1
|
Xu J, Liu S, Ai Y, Zhang Y, Li S, Li Y. Establishment and transcriptome analysis of single blastomere-derived cell lines from zebrafish. J Genet Genomics 2024; 51:957-969. [PMID: 39097227 DOI: 10.1016/j.jgg.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Maintaining chromosome euploidy in zebrafish embryonic cells is challenging because of the degradation of genomic integrity during cell passaging. In this study, we report the derivation of zebrafish cell lines from single blastomeres. These cell lines have a stable chromosome status attributed to BMP4 and exhibit continuous proliferation in vitro. Twenty zebrafish cell lines are successfully established from single blastomeres. Single-cell transcriptome sequencing analysis confirms the fidelity of gene expression profiles throughout long-term culturing of at least 45 passages. The long-term cultured cells are specialized into epithelial cells, exhibiting similar expression patterns validated by integrative transcriptomic analysis. Overall, this work provides a protocol for establishing zebrafish cell lines from single blastomeres, which can serve as valuable tools for in vitro investigations of epithelial cell dynamics in terms of life-death balance and cell fate determination during normal homeostasis.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siqi Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yirui Ai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunbin Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shifeng Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yiping Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Restoring Genetic Resource through In Vitro Culturing Testicular Cells from the Cryo-Preserved Tissue of the American Shad ( Alosa sapidissima). BIOLOGY 2022; 11:biology11050790. [PMID: 35625518 PMCID: PMC9139001 DOI: 10.3390/biology11050790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Cryopreservation and in vitro culture of germ cells are key techniques for the genetic resource preservation of the declining population of American shad. Two types of cryopreserved samples, namely testis pieces and testicular cells of American shad, were comparatively analyzed for cell viability. The results showed that the cell viability of the cryopreserved testis pieces was much higher than that of the cryopreserved testicular cells. The viability of the cells from the cryopreserved testis pieces ranged from 65.2 ± 2.2 (%) to 93.8 ± 0.6 (%), whereas the viability of the dissociated cells after cryopreservation was 38.5 ± 0.8 (%) to 87.1 ± 2.6 (%). Moreover, the testicular cells isolated from the post-thaw testicular tissue could be cultured and propagated in vitro. Our findings would benefit further investigations on genetic resource preservation and other manipulations of germ cells in a commercially and ecologically important fish species. Abstract Germ cells, as opposed to somatic cells, can transmit heredity information between generations. Cryopreservation and in vitro culture of germ cells are key techniques for genetic resource preservation and cellular engineering breeding. In this study, two types of cryopreserved samples, namely testis pieces and testicular cells of American shad, were comparatively analyzed for cell viability. The results showed that the cell viability of the cryopreserved testis pieces was much higher than that of the cryopreserved testicular cells. The viability of cells from the cryopreserved testis pieces ranged from 65.2 ± 2.2 (%) to 93.8 ± 0.6 (%), whereas the viability of the dissociated cells after cryopreservation was 38.5 ± 0.8 (%) to 87.1 ± 2.6 (%). Intriguingly, the testicular cells from the post-thaw testicular tissue could be cultured in vitro. Likewise, most of the cultured cells exhibited germ cell properties and highly expressed Vasa and PCNA protein. This study is the first attempt to effectively preserve and culture the male germ cells through freezing tissues in the American shad. The findings of this study would benefit further investigations on genetic resource preservation and other manipulations of germ cells in a commercially and ecologically important fish species.
Collapse
|
3
|
Li H, Xu W, Xiang S, Tao L, Fu W, Liu J, Liu W, Xiao Y, Peng L. Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Front Genet 2022; 13:819682. [PMID: 35222539 PMCID: PMC8874021 DOI: 10.3389/fgene.2022.819682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is a transient state in early embryos, which is regulated by an interconnected network of pluripotency-related genes. The pluripotent state itself seems to be highly dynamic, which leads to significant differences in the description of induced pluripotent stem cells from different species at the molecular level. With the application of cell reprogramming technology in fish, the establishment of a set of molecular standards for defining pluripotency will be important for the research and potential application of induced pluripotent stem cells in fish. In this study, by BLAST search and expression pattern analysis, we screen out four pluripotent genes (Oct4, Nanog, Tdgf1, and Gdf3) in zebrafish (Danio rerio) and crucian carp (Carassius). These genes were highly expressed in the short period of early embryonic development, but significantly down-regulated after differentiation. Moreover, three genes (Oct4, Nanog and Tdgf1) have been verified that are suitable for identifying the pluripotency of induced pluripotent stem cells in zebrafish and crucian carp. Our study expands the understanding of the pluripotent markers of induced pluripotent stem cells in fish.
Collapse
Affiliation(s)
- Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng,
| |
Collapse
|
4
|
Xu W, Li H, Peng L, Pu L, Xiang S, Li Y, Tao L, Liu W, Liu J, Xiao Y, Liu S. Fish Pluripotent Stem-Like Cell Line Induced by Small-Molecule Compounds From Caudal Fin and its Developmental Potentiality. Front Cell Dev Biol 2022; 9:817779. [PMID: 35127728 PMCID: PMC8811452 DOI: 10.3389/fcell.2021.817779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
The technique of induced pluripotent stem cells has significant application value in breeding and preserving the genetic integrity of fish species. However, it is still unclear whether the chemically induced pluripotent stem cells can be induced from non-mammalian cells or not. In this article, we first verify that fibroblasts of fish can be chemically reprogrammed into pluripotent stem cells. These induced pluripotent stem-like cells possess features of colony morphology, expression of pluripotent marker genes, formation of embryoid bodies, teratoma formation, and the potential to differentiate into germ cell-like cells in vitro. Our findings will offer a new way to generate induced pluripotent stem cells in teleost fish and a unique opportunity to breed commercial fish and even save endangered fish species.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng, ; Yamei Xiao, ; Shaojun Liu,
| | - Liyu Pu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yue Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng, ; Yamei Xiao, ; Shaojun Liu,
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng, ; Yamei Xiao, ; Shaojun Liu,
| |
Collapse
|
5
|
Goswami M, Yashwanth BS, Trudeau V, Lakra WS. Role and relevance of fish cell lines in advanced in vitro research. Mol Biol Rep 2022; 49:2393-2411. [PMID: 35013860 PMCID: PMC8747882 DOI: 10.1007/s11033-021-06997-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Introduction Cell line derived from fish has been established as a promising tool for studying many key issues of aquaculture covering fish growth, disease, reproduction, genetics, and biotechnology. In addition, fish cell lines are very useful in vitro models for toxicological, pathological, and immunological studies. The easier maintenance of fish cell lines in flexible temperature regimes and hypoxic conditions make them preferable in vitro tools over mammalian cell lines. Great excitement has been observed in establishing and characterizing new fish cell lines representing diverse fish species and tissue types. The well-characterized and authenticated cell lines are of utmost essential as these represent cellular functions very similar to in vivo state of an organism otherwise it would affect the reproducibility of scientific research. Conclusion The fish cell lines have exhibited encouraging results in several key aspects of in vitro research in aquaculture including virology, nutrition and metabolism, production of vaccines, and transgenic fish production. The review paper reports the cell lines developed from fish, their characterization, and biobanking along with their potential applications and challenges in in vitro research.
Collapse
Affiliation(s)
- M Goswami
- ICAR - Central Institute of Fisheries Education, Mumbai, 400061, India.
| | - B S Yashwanth
- ICAR - Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Vance Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Canada
| | - W S Lakra
- NABARD Chair Unit, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Versova, Mumbai, India
| |
Collapse
|
6
|
Sun B, Gui L, Liu R, Hong Y, Li M. Medaka oct4 is essential for gastrulation, central nervous system development and angiogenesis. Gene 2020; 733:144270. [DOI: 10.1016/j.gene.2019.144270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
|
7
|
Peng L, Zhou Y, Xu W, Jiang M, Li H, Long M, Liu W, Liu J, Zhao X, Xiao Y. Generation of Stable Induced Pluripotent Stem-like Cells from Adult Zebra Fish Fibroblasts. Int J Biol Sci 2019; 15:2340-2349. [PMID: 31595152 PMCID: PMC6775306 DOI: 10.7150/ijbs.34010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/01/2019] [Indexed: 01/02/2023] Open
Abstract
Induced pluripotent stem (iPS) cells provide a powerful platform for the study of development, regeneration, and disease. Although many stable iPS cell lines have been established for mammals, few attempts have been made to induce iPS cells in nonmammalian species. Because of technical advantages over other vertebrates on stem cells, induced pluripotent stem cells from fish could be of value for research. In this paper, stable iPS-like cell lines were generated from adult zebra fish fibroblasts by combining the doxycycline inducible lentiviral delivery system and chemical treatment. RT-PCR analysis, alkaline phosphatase staining, and immunofluorescence indicated that adult zebra fish fibroblasts were successfully reprogrammed into iPS-like cells (ziPSCs). The ziPSCs exhibited stable growth and manifested many features of fish embryonic stem cells with pluripotency in vitro and in vivo. Because of easy maintenance, the developed technology in this study for generating zebra fish iPS-like cells could be extended to investigating other genera of fish.
Collapse
Affiliation(s)
- Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yonghua Zhou
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,College of Biology and Environmental Engineering, Changsha University, Changsha, 410081, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Minggui Jiang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Mindi Long
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiaoyang Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
8
|
Jin YL, Chen LM, Le Y, Li YL, Hong YH, Jia KT, Yi MS. Establishment of a cell line with high transfection efficiency from zebrafish Danio rerio embryos and its susceptibility to fish viruses. JOURNAL OF FISH BIOLOGY 2017; 91:1018-1031. [PMID: 28833122 DOI: 10.1111/jfb.13387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
A cell line ZBE3 isolated from a continuous cell culture derived from zebrafish Danio rerio blastomeres by clonal growth was characterized. ZBE3 cells had been subcultured for >120 passages since the initial primary culture of the blastomeres. The ZBE3 cells grow stably at temperature from 20 to 32° C with an optimum temperature of 28° C in ESM2 or ESM4 medium with 15% foetal bovine serum (FBS). The optimum FBS concentration for ZBE3 cell growth ranged from 15 to 20%. Cytogenetical analysis indicated that the modal chromosome number of ZBE3 cells was 50, the same as the diploid chromosome number of D. rerio. Significant cytopathic effect was observed in ZBE3 cells after infection with redspotted grouper nervous necrosis virus, Singapore grouper iridovirus and grass carp reovirus, and the viral replication in the cells was confirmed by real-time quantitative PCR and transmission electron microscopy, indicating the susceptibility of ZBE3 cells to the three fish viruses. After transfected with pEGFP-N3 plasmid, ZBE3 cells showed a transfection efficiency of about 40% which was indicated by the percentage of cells expressing green fluorescence protein. The stable growth, susceptibility to fish viruses as well as high transfection efficiency make ZBE3 cells be a useful tool in transgenic manipulation, fish virus-host cell interaction and immune response in fish.
Collapse
Affiliation(s)
- Y L Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - L M Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Y Le
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Y L Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Y H Hong
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | - K T Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - M S Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
9
|
Ibrahim M, Richardson MK. Beyond organoids: In vitro vasculogenesis and angiogenesis using cells from mammals and zebrafish. Reprod Toxicol 2017; 73:292-311. [PMID: 28697965 DOI: 10.1016/j.reprotox.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
The ability to culture complex organs is currently an important goal in biomedical research. It is possible to grow organoids (3D organ-like structures) in vitro; however, a major limitation of organoids, and other 3D culture systems, is the lack of a vascular network. Protocols developed for establishing in vitro vascular networks typically use human or rodent cells. A major technical challenge is the culture of functional (perfused) networks. In this rapidly advancing field, some microfluidic devices are now getting close to the goal of an artificially perfused vascular network. Another development is the emergence of the zebrafish as a complementary model to mammals. In this review, we discuss the culture of endothelial cells and vascular networks from mammalian cells, and examine the prospects for using zebrafish cells for this objective. We also look into the future and consider how vascular networks in vitro might be successfully perfused using microfluidic technology.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, The Netherlands; Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Michael K Richardson
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, The Netherlands.
| |
Collapse
|
10
|
Yuan Y, Hong Y. Medaka insulin-like growth factor-2 supports self-renewal of the embryonic stem cell line and blastomeres in vitro. Sci Rep 2017; 7:78. [PMID: 28250437 PMCID: PMC5428361 DOI: 10.1038/s41598-017-00094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (IGFs) regulate diverse processes including energy metabolism, cell proliferation and embryonic development. They activate the IGF signaling pathway via binding to cell surface receptors. Here we report an essential role of IGF2 in maintaining the pluripotency of embryonic stem (ES) cell from medaka (Oryzias latipes). The medaka igf2 gene was cloned for prokaryotically expression of IGF2 ligand and green fluorescent protein-tagged IGF2 namely IGF2:GFP. With flow cytometry analysis, we demonstrated that the IGF2:GFP can bind to the cultured ES cells from medaka and zebrafish respectively. We also verified that IGF2 is able to activate the phosphorylation of Erk1/2 and Akt, and sustain the viability and pluripotency of medaka ES cells in culture. Furthermore, we characterized the binding of IGF2:GFP to freshly isolated blastomeres by fluorescence microscopy and electron microscopy. Most importantly, we revealed the important role of IGF2 in supporting the derivation of blastomeres in short-term culture. Therefore, Medaka IGF2 is essential for the self-renewal of cultured ES cells and blastomeres from fish embryos. This finding underscores a conserved role of the IGF signaling pathway in stem cells from fish to mammals.
Collapse
Affiliation(s)
- Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
11
|
Fan Z, Liu L, Huang X, Zhao Y, Zhou L, Wang D, Wei J. Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Dev Growth Differ 2017; 59:83-93. [PMID: 28230233 DOI: 10.1111/dgd.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
Abstract
Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world-wide commercial farmed fish. These cell lines, designated as TES1-3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder-free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26-labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non-protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES-based biotechnology in commercial fish.
Collapse
Affiliation(s)
- Zhenhua Fan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaohuan Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yang Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Huang Y, Luo Y, Liu J, Gui S, Wang M, Liu W, Peng L, Xiao Y. A light-colored region of caudal fin: a niche of melanocyte progenitors in crucian carp (Cyprinus carpio L.). Cell Biol Int 2016; 41:42-50. [PMID: 27797132 DOI: 10.1002/cbin.10698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023]
Abstract
Melanocyte stem cells are a population of immature cells which sustain the self-renewal and replenish the differentiated melanocytes. In this research, a light-colored region (LCR) is observed at the heel of caudal fin in juvenile crucian carp. By cutting off the caudal fin, the operated caudal fin can regenerate in accordance with the original pigment pattern from the retained LCR. As markers of stem cells, Oct4 and Sox2 have been found to be highly expressed in the LCR as well as Mitfa, a label of the melanoblasts. In vitro, Mitfa+ melanoblasts are observed in the cells which are derived from the LCR and transfected with Mitfa-EGFP reporter by using Tol2 transposon system. Furthermore, by real-time qPCR, it is shown that the level of sox2 mRNA is gradually decreased from the LCR to proximal and distal caudal fin, and that of mitfa mRNA in the proximal caudal fin (PCF) is higher than that in the LCR, while it is the lowest in the distal caudal fin. Hence, we propose that the LCR is a pigment progenitor niche, sending melanocytes to the distal of caudal fin, which gradually emerges as caudal fin grow. We reveal that the LCR of caudal fin might be a niche of pigment progenitors, and contribute to pigment-producing stem cells in crucian carp.
Collapse
Affiliation(s)
- Yaping Huang
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yurong Luo
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhui Liu
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Saiyu Gui
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mei Wang
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wenbin Liu
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Liangyue Peng
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yamei Xiao
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
13
|
Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports 2016; 7:370-382. [PMID: 27569061 PMCID: PMC5032289 DOI: 10.1016/j.stemcr.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents. Zebrafish embryos may start to exit from pluripotency shortly after the oblong stage Beating cell clusters are efficiently generated from zebrafish blastomeres Beating cell clusters contain specific cardiomyocyte subtypes Induced cardiomyocytes possess normal electrophysiological features
Collapse
|
14
|
Liu R, Li M, Li Z, Hong N, Xu H, Hong Y. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation. Stem Cell Rev Rep 2015; 11:11-23. [PMID: 25142379 DOI: 10.1007/s12015-014-9523-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin and evolution of molecular mechanisms underlying cellular pluripotency is a fundamental question in stem cell biology. The transcription factor Oct4 or Pou5f1 identified in mouse features pluripotency expression and activity in the inner cell mass and embryonic stem (ES) cells. Pou2 identified in zebrafish is the non-mammalian homolog prototype of mouse Oct4. The genes oct4 and pou2 have reportedly evolved by pou5 gene duplication in the common ancestor of vertebrates. Unlike mouse oct4, however, zebrafish pou2 lacks pluripotency expression and activity. Whether the presence of pluripotency expression and activity is specific for mammalian Oct4 or common to the ancestor of vertebrate Oct4 and Pou2 proteins has remained to be determined. Here we report that Oloct4, the medaka oct4/pou2, is essential for early embryogenesis and pluripotency maintenance. Oloct4 exists as a single copy gene and is orthologous to pou2 by sequence and chromosome synteny. Oloct4 expression occurs in early embryos, germ stem cells and ES cells like mouse oct4 but also in the brain and tail bud like zebrafish pou2. Importantly, OlOct4 depletion caused blastula lethality or blockage. We show that Oloct4 depletion abolishes ES cell derivation from midblastula embryos. Thus, Oloct4 has pluripotency expression and is essential for early embryogenesis and pluripotency maintenance. Our results demonstrate the conservation of pluripotency expression and activity in vertebrate Oct4 and Pou2 proteins. The finding that Oloct4 combines the features of mouse oct4 and zebrafish pou2 in expression and function suggests that Oloct4 might represent the ancestral prototype of vertebrate oct4 and pou2 genes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | | | |
Collapse
|
15
|
The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 2015; 1641:79-91. [PMID: 26498880 DOI: 10.1016/j.brainres.2015.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|
16
|
Liu Q, Wang Y, Lin F, Zhang L, Li Y, Ge R, Hong Y. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells. PLoS One 2015; 10:e0127961. [PMID: 26029933 PMCID: PMC4451014 DOI: 10.1371/journal.pone.0127961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022] Open
Abstract
Retrovirus (RV) is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM) to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP) and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT) via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES) cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.
Collapse
Affiliation(s)
- Qizhi Liu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yunzhi Wang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fan Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Lei Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
17
|
Wang F, Zhu Y, Hew CL. Quantitative study of proteomic alterations in a Zebrafish (danio rerio) cell line infected with the Singapore Grouper Iridovirus (SGIV). Virus Res 2015; 199:62-7. [DOI: 10.1016/j.virusres.2015.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 12/01/2022]
|