1
|
Logan NJ, Broda KL, Pantelireis N, Williams G, Higgins CA. Chromatin accessibility profiling reveals that human fibroblasts respond to mechanical stimulation in a cell-specific manner. JBMR Plus 2024; 8:ziae025. [PMID: 38682000 PMCID: PMC11055960 DOI: 10.1093/jbmrpl/ziae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.
Collapse
Affiliation(s)
- Niall J Logan
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Krystyna L Broda
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nikolaos Pantelireis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Greg Williams
- Farjo Hair Institute, Manchester, M3 3EJ, United Kingdom
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
3
|
Wang H, Qi LL, Shema C, Jiang KY, Ren P, Wang H, Wang L. Advances in the role and mechanism of fibroblasts in fracture healing. Front Endocrinol (Lausanne) 2024; 15:1350958. [PMID: 38469138 PMCID: PMC10925620 DOI: 10.3389/fendo.2024.1350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
With the development of social population ageing, bone fracture has become a global public health problem due to its high morbidity, disability and mortality. Fracture healing is a complex phenomenon involving the coordinated participation of immigration, differentiation and proliferation of inflammatory cells, angioblasts, fibroblasts, chondroblasts and osteoblasts which synthesize and release bioactive substances of extracellular matrix components, Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. Fibroblasts play an important role in the process of fracture healing. However, it is not clear how the growth factors and extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts in healing process. Therefore, this article focuses on the role of fibroblasts in the process of fracture healing and mechanisms of research progress.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-li Qi
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- International Education College of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kui-ying Jiang
- National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Ping Ren
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - He Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Li J, Tian G, Wang X, Tang H, Liu Y, Guo H, Wang C, Chen Y, Yang Y. Effects of short photoperiod on cashmere growth, hormone concentrations and hair follicle development-related gene expression in cashmere goats. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2153853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Junda Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Guangjie Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Xingtao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Hongyu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yuyang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Hongran Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Chunxin Wang
- Jilin Academy of Agriculture Sciences, Gongzhuling, People’s Republic of China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| |
Collapse
|
5
|
Hayashi T, Asakura M, Kawase M, Matsubara M, Uematsu Y, Mieki A, Kawai T. Bone Tissue Engineering in Rat Calvarial Defects Using Induced Bone-like Tissue by rhBMPs from Immature Muscular Tissues In Vitro. Int J Mol Sci 2022; 23:ijms23136927. [PMID: 35805943 PMCID: PMC9266849 DOI: 10.3390/ijms23136927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to induce bone-like tissue from immature muscular tissue (IMT) in vitro using commercially available recombinant human bone morphogenetic protein (rhBMP)-2, rhBMP-4, and rhBMP-7, and then implanting this tissue into a calvarial defect in rats to assess healing. IMTs were extracted from 20-day-old Sprague-Dawley (SD) fetal rats, placed on expanded polytetrafluoroethylene (ePTFE) with 10 ng/μL each of rhBMP-2, BMP-4, and BMP-7, and cultured for two weeks. The specimens were implanted into calvarial defects in 3-week-old SD rats for up to three weeks. Relatively strong radiopacity was observed on micro-CT two weeks after culture, and bone-like tissue, comprising osteoblastic cells and osteoids, was partially observed by H&E staining. Calcium, phosphorus, and oxygen were detected in the extracellular matrix using an electron probe micro analyzer, and X-ray diffraction patterns and Fourier transform infrared spectroscopy spectra of the specimen were found to have typical apatite crystal peaks and spectra, respectively. Furthermore, partial strong radiopacity and ossification were confirmed one week after implantation, and a dominant novel bone was observed after two weeks in the defect site. Thus, rhBMP-2, BMP-4, and BMP-7 differentiated IMT into bone-like tissue in vitro, and this induced bone-like tissue has ossification potential and promotes the healing of calvarial defects. Our results suggest that IMT is an effective tissue source for bone tissue engineering.
Collapse
|
6
|
Tae JY, Park YH, Ko Y, Park JB. The Effects of Bone Morphogenetic Protein-4 on Cellular Viability, Osteogenic Potential, and Global Gene Expression on Gingiva-Derived Stem Cell Spheroids. COATINGS 2020; 10:1055. [DOI: 10.3390/coatings10111055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Bone morphogenetic protein-4 (BMP-4) is engaged in the migration ability of mesenchymal stem cells and the transition of mesenchymal stem cells into osteogenic and adipocytic lines. The aim of this study was to evaluate the effects of BMP-4 on the cellular viability, osteogenic differentiation, and genome-wide mRNA levels using three-dimensional cell spheroids composed of stem cells. Stem cell spheroids were formed using concave microwells in the presence of BMP-4 with final concentrations of 0, 2, 6, and 10 ng/mL. Cellular viability was measured qualitatively using a microscope and quantitatively using an assay kit based on water-soluble tetrazolium salt. Osteogenic differentiation was assessed by measuring the level of alkaline phosphatase activity. Global gene expression was assessed using next-generation mRNA sequencing and performing gene ontology and pathway analyses. Spheroids were well-maintained with the addition of BMP-4 up to Day 7. No significant differences were observed in cell viability between each group. There were significantly higher alkaline phosphatase values in the 2 ng/mL BMP-4 groups when compared with the control (p < 0.05). A total of 25,737 mRNAs were differentially expressed. Expression of β-catenin (CTNNB1) was increased with higher dosages of BMP-4. The expression of runt-related transcription factor 2 (RUNX2) was increased up to 6 ng/mL. The phosphoinositide-3-kinase–protein kinase B/Akt signaling pathway was associated with the target genes. This study demonstrates that the application of BMP-4 enhanced alkaline phosphatase activity and the expression of CTNNB1 and RUNX2 without affecting cellular viability.
Collapse
Affiliation(s)
- Jae-Yong Tae
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yoon-Hee Park
- ebiogen, Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul 07282, Korea
| | - Youngkyung Ko
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun-Beom Park
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
7
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
8
|
Robust phenotypic maintenance of limb cells during heterogeneous culture in a physiologically relevant polymeric-based constructed graft system. Sci Rep 2020; 10:11739. [PMID: 32678185 PMCID: PMC7367281 DOI: 10.1038/s41598-020-68658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
A major challenge during the simultaneous regeneration of multiple tissues is the ability to maintain the phenotypic characteristics of distinct cell populations on one construct, especially in the presence of different exogenous soluble cues such as growth factors. Therefore, in this study, we questioned whether phenotypic maintenance over a distinct population of cells can be achieved by providing biomimetic structural cues relevant to each cell phenotype into the construct's design and controlling the presentation of growth factors in a region-specific manner. To address this question, we developed a polymeric-based constructed graft system (CGS) as a physiologically relevant model that consists of three combined regions with distinct microstructures and growth factor types. Regions A and B of the CGS exhibited similar microstructures to the skin and soft tissues and contained rhPDGF-BB and rhIGF-I, while region C exhibited a similar microstructure to the bone tissue and contained rhBMP-2. Primary rat skin fibroblasts, soft tissue fibroblasts, and osteoblasts were then cultured on regions A, B, and C of the CGS, respectively and their phenotypic characteristics were evaluated in this heterogenous environment. In the absence of growth factors, we found that the structural cues presented in every region played a key role in maintaining the region-specific cell functions and heterogeneity during a heterogeneous culture. In the presence of growth factors, we found that spatially localizing the growth factors at their respective regions resulted in enhanced region-specific cell functions and maintained region-specific cell heterogeneity compared to supplementation, which resulted in a significant reduction of cell growth and loss of phenotype. Our data suggest that providing biomimetic structural cues relevant to each cell phenotype and controlling the presentation of growth factors play a crucial role in ensuring heterogeneity maintenance of distinct cell populations during a heterogeneous culture. The presented CGS herein provides a reliable platform for investigating different cells responses to heterogeneous culture in a physiologically relevant microenvironment. In addition, the model provides a unique platform for evaluating the feasibility and efficacy of different approaches for simultaneously delivering multiple growth factors or molecules from a single construct to achieve enhanced cell response while maintaining cellular heterogeneity during a heterogenous culture.
Collapse
|
9
|
Claeys L, Bravenboer N, Eekhoff EMW, Micha D. Human Fibroblasts as a Model for the Study of Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:394. [PMID: 32636804 PMCID: PMC7318867 DOI: 10.3389/fendo.2020.00394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
Bone tissue degeneration is an urgent clinical issue, making it a subject of intensive research. Chronic skeletal disease forms can be prevalent, such as the age-related osteoporosis, or rare, in the form of monogenetic bone disorders. A barrier in the understanding of the underlying pathological process is the lack of accessibility to relevant material. For this reason, cells of non-bone tissue are emerging as a suitable alternative for models of bone biology. Fibroblasts are highly suitable for this application; they populate accessible anatomical locations, such as the skin tissue. Reports suggesting their utility in preclinical models for the study of skeletal diseases are increasingly becoming available. The majority of these are based on the generation of an intermediate stem cell type, the induced pluripotent stem cells, which are subsequently directed to the osteogenic cell lineage. This intermediate stage is circumvented in transdifferentiation, the process regulating the direct conversion of fibroblasts to osteogenic cells, which is currently not well-explored. With this mini review, we aimed to give an overview of existing osteogenic transdifferentiation models and to inform about their applications in bone biology models.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Aran S, Zahri S, Asadi A, Khaksar F, Abdolmaleki A. Hair follicle stem cells differentiation into bone cells on collagen scaffold. Cell Tissue Bank 2020; 21:181-188. [PMID: 32016616 DOI: 10.1007/s10561-020-09812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The hair follicle is a dynamic structure which contains different niches for stem cells, therefore; it has been considered as valuable and rich sources of stem cells, due to easy access, multipotency and non-oncogenic properties. In the present study, the differentiation capacities of hair follicle stem cells into bone cells on the natural collagen scaffolds were investigated. The stem cells were extracted from the hair follicle bulge area of male Wistar rats' whisker and cultured until 3rd passage, then osteogenic differentiations were induced by culturing the cells in the specific osteogenic medium. After 3 weeks, the differentiation parameters, including morphological changes, levels of calcification and expression of the bone specific genes were detected. The hydrogel preparation and scaffold fabrication was carried out using the extracted collagen and was studied by scanning electron microscope. Comparison of the stem cells' growth and changes on the scaffold and non-scaffold conditions showed that, in the both situation, the cells revealed differentiation signs of osteocytes, including large and cubic morphology with a star-shaped nucleus. Staining by Alizarin-red and Von-Kossa methods showed the presence of red and black calcium mass on the scaffold. Expression of the osteopontin and alkaline phosphatase genes confirmed the differentiation. Considerable porosity in the surface of the scaffold was recorded by scanning electron microscopy, which made it convenient for cells' attachment and growth. The data showed that the bulge stem cells possess significant capacity for osteoblastic differentiation and collagen scaffolds were found to be an appropriate matrix for growth and differentiation of the cell.
Collapse
Affiliation(s)
- Saeideh Aran
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Khaksar
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
- Bio Science and Biotechnology Research Center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| |
Collapse
|
11
|
Zhang T, Gao Y, Cui W, Li Y, Xiao D, Zhou R. Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Curr Stem Cell Res Ther 2020; 16:36-47. [PMID: 32436831 DOI: 10.2174/1574888x15666200521083834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Ma Y, Yao Y, Zhong N, Angwa LM, Pei J. The dose-time effects of fluoride on the expression and DNA methylation level of the promoter region of BMP-2 and BMP-7 in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103331. [PMID: 32004919 DOI: 10.1016/j.etap.2020.103331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Skeletal fluorosis is a chronic metabolic bone disease caused by excessive exposed to fluoride. Recent studies have shown that fluoride causes abnormal bone metabolism through disrupting the expression of Bone Morphogenetic Proteins (BMPs). However, the relationship between fluoride and BMPs is not fully understood, and the mechanism of fluoride on BMPs expression is still unclear. This study investigated the dose-time effects of fluoride on BMP-2 and BMP-7 levels and DNA methylation status of the promoter regions of these two genes in peripheral blood of rats. Eighty Wistar male rats were randomly divided into four groups and treated for 1 month and 3 months with distilled water (control), 25 mg/L, 50 mg/L or 100 mg/L of sodium fluoride (NaF). Rats exposed to fluoride had higher protein expression of BMP-2 and BMP-7 in plasma at 1 month and 3 months. An increase in BMP-2 expression was also observed with an increase of fluoride exposure time. Significant hypomethylation was observed in 2 CpG sites (CpGs) of BMP-2 and 1 CpG site of BMP-7 promoter regions in the fluoride treatment groups. It concludes that fluoride has a dose-response effect on BMP-2 in fluorosis rats, and fluoride-induced hypomethylation of specific CpGs may play an essential role in the regulation of BMP-2 and BMP-7 expression in rats.
Collapse
Affiliation(s)
- Yongzheng Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yingjie Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Nan Zhong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Linet Musungu Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China.
| |
Collapse
|
13
|
Amaral DL, Zanette RS, Almeida CG, Almeida LB, Oliveira LFD, Marcomini RF, Nogueira BV, Santos MO, Brandão HM, Mc Maranduba C, Munk M. In vitro evaluation of barium titanate nanoparticle/alginate 3D scaffold for osteogenic human stem cell differentiation. ACTA ACUST UNITED AC 2019; 14:035011. [PMID: 30802890 DOI: 10.1088/1748-605x/ab0a52] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials can mimic properties of extracellular matrix molecules, promising great potential for scaffold composition in tissue engineering. In the present study, we investigated whether barium titanate nanoparticles (BT NP) combined with alginate polymer would provide a new cytocompatible three-dimensional (3D) scaffold to induce osteogenic stem cell differentiation. In vitro cytocompatibility and osteogenic differentiation potential were investigated using human mesenchymal stem cells (MSC). Firstly, we studied the cell viability and oxidative stress by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) thiazolyl blue tetrazolium bromide (MTT) and superoxide dismutase (SOD) assays. Overall, neither pure BT NP or BT NP/alginate 3D scaffold induced cytotoxicity. The scanning electron and atomic force microscopy revealed that BT NP/alginate 3D scaffold produced exhibited highly interconnected pores and surface nanotopography that were favorable for MSC differentiation. Von Kossa staining showed mineralization nodules and MSCs morphology changed from spindle to cuboid shape after 21 d. Finally, BMP-2 and ALP mRNA were significantly upregulated on cells grown into the BT NP/alginate 3D scaffold. Thus, the BT NP/alginate 3D scaffold showed an osteogenic differentiation induction potential, without the addition of osteogenic supplements. These results indicate that the BT NP/alginate 3D scaffold provides a cytocompatible and bioactive microenvironment for osteogenic human MSC differentiation.
Collapse
Affiliation(s)
- Danielle Las Amaral
- Department of Biology, Federal University of Juiz de Fora, 36036-330, Juiz de Fora, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Logan NJ, Camman M, Williams G, Higgins CA. Demethylation of ITGAV accelerates osteogenic differentiation in a blast-induced heterotopic ossification in vitro cell culture model. Bone 2018; 117:149-160. [PMID: 30219480 PMCID: PMC6218666 DOI: 10.1016/j.bone.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Trauma-induced heterotopic ossification is an intriguing phenomenon involving the inappropriate ossification of soft tissues within the body such as the muscle and ligaments. This inappropriate formation of bone is highly prevalent in those affected by blast injuries. Here, we developed a simplified cell culture model to evaluate the molecular events involved in heterotopic ossification onset that arise from the shock wave component of the disease. We exposed three subtypes of human mesenchymal cells in vitro to a single, high-energy shock wave and observed increased transcription in the osteogenic master regulators, Runx2 and Dlx5, and significantly accelerated cell mineralisation. Reduced representation bisulfite sequencing revealed that the shock wave altered methylation of gene promoters, leading to opposing changes in gene expression. Using a drug to target ITGAV, whose expression was perturbed by the shock wave, we found that we could abrogate the deposition of mineral in our model. These findings show how new therapeutics for the treatment of heterotopic ossification can be identified using cell culture models.
Collapse
Affiliation(s)
- Niall J Logan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom,.
| | - Marie Camman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Greg Williams
- Farjo Hair Institute, London, W1G 7LH, United Kingdom.
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom,.
| |
Collapse
|
15
|
Chen F, Bi D, Cheng C, Ma S, Liu Y, Cheng K. Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. Int J Mol Med 2018; 43:37-46. [PMID: 30365093 PMCID: PMC6257832 DOI: 10.3892/ijmm.2018.3938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
The skin, as the largest organ of the human body, is an important source of stromal stem cells with multipotent differentiation potential. CD105+ mesenchymal stem cells exhibit a higher level of stemness than CD105− cells. In the present study, human dermal-derived CD105+ fibroblast cells (CD105+ hDDFCs) were isolated from human foreskin specimens using immunomagnetic isolation methods to examine the role of bone morphogenetic protein (BMP)-7 in osteogenic differentiation. Adenovirus-mediated recombinant BMP7 expression enhanced osteogenesis-associated gene expression, calcium deposition, and alkaline phosphatase activity. Investigation of the underlying mechanisms showed that BMP7 activated small mothers against decapentaplegic (Smad) and p38/mitogen-activated protein kinase signaling in CD105+ hDDFCs. The small interfering RNA-mediated knockdown of Smad4 or inhibition of p38 attenuated the BMP7-induced enhancement of osteogenic differentiation. In an in vivo ectopic bone formation model, the adenovirus-mediated overexpression of BMP7 enhanced bone formation from CD105+ hDDFCs. Taken together, these data indicated that adenoviral BMP7 gene transfer in CD105+ hDDFCs may be developed as an effective tool for bone tissue engineering.
Collapse
Affiliation(s)
- Fuguo Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Dan Bi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Sunxiang Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Kaixiang Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
16
|
Chen F, Bi D, Cao G, Cheng C, Ma S, Liu Y, Cheng K. Bone morphogenetic protein 7-transduced human dermal-derived fibroblast cells differentiate into osteoblasts and form bone in vivo. Connect Tissue Res 2018; 59:223-232. [PMID: 28696808 DOI: 10.1080/03008207.2017.1353085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Human dermal-derived fibroblast cells (hDDFCs) are multipotent. Bone morphogenetic proteins (BMPs) are a group of cytokines that promote different developmental processes, including the formation of bone. BMPs can promote hDDFC osteogenesis, but the role of BMP7 in hDDFC osteogenesis in vitro and bone formation in vivo has not been investigated in depth. MATERIALS AND METHODS hDDFCs were stably transfected with a human BMP7 recombinant adenovirus and osteogenic differentiation was examined by alkaline phosphatase staining and calcium accumulation. In addition, we measured the expression of osteoblast-related genes. To examine osteogenesis in vivo, we injected C57BL/6 nude mice with adenovirus-transfected hDDFCs in a calcium alginate hydrogel and examined bone formation using soft X-ray, histological, and immunohistochemical analyses. RESULTS Our findings showed that adenovirus-mediated BMP7 expression promoted osteogenic differentiation of hDDFCs and enhanced expression of osteoblast-related genes in vitro. Cells infected with BMP7 adenoviruses showed enhanced bone formation and osteoblast-related gene expression in vivo after the injection of hDDFC-hydrogel mixture. CONCLUSIONS Taken together, our data indicate that BMP7 significantly promotes hDDFC osteogenesis, and confirm that infecting hDDFCs with BMP7-expressing adenoviruses is a useful tool for bone tissue engineering.
Collapse
Affiliation(s)
- Fuguo Chen
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Dan Bi
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Guangqing Cao
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Chen Cheng
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Sunxiang Ma
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yang Liu
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kaixiang Cheng
- a Department of Plastic and Reconstructive Surgery , Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
17
|
Grol MW, Stone A, Ruan MZ, Guse K, Lee BH. Prospects of Gene Therapy for Skeletal Diseases. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:119-137. [DOI: 10.1016/b978-0-12-804182-6.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Abstract
For decades, researchers have been fascinated by the strategy of using cell therapy for bone defects; some progress in the field has been made. Owing to its ample supply and easy access, skin, the largest organ in the body, has gained attention as a potential source of stem cells. Despite extensive applications in skin and nerve regeneration, an increasing number of reports indicate its potential use in bone tissue engineering and regeneration. Unfortunately, few review articles are available to outline current research efforts in skin-based osteogenesis. This review first summarizes the latest findings on stem cells or progenitors in skin and their niches and then discusses the strategies of skin cell-based osteogenesis. We hope this article elucidates this topic and generates new ideas for future studies.
Collapse
Affiliation(s)
- Tingliang Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.,Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA.,Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
19
|
Zhang X, Guo J, Wu G, Zhou Y. Effects of heterodimeric bone morphogenetic protein-2/7 on osteogenesis of human adipose-derived stem cells. Cell Prolif 2015; 48:650-60. [PMID: 26466853 DOI: 10.1111/cpr.12218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Roles of bone morphogenetic proteins (BMPs) on osteogenesis of human adipose-derived stem cells (hASCs) remain ambiguous. In this study, we evaluated in vitro and in vivo functional characteristics of BMPs of different dimerization types, with the aim of determining osteoinductive efficiency of heterodimeric BMP-2/7 on osteogenesis of hASCs. MATERIALS AND METHODS We explored osteoinductive effects of three different BMPs by using cell DNA assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and mineralization assay, and real-time PCR, in vitro. Also, we examined ectopic bone formation in nude mice by using soft X-ray, histomorphometric and immunohistochemical analyses in vivo. RESULTS In our dose-response study, we showed that BMPs with both dimerization types did not induce in vitro osteogenesis of hASCs without osteogenic medium (OM). In the presence of OM, BMPs significantly enhanced hASC osteogenesis in a dose-dependent manner. In in vivo experiments, our analyses indicated that BMPs promoted osteogenesis of hASCs without in vitro osteogenic induction. However, both in vitro and in vivo, there were no significant differences in hASC osteogenic induction between heterodimeric and homodimeric BMPs. CONCLUSIONS Heterodimeric BMP-2/7 significantly promoted osteogenesis of hASCs in vitro and in vivo. However, BMP-2/7 was not found to be a stronger inducer of osteogenesis compared to homodimeric either BMP-2 or BMP-7.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, 1081 LA, Amsterdam, the Netherland
| | - Jing Guo
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, 1081 LA, Amsterdam, the Netherland
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, 1081 LA, Amsterdam, the Netherland
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
20
|
Sheikh Z, Sima C, Glogauer M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. MATERIALS 2015. [PMCID: PMC5455762 DOI: 10.3390/ma8062953] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-224-7490
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; E-Mail:
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
| |
Collapse
|
21
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
22
|
Bone morphogenetic protein-7 enhances bone-tendon integration in a murine in vitro co-culture model. INTERNATIONAL ORTHOPAEDICS 2015; 39:799-805. [PMID: 25667050 DOI: 10.1007/s00264-015-2688-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Bone-tendon healing following anterior cruciate ligament reconstruction is reportedly enhanced by bone morphogenetic protein (BMP)-7. To improve our understanding of the underlying biologic processes, we examined the effects of BMP-7 on region-specific gene expression in vitro. METHODS A murine in vitro co-culture model simulating the osteoblast, interface and fibroblast regions was established. The dose- and time-dependent region-specific effects of BMP-7 exposure on gene expression of Alpl, Bglap, Col1a1, Runx2 and Spp1 were analysed by quantitative PCR. RESULTS At the osteoblast region, BMP-7 significantly increased Alp, Bglap, Col1a1, and Runx2 expression, while Spp1 expression was suppressed. At the interface region, BMP-7 exposure resulted in a trend towards increased expression rates of Alpl and Col1a1, whereas Bglap (P < 0.001) and Runx2 (P < 0.01) were significantly upregulated without any detectable effect on Spp1 expression. At the fibroblast region, BMP-7 increased Alpl (P < 0.001), Bglap (P < 0.001) and Runx2 (P < 0.001) expression, but no significant effects were seen on Col1a1 or Spp1. Exposure to BMP-7 (100 ng/ml) had its most pronounced biologic impact on day ten. CONCLUSION BMP-7 stimulation showed beneficial region-specific effects on bone-tendon healing in vitro, such as enhanced expression of parameters for ossification and fibroblast transdifferentiation, both key processes during successful graft integration.
Collapse
|
23
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
24
|
Schwarting T, Lechler P, Struewer J, Ambrock M, Frangen TM, Ruchholtz S, Ziring E, Frink M. Bone morphogenetic protein 7 (BMP-7) influences tendon-bone integration in vitro. PLoS One 2015; 10:e0116833. [PMID: 25643349 PMCID: PMC4314204 DOI: 10.1371/journal.pone.0116833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/16/2014] [Indexed: 01/20/2023] Open
Abstract
Introduction Successful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration. Materials and Methods To study the biological effects of BMP-7 on the process of tendon-bone-integration, two independent in vitro models were used. The first model involved the mono- and coculture of bovine tendon specimens and primary bovine osteoblasts with and without BMP-7 exposure. The second model comprised the mono- and coculture of primary bovine osteoblasts and fibroblasts. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lactate and osteocalcin (OCN) were analyzed by ELISA. Histological analysis and electron microscopy of the tendon specimens were performed. Results In both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures. Discussion This study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts. Conclusion Our findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the importance of the transdifferentiation process of tendinous fibroblasts at the tendon-bone interface.
Collapse
Affiliation(s)
- Tim Schwarting
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - Philipp Lechler
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - Johannes Struewer
- Department of Orthopaedics and Rheumatology, University Hospital Giessen and Marburg, Marburg, Germany
| | - Marius Ambrock
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - Thomas Manfred Frangen
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - Steffen Ruchholtz
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - Ewgeni Ziring
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - Michael Frink
- Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen and Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|