
- Department of Biochemistry and Pharmacology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara, Romania
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara, Romania
| | - Caius Solovan
- Department of Dermatology, "Victor Babeş" University of Medicine and Pharmacy; University Clinic of Dermatology and Venereology, Municipal Clinical Emergency Hospital of Timisoara, Timisoara, Romania
| |
Collapse
|
30
|
Sheng Y, Hu R, Zhang Y, Luo W. MicroRNA-4317 predicts the prognosis of breast cancer and inhibits tumor cell proliferation, migration, and invasion. Clin Exp Med 2020; 20:417-425. [PMID: 32279128 DOI: 10.1007/s10238-020-00625-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Previous researches have indicated that miR-4317 was aberrantly expressed in several tumors. However, the potential role of miR-4317 in breast cancer is still unclear. The aim of this study was to investigate the potential role of miR-4317 in breast cancer. The relative expression levels of miR-4317 were detected in breast cancer tissues and cell lines using qRT-PCR analysis. The Kaplan-Meier survival curve and multivariate Cox regression analyses were used to investigate the prognostic significance of miR-4317 in breast cancer. CCK-8 and Transwell assays were performed to evaluate the effects of miR-4317 on cell proliferation, migration, and invasion. The results showed that miR-4317 expression was decreased in breast cancer tissues and cell lines. Downregulation of miR-4317 was significantly associated with lymph node metastasis, TNM stage, and poor prognosis. Overexpression of miR-4317 inhibited proliferation, migration, and invasion of breast cancer cells, while downregulation of miR-4317 exhibited the opposite effects. MYD88 may be a direct target of miR-4317. The results suggest miR-4317 may play a tumor suppressor role in breast cancer and inhibit proliferation, migration, and invasion of breast cancer cells by targeting MYD88. The findings provide novel evidence of miR-4317 as a potential prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yuwei Sheng
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China
| | - Rong Hu
- Department of Pharmacy, Shanghai First People's Hospital Baoshan Branch, Shanghai, 200940, China
| | - Yi Zhang
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China
| | - Wenjie Luo
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China.
| |
Collapse
|
31
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
32
|
Torres R, Lang UE, Hejna M, Shelton SJ, Joseph NM, Shain AH, Yeh I, Wei ML, Oldham MC, Bastian BC, Judson-Torres RL. MicroRNA Ratios Distinguish Melanomas from Nevi. J Invest Dermatol 2020; 140:164-173.e7. [PMID: 31580842 PMCID: PMC6926155 DOI: 10.1016/j.jid.2019.06.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022]
Abstract
The use of microRNAs as biomarkers has been proposed for many diseases, including the diagnosis of melanoma. Although hundreds of microRNAs have been identified as differentially expressed in melanomas as compared to benign melanocytic lesions, a limited consensus has been achieved across studies, constraining the effective use of these potentially useful markers. In this study, we applied a machine learning-based pipeline to a dataset consisting of genetic features, clinical features, and next-generation microRNA sequencing from micro-dissected formalin-fixed paraffin embedded melanomas and their adjacent benign precursor nevi. We identified patient age and tumor cellularity as variables that frequently confound the measured expression of potentially diagnostic microRNAs. By employing the ratios of microRNAs that were either enriched or depleted in melanoma compared to the nevi as a normalization strategy, we developed a model that classified all the available published cohorts with an area under the receiver operating characteristic curve of 0.98. External validation on an independent cohort classified lesions with 81% sensitivity and 88% specificity and was uninfluenced by the tumor content of the sample or patient age.
Collapse
Affiliation(s)
- Rodrigo Torres
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Ursula E Lang
- Department of Dermatology, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA
| | - Miroslav Hejna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Samuel J Shelton
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Nancy M Joseph
- Department of Pathology, University of California, San Francisco, California, USA
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Iwei Yeh
- Department of Dermatology, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco, California, USA; San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Boris C Bastian
- Department of Dermatology, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA
| | - Robert L Judson-Torres
- Department of Dermatology, University of California, San Francisco, California, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
33
|
Zamarian V, Catozzi C, Ressel L, Finotello R, Ceciliani F, Vilafranca M, Altimira J, Lecchi C. MicroRNA Expression in Formalin-Fixed, Paraffin-Embedded Samples of Canine Cutaneous and Oral Melanoma by RT-qPCR. Vet Pathol 2019; 56:848-855. [PMID: 31526125 DOI: 10.1177/0300985819868646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA that post-transcriptionally regulate protein expression. miRNAs are emerging as clinical biomarkers of many diseases, including tumors. The aim of this study was to investigate whether miRNA expression could vary in melanoma samples derived from formalin-fixed, paraffin-embedded (FFPE) tissues. The study included 4 groups: (1) 9 samples of oral canine malignant melanoma, (2) 10 samples of cutaneous malignant melanoma, (3) 5 samples of healthy oral mucosa, and (4) 7 samples of healthy skin. The expression levels of 6 miRNAs-miR-145, miR-146a, miR-425-5p, miR-223, miR-365, and miR-134-were detected and assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) using TaqMan probes. Cutaneous canine malignant melanoma showed a decrease of the expression level of miR-145 and miR-365 and an increase of miR-146a and miR-425-5p compared to control samples. MiR-145 was also downregulated in oral canine malignant melanoma. The miRNAs with decreased expression may regulate genes involved in RAS, Rap1, and transforming growth factor β (TGF-β) signaling pathways, as well as upregulated genes associated with phosphatidylinositol signaling system, adherens junction, and RAS signaling pathways. In conclusion, miR-145, miR-365, miR-146a, and miR-425-5p were differentially expressed in canine malignant melanoma and healthy FFPE samples, suggesting that they may play a role in canine malignant melanoma pathogenesis.
Collapse
Affiliation(s)
- Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Ressel
- Department of Veterinary Pathology, Public Health Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Riccardo Finotello
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | | | - Jaume Altimira
- HISTOVET Veterinary Diagnostic Service, Barcelona, Spain
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
34
|
Sugita BM, Pereira SR, de Almeida RC, Gill M, Mahajan A, Duttargi A, Kirolikar S, Fadda P, de Lima RS, Urban CA, Makambi K, Madhavan S, Boca SM, Gusev Y, Cavalli IJ, Ribeiro EMSF, Cavalli LR. Integrated copy number and miRNA expression analysis in triple negative breast cancer of Latin American patients. Oncotarget 2019; 10:6184-6203. [PMID: 31692930 PMCID: PMC6817452 DOI: 10.18632/oncotarget.27250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Triple negative breast cancer (TNBC), a clinically aggressive breast cancer subtype, affects 15-35% of women from Latin America. Using an approach of direct integration of copy number and global miRNA profiling data, performed simultaneously in the same tumor specimens, we identified a panel of 17 miRNAs specifically associated with TNBC of ancestrally characterized patients from Latin America, Brazil. This panel was differentially expressed between the TNBC and non-TNBC subtypes studied (p ≤ 0.05, FDR ≤ 0.25), with their expression levels concordant with the patterns of copy number alterations (CNAs), present mostly frequent at 8q21.3-q24.3, 3q24-29, 6p25.3-p12.2, 1q21.1-q44, 5q11.1-q22.1, 11p13-p11.2, 13q12.11-q14.3, 17q24.2-q25.3 and Xp22.33-p11.21. The combined 17 miRNAs presented a high power (AUC = 0.953 (0.78-0.99);95% CI) in discriminating between the TNBC and non-TNBC subtypes of the patients studied. In addition, the expression of 14 and 15 of the 17miRNAs was significantly associated with tumor subtype when adjusted for tumor stage and grade, respectively. In conclusion, the panel of miRNAs identified demonstrated the impact of CNAs in miRNA expression levels and identified miRNA target genes potentially affected by both CNAs and miRNA deregulation. These targets, involved in critical signaling pathways and biological functions associated specifically with the TNBC transcriptome of Latina patients, can provide biological insights into the observed differences in the TNBC clinical outcome among racial/ethnic groups, taking into consideration their genetic ancestry.
Collapse
Affiliation(s)
- Bruna M Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Silma R Pereira
- Department of Biology, Federal University of Maranhão, São Luis, MA, Brazil
| | - Rodrigo C de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rubens S de Lima
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Cicero A Urban
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Simina M Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
35
|
Goryacheva O, Vostrikova A, Kokorina A, Mordovina E, Tsyupka D, Bakal A, Markin A, Shandilya R, Mishra P, Beloglazova N, Goryacheva I. Luminescent carbon nanostructures for microRNA detection. Trends Analyt Chem 2019; 119:115613. [DOI: 10.1016/j.trac.2019.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, Miyoshi N, Nakagawa T, Fukushima R, Miura N. Micro RNA Transcriptome Profile in Canine Oral Melanoma. Int J Mol Sci 2019; 20:E4832. [PMID: 31569419 PMCID: PMC6801976 DOI: 10.3390/ijms20194832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) dysregulation contribute the cancer pathogenesis. However, the miRNA profile of canine oral melanoma (COM), one of the frequent malignant melanoma in dogs is still unrevealed. The aim of this study is to reveal the miRNA profile in canine oral melanoma. MiRNAs profile of oral tissues from normal healthy dogs and COM patients were compared by next-generation sequencing. Along with tumour suppressor miRNAs, we report 30 oncogenic miRNAs in COM. The expressions of miRNAs were further confirmed by quantitative real-time PCR (qPCR). Pathway analysis showed that deregulated miRNAs impact on cancer and signalling pathways. Three oncogenic miRNAs targets (miR-450b, 301a, and 223) from human study also were down-regulated in COM and had a significant negative correlation with their respective miRNA. Furthermore, we found that miR-450b expression is higher in metastatic cells and regulated MMP9 expression through a PAX9-BMP4-MMP9 axis. In silico analysis indicated that miR-126, miR-20b, and miR-106a regulated the highest numbers of differentially expressed transcription factors with respect to human melanoma. Chromosomal enrichment analysis revealed the X chromosome was enriched with oncogenic miRNAs. We comprehensively analyzed the miRNA's profile in COM which will be a useful resource for developing therapeutic interventions in both species.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
| | - Hui-Wen Chen
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima, Kagoshima 890-8544, Japan.
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| | - Ryuji Fukushima
- Animal Medical Centre, Tokyo University of Agriculture and Technology, Tokyo, Tokyo 183-8538, Japan.
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| |
Collapse
|
37
|
Xu Y, Wang L, Jiang L, Zhang X. Novel MicroRNA Biomarkers, miR-142-5p, miR-550a, miR-1826, and miR-1201, Were Identified for Primary Melanoma. J Comput Biol 2019; 27:815-824. [PMID: 31526187 DOI: 10.1089/cmb.2019.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was aimed to identify novel miRNA biomarkers and explore the cooperative function of multi-RNAs in the progress of primary melanoma. The miRNA expression profile GSE62370 generated from 9 congenital nevi and 92 primary melanoma samples was downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs between primary melanoma and congenital nevi were compared and the target genes of them were selected. Pathway enrichment analysis and protein/protein interaction (PPI) network of miRNA target genes were performed. In addition, the differential expression of miRNAs to identify the tumor stage-dependent differences in miRNA expression was analyzed. Differentially expressed miRNAs, including 6 upregulated and 23 downregulated, were found in primary melanoma. Besides, the miRNA-associated gene regulatory network revealed 274 nodes, including miR-142-5p and miR-125b, and 307 miRNA-target pairs. miRNA-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, such as melanoma, was found. Target genes in the PPI module were mainly enriched in cancer-related pathways. Finally, the melanoma stage-related overexpressed miR-142-5p and the downregulated miR-550, miR-1826, miR-1201, miR-205, and miR-125b were identified. Some validated miRNAs, including miR-125a/b, let-7a/b, and miR-205, were found and illustrated the reliability of our study. Four novel miRNAs, including miR-142-5p, miR-550a, miR-1826, and miR-1201, were considered to have potential prognostic values for primary melanoma.
Collapse
Affiliation(s)
- Yangchun Xu
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Ling Wang
- Department of Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Lanxiang Jiang
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Xuan Zhang
- Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Ling C, Wang X, Zhu J, Tang H, Du W, Zeng Y, Sun L, Huang J, Liu Z. MicroRNA-4286 promotes cell proliferation, migration, and invasion via PTEN regulation of the PI3K/Akt pathway in non-small cell lung cancer. Cancer Med 2019; 8:3520-3531. [PMID: 31074594 PMCID: PMC6601592 DOI: 10.1002/cam4.2220] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 12/30/2022] Open
Abstract
It is well-known that phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor which negatively regulates PI3K/AKT signaling and is activated widely in non-small cell lung cancers (NSCLC). However, genetic alterations in PTEN genes are rare, suggesting an undefined mechanism(s) for their suppression. Notably, growing evidence indicates that PTEN can be regulated by microRNAs involved in cancer progression. In this study, we discover that the miR-4286 is overexpressed in NSCLC and negatively regulates the expression of PTEN. Furthermore, we found that miR-4286 reduces PTEN expression by directly binding to PTEN 3'-untranslated region (UTR), thereby inhibiting NSCLC cell proliferation and mobility. Moreover, mechanistic investigations revealed that miR-4286 overexpression was a result of PTEN-mediated activation of the PI3K/AKT pathway. Taken together, our findings elucidate that miR-4286 promotes the tumorigenesis of NSCLC by interacting with PTEN. This miR-4286-mediated upregulation of PTEN might lead to new therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Chunhua Ling
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
| | - Xueting Wang
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
| | - Jianjie Zhu
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
- Institute of Respiratory DiseasesSoochow UniversitySuzhouChina
| | - Haicheng Tang
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
| | - Wenwen Du
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
| | - Yuanyuan Zeng
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
- Institute of Respiratory DiseasesSoochow UniversitySuzhouChina
| | - Lin Sun
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
| | - Jian‐An Huang
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
- Institute of Respiratory DiseasesSoochow UniversitySuzhouChina
| | - Zeyi Liu
- Department of Respiratory Medicinethe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Suzhou Key Laboratory for Respiratory DiseasesSuzhouChina
- Institute of Respiratory DiseasesSoochow UniversitySuzhouChina
| |
Collapse
|
39
|
Polini B, Carpi S, Romanini A, Breschi MC, Nieri P, Podestà A. Circulating cell-free microRNAs in cutaneous melanoma staging and recurrence or survival prognosis. Pigment Cell Melanoma Res 2019; 32:486-499. [PMID: 30481404 DOI: 10.1111/pcmr.12755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Abstract
Cutaneous melanoma is a skin cancer with increasing incidence. Identification of novel clinical biomarkers able to detect the stage of disease and suggest prognosis could improve treatment and outcome for melanoma patients. Cell-free microRNAs (cf-miRNAs) are the circulating copies of short non-coding RNAs involved in gene expression regulation. They are released into the interstitial fluid, are detectable in blood and other body fluids and have interesting features of ideal biomarker candidates. They are stable outside the cell, tissue specific, vary along with cancer development and are sensitive to change in the disease course such as progression or therapeutic response. Moreover, they are accessible by non-invasive methods or venipuncture. Some articles have reported different cf-miRNAs with the potential of diagnostic tools for melanoma staging, recurrence and survival prediction. Although some concordance of results is already emerging, differences in analytical methods, normalization strategies and tumour staging still will require further research and standardization prior to clinical usage of cf-miRNA analysis. This article reviews this literature with the aim of contributing to a shared focusing on these new promising tools for melanoma treatment and care.
Collapse
Affiliation(s)
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Adriano Podestà
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Lu C, Yang Z, Jiang S, Yang Y, Han Y, Lv J, Li T, Chen F, Yu Y. Forkhead box O4 transcription factor in human neoplasms: Cannot afford to lose the novel suppressor. J Cell Physiol 2019; 234:8647-8658. [PMID: 30515801 DOI: 10.1002/jcp.27853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Forkhead box O4 (FOXO4), a member of FOXO family, has been highlighted as an essential transcriptional regulator in many diverse carcinomas. Accumulated studies have demonstrated that FOXO4 is downregulated and associated with tumorigenesis, invasiveness, and metastasis of most human cancer. FOXO4 alteration is also closely linked to the prognosis of various types of cancer. The aim of this review is to comprehensively present the clinical and pathological significance of FOXO4 in human cancer. Additionally, the potential clinical applications of future FOXO4 research are discussed. Collectively, the information reviewed here should increase the potential of FOXO4 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
41
|
Nye A, Collins JD, Porter CL, Montes de Oca M, George K, Stafford CG, Schammel CMG, Horton S, Trocha SD. Predictive genetic profiles for regional lymph node metastasis in primary cutaneous melanoma: a case-matched pilot study. Melanoma Res 2018; 28:555-561. [PMID: 30179987 DOI: 10.1097/cmr.0000000000000499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Melanoma confers an estimated lifetime risk of one in 50 for 2016. Clinicopathologic staging and sentinel lymph node biopsy (SLNB) have been the standard of care for T2 and T3 lesions. Molecular biomarkers identified in the primary lesion suggestive of metastatic potential may offer a more conclusive prognosis of these lesions. Our purpose was to investigate molecular mutations in primary melanoma that were predictive for micrometastasis as defined by a positive sentinel lymph node (SLN) in a case-controlled manner: nine patients with negative SLN and nine with positive SLN. The two cohorts were statistically identical as shown by a t-test for age (P=0.17), race (P=0.18), Breslow depth (P=0.14), Clark level (P=0.33), host response (P=0.17), ulceration (P=0.50), satellite nodules (P=0.17), lymphovascular invasion (P=0.50), and mitotic activity (P=0.09). While no single gene was significantly associated with SLN status, multivariate analysis using classification and regression tree assessment revealed two unique gene profiles that completely represented regional metastases in our cohort as defined by a positive SLN: PIK3CA (+) NRAS (-) and PIK3CA (-) ERBB4 (-) TP53 (+) SMAD4 (-). These profiles were identified in 89% of the patients with positive SLN; none of these profiles were identified in the SLN-negative cohort. We identified two unique gene profiles associated with positive SLN that do not overlap other studies and highlight the genetic complexity that portends the metastatic phenotype in cutaneous melanoma.
Collapse
Affiliation(s)
- Anthony Nye
- University of South Carolina School of Medicine Greenville
| | | | | | | | | | - Colin G Stafford
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Samuel Horton
- Department of Pathology, Pathology Associates, Greenville
| | | |
Collapse
|
42
|
Said R, Garcia-Mayea Y, Trabelsi N, Setti Boubaker N, Mir C, Blel A, Ati N, Paciucci R, Hernández-Losa J, Rammeh S, Derouiche A, Chebil M, LLeonart ME, Ouerhani S. Expression patterns and bioinformatic analysis of miR-1260a and miR-1274a in Prostate Cancer Tunisian patients. Mol Biol Rep 2018; 45:2345-2358. [PMID: 30250996 DOI: 10.1007/s11033-018-4399-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Currently, microRNAs (miRs) represent great biomarkers in cancer due to their stability and their potential role in diagnosis, prognosis and therapy. This study aims to evaluate the expression levels of miRs-1260 and -1274a in prostate cancer (PC) samples and to identify their eventual targets by using bioinformatic analysis. In this project, we evaluated the expression status of miRs-1260 and -1274a in 86 PC patients and 19 controls by using real-time quantitative PCR and 2-ΔΔCt method. Moreover, we retrieved validated and predicted targets of miRs from several datasets by using the "multiMir" R/Bioconductor package. We have found that miRs-1260 and -1274a were over-expressed in PC patients compared to controls (p < 1 × 10-5). Moreover ROC curve for miRs-1260 and 1274a showed a good performance to distinguish between controls group and PC samples with an area under the ROC curve of 0.897 and 0.784 respectively. However, no significant association could be shown between these two miRs and clinical parameters such as PSA levels, Gleason score, tumor stage, D'Amico classification, lymph node metastasis statues, tumor recurrence, metastasis status and progression after a minimum of 5 years follow-up. Finally, a bioinformatic analysis revealed the association between these two miRs and several targets implicated in prostate cancer initiation pathways.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Nesrine Trabelsi
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Nouha Setti Boubaker
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Ahlem Blel
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Nidhal Ati
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Rosanna Paciucci
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Hernández-Losa
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Soumaya Rammeh
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia.
| |
Collapse
|
43
|
Latchana N, DiVincenzo MJ, Regan K, Abrams Z, Zhang X, Jacob NK, Gru AA, Fadda P, Markowitz J, Howard JH, Carson WE. Alterations in patient plasma microRNA expression profiles following resection of metastatic melanoma. J Surg Oncol 2018; 118:501-509. [PMID: 30132912 PMCID: PMC6160327 DOI: 10.1002/jso.25163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES MicroRNAs (miRs) are noncoding RNAs that regulate protein translation and melanoma progression. Changes in plasma miR expression following surgical resection of metastatic melanoma are under-investigated. We hypothesize differences in miR expression exist following complete surgical resection of metastatic melanoma. METHODS Blood collection pre- and post-surgical resection was performed in six individuals with solitary melanoma metastases. miR expression in extracted RNA was quantified using the NanoString nCounter Digital Analyzer. RESULTS Pre- and post-surgical plasma samples contained 216 miRs with expression above baseline. Comparison of postsurgical to preresection samples revealed differential expression of 25 miRs: miR-let-7a, miR-let7g, miR-15a, miR-16, miR-22, miR-30b, miR-126, miR-140, miR-145, miR-148a, miR-150-5p, miR-191, miR-378i, miR-449c, miR-494, miR-513b, miR-548aa, miR-571, miR-587, miR-891b, miR-1260a, miR 1268a, miR-1976, miR-4268, miR-4454 (P < 0.05). Utilizing P < 0.0046 as a cutoff to control for one false positive among the 216 miRs revealed that postsurgical melanoma plasma samples had upregulation of miR-1260a (P = 0.0007) and downregulation of miR-150-5p (P = 0.0026) relative to pre-surgical samples. CONCLUSIONS Differential expression of miR-150-5p and miR-1260a is present in plasma following surgical resection of metastatic melanoma in this small sample (n = 6) of melanoma patients. Therefore, further investigation of these plasma miRs as noninvasive biomarkers for melanoma is warranted.
Collapse
Affiliation(s)
- Nicholas Latchana
- Department of General Surgery, University of Toronto, Toronto, Canada
| | | | - Kelly Regan
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Zachary Abrams
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | | | - Alejandro A. Gru
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Joseph Markowitz
- Moffitt Cancer Center Department of Cutaneous Oncology, Tampa, FL
| | | | | |
Collapse
|
44
|
Liao X, Wang X, Huang K, Yang C, Yu T, Han C, Zhu G, Su H, Huang R, Peng T. Genome-scale analysis to identify prognostic microRNA biomarkers in patients with early stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Cancer Manag Res 2018; 10:2537-2551. [PMID: 30127641 PMCID: PMC6089101 DOI: 10.2147/cmar.s168351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of the study was to investigate potential prognostic microRNA (miRNA) biomarkers for patients with early stage pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using a miRNA-sequencing (miRNA-seq) data set from The Cancer Genome Atlas (TCGA). A miRNA expression-based prognostic signature was generated, and the potential role of target genes in overall survival (OS) in patients with PDAC was examined. Methods A miRNA-seq data set of 112 PDAC patients who underwent pancreaticoduodenectomy was obtained from TCGA. Survival analysis was performed to identify potential prognostic biomarkers. Results Eleven miRNAs (hsa-mir-501, hsa-mir-4521, hsa-mir-5091, hsa-mir-24-1, hsa-mir-126, hsa-mir-30e, hsa-mir-3157, hsa-let-7a-3, hsa-mir-133a-1, hsa-mir-4709, and hsa-mir-421) were used to construct a prognostic signature using the step function. The 11-miRNA prognostic signature showed good performance for prognosis prediction (adjusted P<0.0001, adjusted hazard ratio =4.285, 95% confidence interval =2.146–8.554), and the time-dependent receiver operating characteristic analysis showed an area under the curve of 0.864, 0.877, and 0.787 for 1-, 2-, and 3-year PDAC OS predictions, respectively. Comprehensive survival analysis suggested that the prognostic signature could serve as an independent prognostic factor for PDAC OS and performs better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of the miRNAs indicated that they were significantly enriched in multiple biological processes and pathways, including cell proliferation, cell cycle biological processes, the forkhead box O, mitogen-activated protein kinase, Janus kinase/signal transducers and activators of transcription signaling pathways, pathways in cancer, and the ErbB signaling pathway. Several target genes of these miRNAs were also associated with PDAC OS. Conclusion The present study identified a novel miRNA expression signature that showed potential as a prognostic biomarker for PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| |
Collapse
|
45
|
Michaille JJ, Piurowski V, Rigot B, Kelani H, Fortman EC, Tili E. MiR-663, a MicroRNA Linked with Inflammation and Cancer That Is under the Influence of Resveratrol. MEDICINES 2018; 5:medicines5030074. [PMID: 29987196 PMCID: PMC6163211 DOI: 10.3390/medicines5030074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022]
Abstract
Resveratrol (trans-3,5,4′-trihydroxystilbene, RSV) is a non-flavonoid dietary polyphenol with antioxidant, anti-inflammatory and anti-cancer properties that is primarily found in red berries. While RSV displays many beneficial effects in vitro, its actual effects in vivo or in animal models remain passionately debated. Recent publications suggest that RSV pleiotropic effects could arise from its capability to regulate the expression and activity of microRNAs, short regulators themselves capable of regulating up to several hundreds of target genes. In particular, RSV increases microRNA miR-663 expression in different human cell lines, suggesting that at least some of its multiple beneficial properties are through the modulation of expression of this microRNA. Indeed, the expression of microRNA miR-663 is reduced in certain cancers where miR-663 is considered to act as a tumor suppressor gene, as well as in other pathologies such as cardiovascular disorders. Target of miR-663 include genes involved in tumor initiation and/or progression as well as genes involved in pathologies associated with chronic inflammation. Here, we review the direct and indirect effects of RSV on the expression of miR-663 and its target transcripts, with emphasise on TGFβ1, and their expected health benefits, and argue that elucidating the molecular effects of different classes of natural compounds on the expression of microRNAs should help to identify new therapeutic targets and design new treatments.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, UB-INSERM IFR #100, Faculté Gabriel, Université de Bourgogne-Franche Comté, 21000 Dijon, France.
| | - Victoria Piurowski
- Department of Biology, Franklin College of Arts and Sciences, University of Georgia, Athes, GA 30602, USA.
| | - Brooke Rigot
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Hesham Kelani
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Emily C Fortman
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
A Panel of MicroRNA Signature as a Tool for Predicting Survival of Patients with Urothelial Carcinoma of the Bladder. DISEASE MARKERS 2018; 2018:5468672. [PMID: 30026881 PMCID: PMC6031086 DOI: 10.1155/2018/5468672] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
Abstract
Introduction and Objectives MicroRNA (miRNA) expression is altered in urologic malignancies, including urothelial carcinoma of the bladder (UCB). Individual miRNAs have been shown to modulate multiple signaling pathways that contribute to BC. To identify a panel of miRNA signature that can predict aggressive phenotype from normal nonaggressive counterpart using miRNA expression levels and to assess the prognostic value of this specific miRNA markers in patients with UCB. Methods To determine candidate miRNAs as prognostic biomarkers for dividing aggressive type of UCB, miRNA expression was profiled in patients' samples with an aggressive phenotype or nonaggressive phenotype using 3D-Gene miRNA labeling kit (Toray, Japan). To create a prognostic index model, we used the panel of 9-miRNA signature based on Cancer Genome Atlas (TCGA) data portal (TCGA Data Portal (https://tcgadata.nci.nih.gov/tcga/tcgaHome2.jsp)). miRNA expression data and corresponding clinical data, including outcome and staging information of 84 UCB patients, were obtained. The Kaplan-Meier and log-rank test were performed to quantify the survival functions in two groups. Results Deregulation of nine miRNAs (hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-145-5p, hsa-miR-4324, hsa-miR-34b-5p, hsa-miR-29c-3p, hsa-miR-135a-3p, and hsa-miR-33b-3p) was determined in UCB patients with aggressive phenotype compared with nonaggressive subject. To validate the prognostic power of the nine-signature miRNAs using the TCGA dataset of bladder cancer, the survival status and tumor miRNA expression of all 84 TCGA UCB patients were ranked according to the prognostic score values. Of nine miRNAs, six were associated with high risk (hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-4324, hsa-miR-34b-5p, and hsa-miR-135a-3p) and three were shown to be protective (hsa-miR-145-5p, hsa-miR-29c-3p, and hsa-miR-33b-3p). Patients with the high-risk miRNA signature exhibited poorer OS than patients expressing the low-risk miRNA profile (HR = 7.05, p < 0.001). Conclusions The miRNA array identified nine dysregulated miRNAs from clinical samples. This panel of nine-miRNA signature provides predictive and prognostic value of patients with UCB.
Collapse
|
47
|
Abstract
Although microRNAs (miRNAs) have emerged as potent mediators of melanoma development and progression, a precise understanding of their oncogenic role remains unclear. In this study, we analysed formalin-fixed and paraffin-embedded tissues from two separate melanoma cohorts and from a series of benign melanocytic nevi. Using three different quantification methods [array analysis, quantitative PCR (qPCR) and in-situ hybridization (ISH) quantified by digital image analysis], we found considerable miRNA dysregulation in tumours. Using array analysis, samples mainly clustered according to their biological group (benign vs. malignant) and 77 miRNAs differed significantly between nevi and melanoma samples. Increase of miR-21 and miR-142, and decrease of miR-125b, miR-211, miR-101 and miR-513c in the melanomas were verified in both cohorts using qPCR, whereas the decrease of miR-205 observed with array analysis could not be confirmed using qPCR. ISH with digital quantification showed expression of miR-21 and miR-125b in the melanocytic lesions. miR-21 ISH was increased in melanomas, whereas quantification of miR-125b showed uniform ISH expression across nevi and melanomas. Our results support the important involvement of different miRNAs in melanoma biology and may serve as solid basics for further miRNA investigations in melanoma formalin-fixed and paraffin-embedded tissue. In particular, there is increased expression of miR-21 in melanomas compared with benign nevi.
Collapse
|
48
|
Wu Y, Sun W, Kong Y, Liu B, Zeng M, Wang W. Restoration of microRNA-130b expression suppresses osteosarcoma cell malignant behavior in vitro. Oncol Lett 2018; 16:97-104. [PMID: 29928390 PMCID: PMC6006480 DOI: 10.3892/ol.2018.8643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
The alteration of microRNA (miR)-130b expression has been associated with promoting or suppressing numerous types of human cancer. A previous study evaluated the expression level of miR-130b in osteosarcoma tissues, and subsequently investigated the effects of miR-130b on the regulation of osteosarcoma cells malignant behavior in vitro. The study revealed that miR-130b expression levels were significantly reduced in osteosarcoma tissues and cell lines, compared with in adjacent tissues or normal cell lines. The expression of miR-130b inhibited the proliferation of osteosarcoma U-2OS and Saos-2 cells and impaired their ability to migrate, invade and form colonies. Furthermore, analysis using TargetScan and a dual-luciferase reporter assay demonstrated that miR-130b directly interacted with the 3′-untranslated region of transforming growth factor α (TGFA) and suppressed TGFA expression. TGFA and miR-130b were also inversely expressed in osteosarcoma tissues. In addition, expression of TGFA was able to alter miR-130-regulated osteosarcoma cell proliferation, migration and invasion. Thus, the present study demonstrated that miR-130b was downregulated in osteosarcoma tissues and cell lines, whereas the expression of miR-130b suppressed osteosarcoma cell malignant behavior. At the gene level, miR-130 directly targets and inhibits TGFA expression, in addition to phosphorylated protein kinase B and epidermal growth factor receptor expression levels. Further study is required to evaluate miR-130b antitumor activity in osteosarcoma.
Collapse
Affiliation(s)
- Yi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Department of Surgery, Changsha Medicine College, Changsha, Hunan 410023, P.R. China
| | - Wei Sun
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ying Kong
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bo Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
49
|
Vidal DO, Ramão A, Pinheiro DG, Muys BR, Lorenzi JCC, de Pádua Alves C, Zanette DL, de Molfetta GA, Duarte G, Silva WA. Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget 2018; 9:23554-23563. [PMID: 29805755 PMCID: PMC5955126 DOI: 10.18632/oncotarget.25264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/24/2018] [Indexed: 12/31/2022] Open
Abstract
Despite being a healthy tissue, the constituent cells of the placenta, share similar characteristics with tumor cells, such as increased cell growth, migration, and invasion. However, while these processes are stochastic and uncontrolled in cancer cells, in placenta they are precisely controlled. Since miRNAs have been reported to regulate genes that control the molecular mechanisms necessary for the development of both human placenta and cancer, we addressed for miRNAs highly expressed in the placenta that could be involved in tumorigenesis. Here, we assessed the miRNA profile in placenta samples using microarray analysis. The results showed that miR-451 and miR-720, highly expressed placental miRNAs, presented very low or undetectable expression in cancer cell lines compared to the normal placenta and healthy tissues. Additionally, transfection of miR-451 or miR-720 mimics in choriocarcinoma cell line (JEG3) and colorectal adenocarcinoma cell line (HT-29) resulted in impaired cell proliferation, decreased cell migration and invasion and reduced ability of colony formation. These findings provide evidence that placenta may work as an alternative model to identify novel miRNAs involved in pathways controlling tumorigenesis.
Collapse
Affiliation(s)
- Daniel Onofre Vidal
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Julio Cesar Cetrulo Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Cleidson de Pádua Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Dalila Luciola Zanette
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Greice Andreotti de Molfetta
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil.,Center for Medical Genomics (HCFMRP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
50
|
Goryacheva OA, Mishra PK, Goryacheva IY. Luminescent quantum dots for miRNA detection. Talanta 2018; 179:456-465. [PMID: 29310260 DOI: 10.1016/j.talanta.2017.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in nearly all developmental processes and human pathologies. MiRNAs are considered to be promising biomarkers, since their dysregulation correlates with the development and progress of many diseases. Short length, sequence homology among family members, susceptibility to degradation, and low abundance in total RNA samples make miRNA analysis a challenging task. Photoluminescent semiconductor nanoparticles (quantum dots, QDs) possess unique properties such as bright photoluminescence, photostability and narrow emission peaks, wide possibilities for surface modification and bioconjugation, which serve as the basis for the development of different analytical methods for variety of analytes. Relatively small size of QDs' and their narrow distribution are especially important for miRNA assay. The combination of QD-based biosensors with amplification techniques makes it possible to identify the target miRNA at a single-particle level with the detection limit at the attomolar scale. This review describes the principles of signal generation: direct intensity measurements, different "signal on" and "signal off" mechanisms as well as electro-chemiluminescence. Special attention is paid to the FRET-based techniques. According to our knowledge this is the first review related to QDs application for miRNA detection.
Collapse
Affiliation(s)
- O A Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia
| | - P K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - I Yu Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia.
| |
Collapse
|