1
|
Röszer T. Metabolic impact of adipose tissue macrophages in the early postnatal life. J Leukoc Biol 2022; 112:1515-1524. [PMID: 35899927 PMCID: PMC9796690 DOI: 10.1002/jlb.3mr0722-201r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue macrophages (ATMs) play key roles in metabolic inflammation, insulin resistance, adipose tissue fibrosis, and immune disorders associated with obesity. Research on ATM biology has mostly been conducted in the setting of adult obesity, since adipocyte hypertrophy is associated with a significant increase in ATM number. Signals that control ATM activation toward a proinflammatory or a proresolving phenotype also determine the developmental program and lipid metabolism of adipocytes after birth. ATMs are present at birth and actively participate in the synthesis of mediators, which induce lipolysis, mitobiogenesis, and mitochondrial uncoupling in adipocytes. ATMs in the newborn and the infant promote a lipolytic and fatty acid oxidizing adipocyte phenotype, which is essential to support the lipid-fueled metabolism, to maintain nonshivering thermogenesis and counteract an excessive adipose tissue expansion. Since adipose tissue metabolism in the early postnatal life determines obesity status in adulthood, early-life ATM functions may have a life-long impact.
Collapse
Affiliation(s)
- Tamás Röszer
- Division of Pediatric Obesity, Children's Hospital and Institute of PediatricsUniversity of DebrecenDebrecenHungary,Institute of NeurobiologyUlm UniversityUlmGermany
| |
Collapse
|
2
|
Stenberg K, Gensby L, Cremer SE, Nielsen MM, Bjørnvad CR. Analytical performance of a canine ELISA monocyte chemoattractant protein-1 assay for use in cats and evaluation of circulating levels in normal weight and obese cats. Acta Vet Scand 2022; 64:22. [PMID: 36064726 PMCID: PMC9446815 DOI: 10.1186/s13028-022-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In human and murine obesity, adipose tissue dwelling macrophages and adipocytes produce monocyte chemoattractant protein-1 (MCP-1) leading to systemic low-grade inflammation. The aim of the study was to validate a canine MCP-1 ELISA assay for use in cats and to investigate whether a difference in MCP-1 concentrations could be detected between: a) cats having normal or elevated circulating serum amyloid A (SAA) levels and b) normal weight and obese cats. Serum obtained from 36 client-owned cats of various breed, age and sex with normal (n = 20) to elevated SAA (n = 16) was used for the validation of the canine MCP-1 ELISA assay. As no golden standard exists for measurement of inflammation, circulating MCP-1 concentrations were compared to SAA measurements, as an indicator of systemic inflammation. Analytical precision, dilution recovery and detection limit were calculated. A possible correlation between MCP-1 concentrations and obesity related measures (body fat percentage (BF%), insulin sensitivity and cytokine expression) were investigated in another population of 73 healthy, lean to obese, neutered domestic short-haired cats. RESULTS Intra- (2.7-4.1%) and inter-assay (2.2-3.6%) coefficient of variation and dilution recovery were acceptable, and the detection limit was 27.1 pg/mL. MCP-1 did not correlate with SAA, and there was no difference between the inflammatory (SAA > 20 mg/L) and non-inflammatory group, due to a marked overlap in MCP-1 concentrations. Circulating MCP-1 concentrations were unaffected by BF% (r2 = 2.7 × 10-6, P = 0.21) and other obesity-related markers. CONCLUSIONS The present canine ELISA assay seems to be able to measure circulating feline MCP-1. However, further studies are needed to determine its possible use for detecting inflammation in relation to disease processes or obesity-related low-grade inflammation in cats.
Collapse
Affiliation(s)
- Kathrine Stenberg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Line Gensby
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: AniCura Vangede Animal Hospital, Plantevej 2, 2870 Dyssegård, Denmark
| | - Signe Emilie Cremer
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: Coloplast, Holtedam 1-3, 3050 Humlebæk, Denmark
| | - Michelle Møller Nielsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Charlotte Reinhard Bjørnvad
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| |
Collapse
|
3
|
Zachut M, Contreras GA. Symposium review: Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows. J Dairy Sci 2022; 105:3670-3686. [DOI: 10.3168/jds.2021-21225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
|
4
|
Božić Nedeljković B, Ćilerdžić J, Zmijanjac D, Marković M, Džopalić T, Vasilijić S, Stajić M, Vučević D. Immunomodulatory effects of extract of Lingzhi or Reishi medicinal Mushroom Ganoderma lucidum (Agaricomycetes) basidiocarps cultivated on alternative substrate. Int J Med Mushrooms 2022; 24:45-59. [DOI: 10.1615/intjmedmushrooms.2022044452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Salcedo-Tacuma D, Parales-Giron J, Prom C, Chirivi M, Laguna J, Lock AL, Contreras GA. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genomics 2020; 21:824. [PMID: 33228532 PMCID: PMC7686742 DOI: 10.1186/s12864-020-07235-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq. Results Subcutaneous AT samples were collected from Holstein cows (n = 12) at 11 ± 3.6 d before calving date (PreP) and at 6 ± 1d (PP1) and 13 ± 1.4d (PP2) after parturition. Differential expression analyses showed 1946 and 1524 DEG at PP1 and PP2, respectively, compared to PreP. Functional Enrichment Analysis revealed functions grouped in categories such as lipid metabolism, molecular transport, energy production, inflammation, and free radical scavenging to be affected by parturition and the onset of lactation (FDR < 0.05). Inflammation related genes such as TLR4 and IL6 were categorized as upstream lipolysis triggers. In contrast, FASN, ELOVL6, ACLS1, and THRSP were identified as upstream inhibitors of lipid synthesis. Complement (C3), CXCL2, and HMOX1 were defined as links between inflammatory pathways and those involved in the generation of reactive oxygen species. Conclusions Results offer a comprehensive characterization of gene expression dynamics in periparturient AT, identify upstream regulators of AT function, and demonstrate complex interactions between lipid mobilization, inflammation, extracellular matrix remodeling, and redox signaling in the adipose organ. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07235-0.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Juliana Laguna
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA.,Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Methods in isolation and characterization of bovine monocytes and macrophages. Methods 2020; 186:22-41. [PMID: 32622986 DOI: 10.1016/j.ymeth.2020.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Monocytes and macrophages belong to the mononuclear phagocyte system and play important roles in both physiological and pathological processes. The cells belonging to the monocyte/macrophage system are structurally and functionally heterogeneous. Several subsets of monocytes have been previously identified in mammalian blood, generating different subpopulations of macrophages in tissues. Although their distribution and phenotype are similar to their human counterpart, bovine monocytes and macrophages feature differences in both functions and purification procedures. The specific roles that monocytes and macrophages fulfil in several important diseases of bovine species, including among the others tuberculosis and paratuberculosis, brucellosis or the disease related to peripartum, remain still partially elusive. The purpose of this review is to discuss the current knowledge of bovine monocytes and macrophages. We will describe methods for their purification and characterization of their major functions, including chemotaxis, phagocytosis and killing, oxidative burst, apoptosis and necrosis. An overview of the flow cytometry and morphological procedures, including cytology, histology and immunohistochemistry, that are currently utilized to describe monocyte and macrophage main populations and functions is presented as well.
Collapse
|
7
|
Oliveira BM, Pinto A, Correia A, Ferreira PG, Vilanova M, Teixeira L. Characterization of Myeloid Cellular Populations in Mesenteric and Subcutaneous Adipose Tissue of Holstein-Friesian Cows. Sci Rep 2020; 10:1771. [PMID: 32019985 PMCID: PMC7000716 DOI: 10.1038/s41598-020-58678-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells resident in adipose tissue have important functions in local and systemic metabolic homeostasis. Nevertheless, these immune cell populations remain poorly characterized in bovines. Recently, we described diverse lymphocyte subpopulations in adipose tissue of Holstein-Friesian cows. Here, we aimed at characterising myeloid cell populations present in bovine adipose tissue using multicolour flow cytometry, cell sorting and histochemistry/immunohistochemistry. Macrophages, CD14+CD11b+MHC-II+CD45+ cells, were identified in mesenteric and subcutaneous adipose tissue, though at higher proportions in the latter. Mast cells, identified as SSC-AhighCD11b−/+CD14−MHC-II−CH138A−CD45+ cells, were also observed in adipose tissue and found at higher proportions than macrophages in mesenteric adipose tissue. Neutrophils, presenting a CH138A+CD11b+ phenotype, were also detected in mesenteric and subcutaneous adipose tissue, however, at much lower frequencies than in the blood. Our gating strategy allowed identification of eosinophils in blood but not in adipose tissue although being detected by morphological analysis at low frequencies in some animals. A population not expressing CD45 and with the CH138A+ CD11b−MHC-II− phenotype, was found abundant and present at higher proportions in mesenteric than subcutaneous adipose tissue. The work reported here may be useful for further studies addressing the function of the described cells.
Collapse
Affiliation(s)
- Bárbara M Oliveira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Pinto
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Correia
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Paula G Ferreira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Manuel Vilanova
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal. .,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Posont RJ, Yates DT. Postnatal Nutrient Repartitioning due to Adaptive Developmental Programming. Vet Clin North Am Food Anim Pract 2019; 35:277-288. [PMID: 31103181 DOI: 10.1016/j.cvfa.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fetal stress induces developmental adaptations that result in intrauterine growth restriction (IUGR) and low birthweight. These adaptations reappropriate nutrients to the most essential tissues, which benefits fetal survival. The same adaptations are detrimental to growth efficiency and carcass value in livestock, however, because muscle is disproportionally targeted. IUGR adipocytes, liver tissues, and pancreatic β-cells also exhibit functional adaptations. Identifying mechanisms underlying adaptive changes is fundamental to improving outcomes and value in low birthweight livestock. The article outlines studies that have begun to identify stress-induced fetal adaptations affecting growth, metabolism, and differential nutrient utilization in IUGR-born animals.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE 68583, USA.
| |
Collapse
|
9
|
Proteomic analysis reveals greater abundance of complement and inflammatory proteins in subcutaneous adipose tissue from postpartum cows treated with sodium salicylate. J Proteomics 2019; 204:103399. [DOI: 10.1016/j.jprot.2019.103399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
|
10
|
The environmental obesogen bisphenol A increases macrophage self-renewal. Cell Tissue Res 2019; 378:81-96. [DOI: 10.1007/s00441-019-03019-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
|
11
|
Abstract
This chapter describes a technique that can be used to isolate adipose tissue macrophages (ATMs) from the visceral white adipose tissue. Nevertheless, this technique can also be used to isolate ATMs from subcutaneous white adipose tissue and brown adipose tissue from mouse, human subcutaneous fat depot, and also from the fat body of the toad Xenopus. We detail the flow-cytometric gating strategy that has been developed to identify ATM population, and we describe the isolation of RNA from this population and its use for gene expression profiling. Finally, we describe in vitro culture of ATMs for downstream applications.
Collapse
|
12
|
De Koster J, Strieder-Barboza C, de Souza J, Lock AL, Contreras GA. Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. J Dairy Sci 2018; 101:7608-7613. [DOI: 10.3168/jds.2017-14318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
|
13
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
14
|
Ruiz-Campillo MT, Molina-Hernández V, Pérez J, Pacheco IL, Pérez R, Escamilla A, Martínez-Moreno FJ, Martínez-Moreno A, Zafra R. Study of peritoneal macrophage immunophenotype in sheep experimentally infected with Fasciola hepatica. Vet Parasitol 2018; 257:34-39. [PMID: 29907190 DOI: 10.1016/j.vetpar.2018.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 10/01/2022]
Abstract
During Fasciola hepatica infection, the parasite has the capability to modulate the host immune response towards a non-protector Th2 type instead of Th1. This type of immune response is closely related to the alternative activation of macrophages (M2 profile) as has been shown in vivo in murine models. In this study, an experiment was carried out in order to evaluate the expression of CD68, CD14, CD206 and iNOS in cells present in the peritoneal fluid of sheep during early stages of infection with F. hepatica (1, 3, 9 and 18 days post-infection, dpi) by immunocytochemistry. To the authors' knowledge, this is the first report that studies the in vivo immunophenotype of macrophages from the peritoneal fluid of sheep infected with F. hepatica. Throughout the experiments the absolute number of leucocytes progressively increased, reaching its highest value at 18 dpi, mainly due to the increase of eosinophils. This immunocytochemical study had two purposes: 1) CD68 expression was assessed with Hansel counterstaining, to optimally identify peritoneal macrophages, eosinophils and lymphocytes; 2) expression of CD14, CD206 and iNOS was evaluated to identify alternative or classical pathways of macrophage activation. The results showed a significant increase in CD14 from day 3 dpi compared with the non-infected group. CD206 expression at all time-points showed a significant and dramatic increase in comparison with the uninfected group. On the other hand, iNOS expression showed little variation, and was significantly decreased at 18 dpi in comparison with the uninfected group. These results suggest that F. hepatica induces an alternative activation of peritoneal macrophages of sheep from the first day post-infection, which may facilitate parasite survival. This is the first report describing M2 activation of peritoneal macrophages in ruminants infected with F. hepatica.
Collapse
Affiliation(s)
- M T Ruiz-Campillo
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - V Molina-Hernández
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - J Pérez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - I L Pacheco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - R Pérez
- Department of Animal Health (Parasitology), Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - A Escamilla
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - F J Martínez-Moreno
- Department of Animal Health (Parasitology), Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - A Martínez-Moreno
- Department of Animal Health (Parasitology), Faculty of Veterinary Medicine, University of Córdoba, Spain
| | - R Zafra
- Department of Animal Health (Parasitology), Faculty of Veterinary Medicine, University of Córdoba, Spain.
| |
Collapse
|
15
|
Ivanov S, Merlin J, Lee MKS, Murphy AJ, Guinamard RR. Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis 2018; 271:102-110. [PMID: 29482037 DOI: 10.1016/j.atherosclerosis.2018.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity.
Collapse
Affiliation(s)
- Stoyan Ivanov
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France.
| | - Johanna Merlin
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rodolphe R Guinamard
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France.
| |
Collapse
|
16
|
Contreras GA, Strieder-Barboza C, De Koster J. Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J Dairy Sci 2017; 101:2737-2752. [PMID: 29102145 DOI: 10.3168/jds.2017-13340] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/27/2017] [Indexed: 11/19/2022]
Abstract
Despite major advances in our understanding of transition and early lactation cow physiology and the use of advanced dietary, medical, and management tools, at least half of early lactation cows are reported to develop disease and over half of cow deaths occur during the first week of lactation. Excessive lipolysis, usually measured as plasma concentrations of free fatty acids (FFA), is a major risk factor for the development of displaced abomasum, ketosis, fatty liver, and metritis, and may also lead to poor lactation performance. Lipolysis triggers adipose tissue (AT) remodeling that is characterized by enhanced humoral and cell-mediated inflammatory responses and changes in its distribution of cellular populations and extracellular matrix composition. Uncontrolled AT inflammation could perpetuate lipolysis, as we have observed in cows with displaced abomasum, especially in those animals with genetic predisposition for excessive lipolysis responses. Efficient transition cow management ensures a moderate rate of lipolysis that is rapidly reduced as lactation progresses. Limiting FFA release from AT benefits immune function as several FFA are known to promote dysregulation of inflammation. Adequate formulation of pre- and postpartum diet reduces the intensity of AT lipolysis. Additionally, supplementation with niacin, monensin, and rumen-protected methyl donors (choline and methionine) during the transition period is reported to minimize FFA release into systemic circulation. Targeted supplementation of energy sources during early lactation improves energy balance and increases insulin concentration, which limits AT lipolytic responses. This review elaborates on the mechanisms by which uncontrolled lipolysis triggers inflammatory disorders. Details on current nutritional and pharmacological interventions that aid the modulation of FFA release from AT and their effect on immune function are provided. Understanding the inherent characteristics of AT biology in transition and early lactation cows will reduce disease incidence and improve lactation performance.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| | | | - Jenne De Koster
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
17
|
Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M, Strauß S, Guille M, Röszer T. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol 2017; 102:845-855. [PMID: 28642277 PMCID: PMC5574031 DOI: 10.1189/jlb.1a0317-082rr] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
ATMs have a metabolic impact in mammals as they contribute to metabolically harmful AT inflammation. The control of the ATM number may have therapeutic potential; however, information on ATM ontogeny is scarce. Whereas it is thought that ATMs develop from circulating monocytes, various tissue-resident Mϕs are capable of self-renewal and develop from BM-independent progenitors without a monocyte intermediate. Here, we show that amphibian AT contains self-renewing ATMs that populate the AT before the establishment of BM hematopoiesis. Xenopus ATMs develop from progenitors of aVBI. In the mouse, a significant amount of ATM develops from the yolk sac, the mammalian equivalent of aVBI. In summary, this study provides evidence for a prenatal origin of ATMs and shows that the study of amphibian ATMs can enhance the understanding of the role of the prenatal environment in ATM development.
Collapse
Affiliation(s)
| | - Anna Noble
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anh C Hoang
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Grace Ampem
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Manuela Popp
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Sarah Strauß
- Ambystoma Mexicanum Bioregeneration Center, Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Tamás Röszer
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany;
| |
Collapse
|
18
|
Contreras GA, Strieder-Barboza C, Raphael W. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. J Anim Sci Biotechnol 2017; 8:41. [PMID: 28484594 PMCID: PMC5420123 DOI: 10.1186/s40104-017-0174-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Elevated concentrations of plasma fatty acids in transition dairy cows are significantly associated with increased disease susceptibility and poor lactation performance. The main source of plasma fatty acids throughout the transition period is lipolysis from adipose tissue depots. During this time, plasma fatty acids serve as a source of calories mitigating the negative energy balance prompted by copious milk synthesis and limited dry matter intake. Past research has demonstrated that lipolysis in the adipose organ is a complex process that includes not only the activation of lipolytic pathways in response to neural, hormonal, or paracrine stimuli, but also important changes in the structure and cellular distribution of the tissue in a process known as adipose tissue remodeling. This process involves an inflammatory response with immune cell migration, proliferation of the cellular components of the stromal vascular fraction, and changes in the extracellular matrix. This review summarizes current knowledge on lipolysis in dairy cattle, expands on the new field of adipose tissue remodeling, and discusses how these biological processes affect transition cow health and productivity.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Clarissa Strieder-Barboza
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - William Raphael
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
19
|
O'Leary CA, Sedhom M, Reeve-Johnson M, Mallyon J, Irvine KM. Expression profiling feline peripheral blood monocytes identifies a transcriptional signature associated with type two diabetes mellitus. Vet Immunol Immunopathol 2017; 186:1-8. [PMID: 28413044 DOI: 10.1016/j.vetimm.2016.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
Diabetes mellitus is a common disease of cats and is similar to type 2 diabetes (T2D) in humans, especially with respect to the role of obesity-induced insulin resistance, glucose toxicity, decreased number of pancreatic β-cells and pancreatic amyloid deposition. Cats have thus been proposed as a valuable translational model of T2D. In humans, inflammation associated with adipose tissue is believed to be central to T2D development, and peripheral blood monocytes (PBM) are important in the inflammatory cascade which leads to insulin resistance and β-cell failure. PBM may thus provide a useful window to study the pathogenesis of diabetes mellitus in cats, however feline monocytes are poorly characterised. In this study, we used the Affymetrix Feline 1.0ST array to profile peripheral blood monocytes from 3 domestic cats with T2D and 3 cats with normal glucose tolerance. Feline monocytes were enriched for genes expressed in human monocytes, and, despite heterogeneous gene expression, we identified a T2D-associated expression signature associated with cell cycle perturbations, DNA repair and the unfolded protein response, oxidative phosphorylation and inflammatory responses. Our data provide novel insights into the feline monocyte transcriptome, and support the hypothesis that inflammatory monocytes contribute to T2D pathogenesis in cats as well as in humans.
Collapse
Affiliation(s)
- Caroline A O'Leary
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia.
| | - Mamdouh Sedhom
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
| | - Mia Reeve-Johnson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - John Mallyon
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - Katharine M Irvine
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, 37 Kent St, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
20
|
Sun LX, Lin ZB, Lu J, Li WD, Niu YD, Sun Y, Hu CY, Zhang GQ, Duan XS. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol Res 2017; 65:658-665. [DOI: 10.1007/s12026-017-8893-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Contreras GA, Thelen K, Schmidt SE, Strieder-Barboza C, Preseault CL, Raphael W, Kiupel M, Caron J, Lock AL. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J Dairy Sci 2016; 99:10009-10021. [DOI: 10.3168/jds.2016-11552] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
|