1
|
Oner F, Kantarci A. Periodontal response to nonsurgical accelerated orthodontic tooth movement. Periodontol 2000 2025. [PMID: 39840535 DOI: 10.1111/prd.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment. These methods are surgical or nonsurgical interventions applied simultaneously within the orthodontic treatment. The main target of nonsurgical approaches is modulating the response of the periodontal tissues to the orthodontic force. They stimulate osteoclasts and osteoclastic bone resorption in a controlled manner to facilitate tooth movement. Among various nonsurgical methods, the most promising clinical results have been achieved with photobiomodulation (PBM) therapy. Clinical data on electric/magnetic stimulation, pharmacologic administrations, and vibration forces indicate the need for further studies to improve their efficiency. This growing field will lead to a paradigm shift as we understand the biological response to these approaches and their adoption in clinical practice. This review will specifically focus on the impact of nonsurgical methods on periodontal tissues, providing a comprehensive understanding of this significant and understudied aspect of orthodontic care.
Collapse
Affiliation(s)
- Fatma Oner
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Periodontology, Faculty of Dentistry, Istinye University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Poudel SB, Bhattarai G, Kwon TH, Lee JC. Biopotentials of Collagen Scaffold Impregnated with Plant-Cell-Derived Epidermal Growth Factor in Defective Bone Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093335. [PMID: 37176216 PMCID: PMC10179640 DOI: 10.3390/ma16093335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The combination of scaffolds with recombinant human epidermal growth factor (rhEGF) protein can enhance defective bone healing via synergistic activation to stimulate cellular growth, differentiation, and survival. We examined the biopotentials of an rhEGF-loaded absorbable collagen scaffold (ACS) using a mouse model of calvarial defects, in which the rhEGF was produced from a plant cell suspension culture system because of several systemic advantages. Here, we showed a successful and large-scale production of plant-cell-derived rhEGF protein (p-rhEGF) by introducing an expression vector that cloned with its cDNA under the control of rice α-amylase 3D promoter into rice calli (Oryza sativa L. cv. Dongjin). Implantation with p-rhEGF (5 μg)-loaded ACSs into critical-sized calvarial defects enhanced new bone formation and the expression of osteoblast-specific markers in the defected regions greater than implantation with ACSs alone did. The potency of p-rhEGF-induced bone healing was comparable with that of Escherichia coli-derived rhEGF protein. The exogenous addition of p-rhEGF increased the proliferation of human periodontal ligament cells and augmented the induction of interleukin 8, bone morphogenetic protein 2, and vascular endothelial growth factor in the cells. Collectively, this study demonstrates the successful and convenient production of p-rhEGF, as well as its potency to enhance ACS-mediated bone regeneration by activating cellular responses that are required for wound healing.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae-Ho Kwon
- Natural Bio-Materials Inc., Iksan 54631, Republic of Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Attik N, Garric X, Bethry A, Subra G, Chevalier C, Bouzouma B, Verdié P, Grosgogeat B, Gritsch K. Amelogenin-Derived Peptide (ADP-5) Hydrogel for Periodontal Regeneration: An In Vitro Study on Periodontal Cells Cytocompatibility, Remineralization and Inflammatory Profile. J Funct Biomater 2023; 14:jfb14020053. [PMID: 36826852 PMCID: PMC9966511 DOI: 10.3390/jfb14020053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
A relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging. An experimental gellan-xanthan hydrogel was then designed as carrier for ADP-5 and compared to the commercial gel Emdogain®. Alizarin Red was used to determine the periodontal ligament and cementoblasts cell mineralization. The inflammatory profile of these two cells was also quantified using ELISA (vascular endothelial growth factor A, tumor necrosis factor α, and interleukin 11) mediators. ADP-5 enhanced cell proliferation and remineralization; the 100 µg/mL concentration was more efficient than 50 and 200 µg/mL. The ADP-5 experimental hydrogel exhibited equivalent good biological behavior compared to Emdogain® in terms of cell colonization, mineralization, and inflammatory profile. These findings revealed relevant insights regarding the ADP-5 biological behavior. From a clinical perspective, these outcomes could instigate the development of novel functionalized scaffold for periodontal regeneration.
Collapse
Affiliation(s)
- Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Correspondence:
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
- Departement of Pharmacy, Nîmes University Hospital, 30900 Nîmes, France
| | - Audrey Bethry
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Brahim Bouzouma
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Recherche Clinique), Hospices Civils de Lyon, 69007 Lyon, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Parodontologie), Hospices Civils de Lyon, 69007 Lyon, France
| |
Collapse
|
4
|
Radmand F, Baseri M, Farsadbakhsh M, Azimi A, Dizaj SM, Sharifi S. A Novel Perspective on Tissue Engineering Potentials of Periodontal Ligament Stem Cells. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e221006-2021-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is challenging to completely and predictably regenerate the missing periodontal tissues caused by the trauma or disease. To regenerate the periodontium, there is a need to consider several aspects that co-occur with periodontal development. This study provides an overview of the most up-to-date investigations on the characteristics and immunomodulatory features of Periodontal Ligament Stem Cells (PDLSCs) and the recent interventions performed using these cells, focusing on cell survival, proliferation, and differentiation. Keeping in mind the relationship between age and potency of PDLSCs, this work also demonstrates the necessity of establishing dental-derived stem cell banks for tissue regeneration applications. The data were collected from Pubmed and Google Scholar databases with the keywords of periodontal ligament stem cells, tissue engineering, characteristics, and stem cell therapy. The results showed the presence of wide-ranging research reports supporting the usability of PDLSCs for periodontal reconstruction. However, a better understanding of self-restoration for adequate regulation of adult stem cell growth is needed for various applied purposes.
Collapse
|
5
|
Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. mBio 2022; 13:e0378721. [PMID: 35491845 PMCID: PMC9239244 DOI: 10.1128/mbio.03787-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR–phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts.
Collapse
|
6
|
Li ZB, Yang HQ, Li K, Yin Y, Feng SS, Ge SH, Yu Y. Comprehensive Transcriptome Analysis of mRNA Expression Patterns Associated With Enhanced Biological Functions in Periodontal Ligament Stem Cells Subjected to Short-Term Hypoxia Pretreatment. Front Genet 2022; 13:797055. [PMID: 35211157 PMCID: PMC8861432 DOI: 10.3389/fgene.2022.797055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Short-term hypoxia pretreatment significantly enhances periodontal ligament stem cell (PDLSC)-based periodontal tissue regeneration by improving various cellular biological functions, but the underlying mechanisms remain unclear. In this study, based on RNA sequencing (RNA-seq), we comprehensively analyzed the possible regulatory mechanisms of the short-term hypoxic effects on the biological functions of healthy and inflammatory PDLSCs. A total of 134 and 164 differentially expressed genes (DEGs) were identified under healthy and inflammatory conditions, respectively. Functional enrichment analyses indicated that DEGs under both conditions share certain biological processes and pathways, including metabolic processes, developmental processes, reproductive processes, localization, immune system processes and the HIF-1 signaling pathway. The DEGs identified under inflammatory conditions were more significantly enriched in cell cycle-related processes and immune-related pathways, while DEGs identified under healthy condition were more significantly enriched in the TGF-β signaling pathway. A protein-protein interaction network analysis of the 59 DEGs in both conditions was performed, and 15 hub genes were identified. These hub genes were mainly involved in glycolysis, the cellular response to hypoxia, cell differentiation, and immune system processes. In addition, we found that hypoxia induced significant differential expression of genes associated with proliferation, differentiation, migration, apoptosis and immunoregulation under both healthy and inflammatory conditions. This study provides comprehensive insights into the effects of short-term hypoxia on the biological functions of PDLSCs and suggests a potentially feasible strategy for improving the clinical effectiveness of cell-based periodontal tissue engineering.
Collapse
Affiliation(s)
- Zhi-Bang Li
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hui-Qi Yang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kun Li
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Su-Su Feng
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shao-Hua Ge
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Yu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Valente WAS, Barrocas D, Armada L, Pires FR. Expression of epithelial growth factors and of apoptosis-regulating proteins, and presence of CD57+ cells in the development of inflammatory periapical lesions. J Appl Oral Sci 2022; 30:e20210413. [PMID: 35195153 PMCID: PMC8860407 DOI: 10.1590/1678-7757-2021-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
The mechanisms that stimulate the proliferation of epithelial cells in inflammatory periapical lesions are not completely understood and the literature suggests that changes in the balance between apoptosis and immunity regulation appear to influence this process.
Collapse
|
8
|
Kouznetsova VL, Li J, Romm E, Tsigelny IF. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Dis 2020; 27:484-493. [PMID: 32762095 DOI: 10.1111/odi.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine-learning model for elucidation of these diseases based on saliva metabolites of patients. METHODS Data mining, metabolomic pathways analysis, study of metabolite-gene networks related to these diseases. Machine-learning and deep-learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. RESULTS The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10-fold cross-validations. The best results were achieved by the deep-learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. CONCLUSION Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine-learning methods. These findings may be useful in the development of a non-invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.
Collapse
Affiliation(s)
| | - Jeremy Li
- MAP program, University of California, San Diego, CA, USA
| | | | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, CA, USA.,CureMatch Inc. San Diego, CA, USA.,Department of Neurosciences, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Kim HJ, Yoo JH, Choi Y, Joo JY, Lee JY, Kim HJ. Assessing the effects of cyclosporine A on the osteoblastogenesis, osteoclastogenesis, and angiogenesis mediated by human periodontal ligament stem cells. J Periodontol 2019; 91:836-848. [PMID: 31680236 DOI: 10.1002/jper.19-0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study was performed to investigate the effects of cyclosporine A (CsA) on the osteogenic differentiation, osteoclastogenic-supporting ability, and angiogenic potential of human periodontal ligament stem cells (hPDLSCs). METHODS hPDLSCs were isolated from the extracted teeth of orthodontic patients. Cell proliferation was assessed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red (ARS) staining. Real-time polymerase chain reaction (PCR) was used to quantify transcripts. Tartrate-resistant acid phosphatase staining of bone marrow-derived macrophages (BMMs) and tube formation assays on human umbilical vein endothelial cells (HUVECs) were performed after treating cells with the conditioned media from CsA-exposed or non-exposed hPDLSCs. Signaling pathways mediating the angiogenic activity were investigated using western blotting. RESULTS CsA suppressed the proliferation of hPDLSCs but enhanced osteogenic differentiation as determined by ALP and ARS staining and PCR of osteogenic transcripts. The expressions of osteoclastogenic transcripts in hPDLSCs and the differentiation of BMMs treated with conditioned medium from CsA-exposed hPDLSCs were unaffected by CsA. However, the expressions of angiogenic transcripts and the transcripts known to support angiogenesis-phosphorylation of extracellular signal p-regulated kinase (ERK) and p38, and c-fos-were inhibited. Conditioned medium from CsA-exposed hPDLSCs suppressed the tube forming abilities of HUVECs. CONCLUSIONS CsA enhanced the osteogenic differentiation and reduced angiogenesis by blocking the ERK and p38/c-fos pathway in hPDLSCs. It is necessary to confirm whether this phenomenon is also observed in vivo in subsequent animal experiments.
Collapse
Affiliation(s)
- Hyun-Joo Kim
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea.,Department of Periodontology and Institute of Translational Dental Science, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hyun Yoo
- Department of Oral Physiology and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - YunJeong Choi
- Department of Oral Physiology and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Joo
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea.,Department of Periodontology and Institute of Translational Dental Science, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ju-Youn Lee
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea.,Department of Periodontology and Institute of Translational Dental Science, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hyung Joon Kim
- Department of Oral Physiology and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
10
|
Basal O, Atay T, Ciris İM, Baykal YB. Epidermal growth factor (EGF) promotes bone healing in surgically induced osteonecrosis of the femoral head (ONFH). Bosn J Basic Med Sci 2018; 18:352-360. [PMID: 29924961 DOI: 10.17305/bjbms.2018.3259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023] Open
Abstract
Angiogenic effects of epidermal growth factor (EGF), a potent mitogen, have been demonstrated previously. Moreover, different in vitro studies showed that EGF affects processes associated with bone healing, such as osteoblast differentiation and bone resorption. The aim of this study was to investigate the effect of combined core decompression (CD) and recombinant human EGF (rhEGF) treatment on early-stage osteonecrosis of the femoral head (ONFH) surgically induced in rats. ONFH was induced by dissecting the cervical periosteum and placing a ligature tightly around the femoral neck. Thirty rats were assigned to one of the following groups (n = 10 each group): sham-operated control, CD, and CD+rhEGF group. rhEGF was injected intraosseously into infarcted areas 2 weeks after the surgery. Preservation of femoral head architecture was assessed at 8 weeks post treatment by radiographic and histomorphological analyses. Osteopontin (OPN) and cluster of differentiation 31 (CD31) were detected by immunochemistry, as indicators of bone remodeling and vascular density, respectively. Inter- and intra-group (non-operated left and operated right femur) differences in radiographic and histomorphological results were analyzed. The femoral head area and sphericity were more preserved in CD+rhEGF compared to CD and sham-control group. CD31 levels were significantly different between the three groups, and were higher in CD+rhEGF compared to CD group. OPN levels were increased in CD and CD+rhEGF groups compared to sham control, but with no significant difference between CD and CD+rhEGF groups. Overall, our results indicate that EGF promotes bone formation and microvascularization in ONFH and thus positively affects the preservation of femoral head during healing.
Collapse
Affiliation(s)
- Ozgur Basal
- Department of Orthopaedics and Traumatology, Agrı State Hospital, Agrı, Turkey.
| | | | | | | |
Collapse
|
11
|
Di Vito A, Giudice A, Chiarella E, Malara N, Bennardo F, Fortunato L. In Vitro Long-Term Expansion and High Osteogenic Potential of Periodontal Ligament Stem Cells: More Than a Mirage. Cell Transplant 2018; 28:129-139. [PMID: 30369260 PMCID: PMC6322134 DOI: 10.1177/0963689718807680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The periodontal ligament displays a reservoir of mesenchymal stem cells which can account for periodontal regeneration. Despite the numerous studies directed at the definition of optimal culture conditions for long-term expansion of periodontal ligament stem cells (PDLSCs), no consensus has been reached as to what is the ideal protocol. The aim of the present study was to determine the optimal medium formulation for long-term expansion and stemness maintenance of PDLSCs, in order to obtain a sufficient number of cells for therapeutic approaches. For this purpose, the effects of three different culture medium formulations were evaluated on PDLSCs obtained from three periodontal ligament samples of the same patient: minimum essential medium Eagle, alpha modification (α-MEM), Dulbecco's modified Eagle's medium (DMEM), both supplemented with 10% fetal bovine serum (FBS), and a new medium formulation, Ham's F12 medium, supplemented with 10% FBS, heparin 0.5 U/ml, epidermal growth factor (EGF) 50 ng/ml, fibroblast growth factor (FGF) 25 ng/ml, and bovine serum albumin (BSA) 1% (enriched Ham's F12 medium; EHFM). PDLSCs grown in EHFM displayed a higher PE-CD73 mean fluorescence intensity compared with cells maintained in α-MEM and DMEM, even at later passages. Cells maintained in EHFM displayed an increased population doubling and a reduced population doubling time compared with cells grown in DMEM or α-MEM. α-MEM, DMEM and EHFM with added dexamethasone, 2-phospho-L-ascorbic acid, and β-glycerophosphate were all able to promote alkaline phosphatase activity; however, no calcium deposition was detected in PDLSCs cultured in EHFM-differentiation medium. When EHFM-, α-MEM- and DMEM-expanded PDLSCs were transferred to a commercial culture medium for the osteogenesis, mineralization became much more evident in confluent monolayers of EHFM-expanded PDLSCs compared with DMEM and α-MEM. The results suggest EHFM is the optimal medium formulation for growth and stemness maintenance of primary PDLSCs. Moreover, EHFM confers higher osteogenic potential to PDLSCs compared with cells maintained in the other culture media. Overall, the results of the present work confirmed the advantages of using EHFM for long-term expansion of mesenchymal cells in vitro and the preservation of high osteogenic potential.
Collapse
Affiliation(s)
- Anna Di Vito
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Amerigo Giudice
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Natalia Malara
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Francesco Bennardo
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Leonzio Fortunato
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
12
|
Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies. Cell Tissue Res 2016; 366:311-328. [PMID: 27301447 DOI: 10.1007/s00441-016-2437-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
In this study, we extensively screened the in vitro and in vivo effects of PDLSCs following short-term inflammatory and/or hypoxic pretreatments. We found that the 24-h hypoxic pretreatment of PDLSCs significantly enhanced cell migration and improved cell surface CXCR4 expression. In addition, hypoxia-pretreated PDLSCs exhibited improved cell colony formation and proliferation. Cells that were dually stimulated also formed more colonies compared to untreated cells but their proliferation did not increase. Importantly, the hypoxic pretreatment of PDLSCs enhanced cell differentiation as determined by elevated RUNX-2 and ALP protein expression. In this context, the inflammatory stimulus impaired cell OCN protein expression, while dual stimuli led to decreased RUNX-2 and OCN mRNA levels. Although preconditioning PDLSCs with inflammatory and/or hypoxic pretreatments resulted in no differences in the production of matrix proteins, hypoxic pretreatment led to the generation of thicker cell sheets; the inflammatory stimulus weakened the ability of cells to form sheets. All the resultant cell sheets exhibited clear bone regeneration following ectopic transplantation as well as in periodontal defect models; the amount of new bone formed by hypoxia-preconditioned cells was significantly greater than that formed by inflammatory stimulus- or dual-stimuli-treated cells or by nonpreconditioned cells. The regeneration of new cementum and periodontal ligaments was only identified in the hypoxia-stimulus and no-stimulus cell groups. Our findings suggest that PDLSCs that undergo short-term hypoxic pretreatment show improved cellular behavior in vitro and enhanced regenerative potential in vivo. The preconditioning of PDLSCs via combined treatments or an inflammatory stimulus requires further investigation.
Collapse
|
13
|
Del Angel-Mosqueda C, Gutiérrez-Puente Y, López-Lozano AP, Romero-Zavaleta RE, Mendiola-Jiménez A, Medina-De la Garza CE, Márquez-M M, De la Garza-Ramos MA. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro. Head Face Med 2015; 11:29. [PMID: 26334535 PMCID: PMC4558932 DOI: 10.1186/s13005-015-0086-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Material and methods Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. Results EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. Conclusion These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.
Collapse
Affiliation(s)
- Casiano Del Angel-Mosqueda
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Yolanda Gutiérrez-Puente
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
| | - Ada Pricila López-Lozano
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Ricardo Emmanuel Romero-Zavaleta
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | | | - Carlos Eduardo Medina-De la Garza
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Marcela Márquez-M
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Department of Oncology-Pathology, CCK, Karolinska Institutet, Stockholm, Sweden.
| | - Myriam Angélica De la Garza-Ramos
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|