1
|
Wu H, Wang Y, Li J, Qin Y, Chen M, Shen Z, Dong F, Cui X, Liu L, Xu Z, Gao F. cTAGE5 is involved in the assembly of Golgi ring in mouse primordial follicle. Sci Bull (Beijing) 2025; 70:643-647. [PMID: 39358110 DOI: 10.1016/j.scib.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Haowei Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Kar S, Deis R, Ahmad A, Bogoch Y, Dominitz A, Shvaizer G, Sasson E, Mytlis A, Ben-Zvi A, Elkouby YM. The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis. Curr Biol 2025; 35:315-332.e7. [PMID: 39793567 DOI: 10.1016/j.cub.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear. Here, we elucidate mechanisms of Bb formation in zebrafish through developmental biomolecular condensation. Using super-resolution microscopy, live imaging, biochemical, and genetic analyses in vivo, we demonstrate that Bb formation is driven by molecular condensation through phase separation of the essential intrinsically disordered protein Bucky ball (Buc). Live imaging, molecular analyses, and fluorescence recovery after photobleaching (FRAP) experiments in vivo reveal Buc-dependent changes in the Bb condensate's dynamics and apparent material properties, transitioning from liquid-like condensates to a solid-like stable compartment. Furthermore, we identify a multistep regulation by microtubules that controls Bb condensation: first through dynein-mediated trafficking of early condensing Buc granules, then by scaffolding condensed granules, likely through molecular crowding, and finally by caging the mature Bb to prevent overgrowth and maintain shape. These regulatory steps ensure the formation of a single intact Bb, which is considered essential for oocyte polarization and embryonic development. Our work offers insight into the long-standing question of the origins of embryonic polarity in non-mammalian vertebrates, supports a paradigm of cellular control over molecular condensation by microtubules, and highlights biomolecular condensation as a key process in female reproduction.
Collapse
Affiliation(s)
- Swastik Kar
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avichai Dominitz
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Esther Sasson
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
3
|
Divyanshi, Yang J. Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish. Mol Reprod Dev 2024; 91:e23718. [PMID: 38126950 PMCID: PMC11190040 DOI: 10.1002/mrd.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Collapse
Affiliation(s)
- Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Jing Yang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
4
|
Sekula M, Tworzydlo W, Bilinski SM. Balbiani body of basal insects is potentially involved in multiplication and selective elimination of mitochondria. Sci Rep 2024; 14:8263. [PMID: 38594333 PMCID: PMC11004008 DOI: 10.1038/s41598-024-58997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies. We showed that in orthopteran Meconema meridionale, the Bb comprises a network of mitochondria and perinuclear nuage aggregations. As oogenesis progresses, the network expands filling almost entire ooplasm, then partitions into several smaller entities, termed micro-networks, and ultimately into individual mitochondria. As in somatic cells, this process involves microfilaments and elements of endoplasmic reticulum. We showed also that at least some of the individual mitochondria are surrounded by phagophores and eliminated via mitophagy. These findings support the idea that the Bb is implicated in the multiplication and selective elimination of (defective) mitochondria and therefore may participate in the transfer of undamaged (healthy) mitochondria to the next generation.
Collapse
Affiliation(s)
- Malgorzata Sekula
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
5
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
6
|
Samare-Najaf M, Neisy A, Samareh A, Moghadam D, Jamali N, Zarei R, Zal F. The constructive and destructive impact of autophagy on both genders' reproducibility, a comprehensive review. Autophagy 2023; 19:3033-3061. [PMID: 37505071 PMCID: PMC10621263 DOI: 10.1080/15548627.2023.2238577] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Reproduction is characterized by a series of massive renovations at molecular, cellular, and tissue levels. Recent studies have strongly tended to reveal the involvement of basic molecular pathways such as autophagy, a highly conserved eukaryotic cellular recycling, during reproductive processes. This review comprehensively describes the current knowledge, updated to September 2022, of autophagy contribution during reproductive processes in males including spermatogenesis, sperm motility and viability, and male sex hormones and females including germ cells and oocytes viability, ovulation, implantation, fertilization, and female sex hormones. Furthermore, the consequences of disruption in autophagic flux on the reproductive disorders including oligospermia, azoospermia, asthenozoospermia, teratozoospermia, globozoospermia, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and other disorders related to infertility are discussed as well.Abbreviations: AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; E2: estrogen; EDs: endocrine disruptors; ER: endoplasmic reticulum; FSH: follicle stimulating hormone; FOX: forkhead box; GCs: granulosa cells; HIF: hypoxia inducible factor; IVF: in vitro fertilization; IVM: in vitro maturation; LCs: Leydig cells; LDs: lipid droplets; LH: luteinizing hormone; LRWD1: leucine rich repeats and WD repeat domain containing 1; MAP1LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-kB: nuclear factor kappa B; P4: progesterone; PCOS: polycystic ovarian syndrome; PDLIM1: PDZ and LIM domain 1; PI3K: phosphoinositide 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: class III phosphatidylinositol 3-kinase; POI: premature ovarian insufficiency; ROS: reactive oxygen species; SCs: Sertoli cells; SQSTM1/p62: sequestosome 1; TSGA10: testis specific 10; TST: testosterone; VCP: vasolin containing protein.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Asma Neisy
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Diak N, Śliwińska MA, Student S, Świątek P. The three-dimensional conformation and activity of mitochondria in syncytial male germ line-cysts of medicinal leeches. Cell Tissue Res 2023; 394:325-342. [PMID: 37642734 PMCID: PMC10638204 DOI: 10.1007/s00441-023-03825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
We studied the spatial conformation and activity of mitochondria in the developing syncytial male germline cysts during spermatogenesis of the medicinal leeches using light, fluorescent, transmission electron microscopy, and serial block-face scanning electron microscopy. In cysts with spermatogonia and spermatocytes, mitochondria form networks and are in a dynamic hyperfusion state, while in cysts with spermatids, a single huge mitochondrion is observed. As spermiogenesis progresses, this huge mitochondrion is finally located in the future midpiece. The highest activity, in terms of membrane potential, of the mitochondria in H. medicinalis germline cysts was observed in cysts with spermatocytes; the lowest was in cysts with late elongated spermatids.
Collapse
Affiliation(s)
- Natalia Diak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Małgorzata Alicja Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland
- Silesian University of Technology, Biotechnology Center, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Piotr Świątek
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
8
|
Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol 2023; 81:102158. [PMID: 36913831 DOI: 10.1016/j.ceb.2023.102158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/28/2022] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
9
|
Zhang W, Wu F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: a comprehensive review. Reprod Biol Endocrinol 2023; 21:27. [PMID: 36932444 PMCID: PMC10021953 DOI: 10.1186/s12958-023-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The decline of oocyte quality has profound impacts on fertilization, implantation, embryonic development, and the genetic quality of future generations. One factor that is often ignored but is involved in the decline of oocyte quality is mitochondrial DNA (mtDNA) abnormalities. Abnormalities in mtDNA affect the energy production of mitochondria, the dynamic balance of the mitochondrial network, and the pathogenesis of mtDNA diseases in offspring. In this review, we have detailed the characteristics of mtDNA in oocytes and the maternal inheritance of mtDNA. Next, we summarized the mtDNA abnormalities in oocytes derived from aging, diabetes, obesity, and assisted reproductive technology (ART) in an attempt to further elucidate the possible mechanisms underlying the decline in oocyte health. Because multiple infertility factors are often involved when an individual is infertile, a comprehensive understanding of the individual effects of each infertility-related factor on mtDNA is necessary. Herein, we consider the influence of infertility-related factors on the mtDNA of the oocyte as a collective perspective for the first time, providing a supplementary angle and reference for multi-directional improvement strategies of oocyte quality in the future. In addition, we highlight the importance of studying ART-derived mitochondrial abnormalities during every ART procedure.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Sekula M, Tworzydlo W, Bilinski SM. Morphology and ultrastructure of the Balbiani body in the oocytes of closely related bush cricket species. Shared features reveal important aspect of functioning. ZOOLOGY 2022; 155:126051. [PMID: 36108419 DOI: 10.1016/j.zool.2022.126051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
Balbiani bodies (Bbs) are female germline-specific organelle assemblages usually composed of mitochondria, Golgi complexes, elements of endoplasmic reticulum and accumulations of fine granular material, termed the nuage. Here we present results of morphological and ultrastructural analysis of the Bb of four bush crickets nested in four subfamilies of the family Tettigonidae. This study has revealed that Bbs of closely related species (belonging to the defined evolutionary line) are morphologically rather different. In two species (Meconema meridionale and Pholidoptera griseoaptera) the Bb has the form of a hollow hemisphere that covers a part of the germinal vesicle surface. In contrast, the Bb of Conocephalus fuscus and Leptophyes albovittata is less distinct and surrounds the whole or the majority of the germinal vesicle surface. Aside from this difference, the Bbs of all four studied species are built of identical sets of organelles and, most importantly, share one significant feature: close association of mitochondria and nuage accumulations. We show additionally that mitochondria remaining in direct contact with the nuage are characterized by distinct morphologies e.g. elongated, dumbbell shaped or bifurcated. In the light of our results and literature survey, the ancestral function of the Bb is discussed.
Collapse
Affiliation(s)
- Malgorzata Sekula
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
11
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
12
|
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM. Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022; 10:826892. [PMID: 35733854 PMCID: PMC9207522 DOI: 10.3389/fcell.2022.826892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.
Collapse
Affiliation(s)
- Yoel Bogoch
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| |
Collapse
|
13
|
Charitonidou K, Panteris E, Ganias K. Balbiani body formation and cytoplasmic zonation during early oocyte development in two Clupeiform fishes. JOURNAL OF FISH BIOLOGY 2022; 100:1223-1232. [PMID: 35244939 DOI: 10.1111/jfb.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The Balbiani body (Bb) was examined in primary growth phase oocytes for the first time in two clupeoid fish species, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus, which belong to different families, Clupeidae and Engraulidae, respectively. Cytoplasmic morphological changes of early secondary growth oocytes were also investigated using confocal laser scanning microscopy, light and transmission electron microscopy. The ultrastructural observations showed that the two species develop a distinct spherical Bb. However, differences in the cytoplasm, mainly in the perinuclear area, were observed. Briefly, in sardine the Bb coexists with a thick perinuclear ring containing mitochondria, nuage, endoplasmic reticulum and small vesicles, while in anchovy this perinuclear ring is thinner, consisting of complexes of nuage and mitochondria. After the disassembly of the Bb, a prominent cytoplasmic zonation develops in the secondary growth oocytes of sardine and anchovy, although with different organelle distribution between the two species. Sardine oocytes exhibit a thick zone of endoplasmic reticulum around the nucleus, whereas in those of anchovy, a thick mitochondria-rich ring surrounding the nucleus was observed. The cytoplasmic characteristics, such as the perinuclear ring in primary oocytes in sardine and the mitochondria-rich ring of early secondary oocytes in anchovy, are also discernible in histological sections by standard procedures and could thus be used as indicators of maturity or imminent spawning period in routine light microscopy observations, providing a valuable tool for applied fisheries biology.
Collapse
Affiliation(s)
- Katerina Charitonidou
- Laboratory of Ichthyology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Ganias
- Laboratory of Ichthyology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Urbisz AZ, Chajec Ł, Małota K, Student S, Sawadro MK, Śliwińska MA, Świątek P. All for one - changes in mitochondrial morphology and activity during syncytial oogenesis. Biol Reprod 2022; 106:1232-1253. [PMID: 35156116 DOI: 10.1093/biolre/ioac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
The syncytial groups of germ cells (germ-line cysts) forming in ovaries of clitellate annelids are an attractive model to study mitochondrial stage-specific changes. Using transmission electron microscopy, serial block-face scanning electron microscopy, and fluorescent microscopy, we analyzed the mitochondria distribution and morphology and the state of membrane potential in female cysts in Enchytraeus albidus. We visualized in 3D at the ultrastructural level mitochondria in cysts at successive stages: 2-celled, 4-celled, 16-celled cysts, and cyst in advanced oogenesis. We found that mitochondria form extensive aggregates - they are fused and connected into large and branched mitochondrial networks. The most extensive networks are formed with up to 10,000 fused mitochondria, whereas individual organelles represent up to 2% of the total mitochondrial volume. We classify such morphology of mitochondria as a dynamic hyperfusion state, and suggest that it can maintain their high activity and intensifies the process of cellular respiration within the syncytial cysts. We found some individual mitochondria undergoing degradation, which implies that damaged mitochondria are removed from networks for their final elimination. As it was shown that growing oocytes possess less active mitochondria than the nurse cells, it suggests that the high activity of mitochondria in the nurse cells and their dynamic hyperfusion state serve the needs of the growing oocyte. Additionally, we measured by calorimetry the total antioxidant capacity of germ-line cysts in comparison to somatic tissue, and it suggests that antioxidative defense systems, together with mitochondrial networks, can effectively protect germ-line mitochondria from damage.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Marta K Sawadro
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Warsaw, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Piccinini G, Iannello M, Puccio G, Plazzi F, Havird JC, Ghiselli F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol Biol Evol 2021; 38:2597-2614. [PMID: 33616640 PMCID: PMC8136519 DOI: 10.1093/molbev/msab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Collapse
Affiliation(s)
- Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Colnaghi M, Pomiankowski A, Lane N. The need for high-quality oocyte mitochondria at extreme ploidy dictates mammalian germline development. eLife 2021; 10:69344. [PMID: 34279226 PMCID: PMC8337077 DOI: 10.7554/elife.69344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Selection against deleterious mitochondrial mutations is facilitated by germline processes, lowering the risk of genetic diseases. How selection works is disputed: experimental data are conflicting and previous modeling work has not clarified the issues; here, we develop computational and evolutionary models that compare the outcome of selection at the level of individuals, cells and mitochondria. Using realistic de novo mutation rates and germline development parameters from mouse and humans, the evolutionary model predicts the observed prevalence of mitochondrial mutations and diseases in human populations. We show the importance of organelle-level selection, seen in the selective pooling of mitochondria into the Balbiani body, in achieving high-quality mitochondria at extreme ploidy in mature oocytes. Alternative mechanisms debated in the literature, bottlenecks and follicular atresia, are unlikely to account for the clinical data, because neither process effectively eliminates mitochondrial mutations under realistic conditions. Our findings explain the major features of female germline architecture, notably the longstanding paradox of over-proliferation of primordial germ cells followed by massive loss. The near-universality of these processes across animal taxa makes sense in light of the need to maintain mitochondrial quality at extreme ploidy in mature oocytes, in the absence of sex and recombination.
Collapse
Affiliation(s)
- Marco Colnaghi
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Andrew Pomiankowski
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nick Lane
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
17
|
Yang Y, Ning C, Li Y, Wang Y, Hu J, Liu Y, Zhang M, Sun Y, Gu W, Zhang Y, Sun J, Xu S. Dynamic changes in mitochondrial DNA, morphology, and fission during oogenesis of a seasonal-breeding teleost, Pampus argenteus. Tissue Cell 2021; 72:101558. [PMID: 34044232 DOI: 10.1016/j.tice.2021.101558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Mitochondria play crucial roles during oocyte development. In this study, we have investigated mitochondrial morphology, mtDNA, Ca2+-ATP enzyme activity, and mitochondrial fission factor (mff) expression levels during oogenesis of the silver pomfret Pampus argenteus. The mtDNA increased with oocyte development, and mitochondrial morphology and distribution were stage-specific. In the perinucleolar oocytes, oval mitochondria were dispersed in the cytoplasm. In previtellogenic oocytes, mitochondria massively increased and aggregated, forming mitochondrial clouds. At the same time, two morphologically different types of mitochondria had been distinguished, one of which was elongated with well-developed cristae, and the other was round with distorted and fused cristae. During vitellogenesis, the increases in mitochondria with well-developed cristae and in Ca2+-ATPase enzymatic activity were accompanied by an accumulation of yolk substance, suggesting the possible participation of mitochondria in the formation of vitellogenesis. Furthermore, we examined the cDNA of mff its transcript levels in relation to oocyte development. The transcript levels of mff were high in the perinucleolar stage, increasing to the highest level at the previtellogenic stage. Immunocytochemistry showed that MFF was detected in the cytoplasm of previtellogenic and midvitellogenic oocytes. We speculated that the mff-mediated mitochondrial fission may play a crucial role in oocyte development, especially in vitellogenesis.
Collapse
Affiliation(s)
- Yang Yang
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.
| | - Chao Ning
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yaya Li
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yajun Wang
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.
| | - Jiabao Hu
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yifan Liu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Man Zhang
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yibo Sun
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Weiwei Gu
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Youyi Zhang
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Jiachu Sun
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| |
Collapse
|
18
|
Mytlis A, Elkouby YM. Live and Time-Lapse Imaging of Early Oogenesis and Meiotic Chromosomal Dynamics in Cultured Juvenile Zebrafish Ovaries. Methods Mol Biol 2021; 2218:137-155. [PMID: 33606229 DOI: 10.1007/978-1-0716-0970-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Oocyte production is crucial for sexual reproduction. Recent findings in zebrafish and other established model organisms emphasize that the early steps of oogenesis involve the coordination of simultaneous and tightly sequential processes across cellular compartments and between sister cells. To fully understand the mechanistic framework of these coordinated processes, cellular and morphological analysis in high temporal resolution is required. Here, we provide a protocol for four-dimensional live time-lapse analysis of cultured juvenile zebrafish ovaries. We describe how multiple-stage oocytes can be simultaneously analyzed in single ovaries, and several ovaries can be processed in single experiments. In addition, we detail adequate conditions for quantitative image acquisition. Finally, we demonstrate that using this protocol, we successfully capture rapid meiotic chromosomal movements in early prophase for the first time in zebrafish oocytes, in four dimensions and in vivo. Our protocol expands the use of the zebrafish as a model system to understand germ cell and ovarian development in postembryonic stages.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
19
|
Chen Z, Wang ZH, Zhang G, Bleck CKE, Chung DJ, Madison GP, Lindberg E, Combs C, Balaban RS, Xu H. Mitochondrial DNA segregation and replication restrict the transmission of detrimental mutation. J Cell Biol 2021; 219:151740. [PMID: 32375181 PMCID: PMC7337505 DOI: 10.1083/jcb.201905160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022] Open
Abstract
Although mitochondrial DNA (mtDNA) is prone to accumulate mutations and lacks conventional DNA repair mechanisms, deleterious mutations are exceedingly rare. How the transmission of detrimental mtDNA mutations is restricted through the maternal lineage is debated. Here, we demonstrate that mitochondrial fission, together with the lack of mtDNA replication, segregate mtDNA into individual organelles in the Drosophila early germarium. After mtDNA segregation, mtDNA transcription begins, which activates respiration. Mitochondria harboring wild-type genomes have functional electron transport chains and propagate more vigorously than mitochondria containing deleterious mutations in hetreoplasmic cells. Therefore, mtDNA expression acts as a stress test for the integrity of mitochondrial genomes and sets the stage for replication competition. Our observations support selective inheritance at the organelle level through a series of developmentally orchestrated mitochondrial processes. We also show that the Balbiani body has a minor role in mtDNA selective inheritance by supplying healthy mitochondria to the pole plasm. These two mechanisms may act synergistically to secure the transmission of functional mtDNA through Drosophila oogenesis.
Collapse
Affiliation(s)
- Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Guofeng Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dillon J Chung
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Grey P Madison
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Balaban
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Goodman JS, King GA, Ünal E. Cellular quality control during gametogenesis. Exp Cell Res 2020; 396:112247. [PMID: 32882217 PMCID: PMC7572901 DOI: 10.1016/j.yexcr.2020.112247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Jay S Goodman
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA.
| |
Collapse
|
21
|
Sekula M, Tworzydlo W, Bilinski SM. Morphogenesis of the Balbiani body in developing oocytes of an orthopteran, Metrioptera brachyptera, and multiplication of female germline mitochondria. J Morphol 2020; 281:1142-1151. [PMID: 32767591 DOI: 10.1002/jmor.21242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Balbiani body (Bb) is a female germline specific organelle complex. Although the morphology and morphogenesis of the Bb have been analyzed in numerous vertebrate and invertebrate species, the role and ultimate fate of this organelle assemblage are still under debate. As a result, various functions have been attributed to the Bb in given animal lineages or even species. Our analyses showed that in the bush cricket, Metrioptera brachyptera, the Bb is an elaborate and highly dynamic structure positioned at one side of the oocyte nucleus. It forms in early previtellogenic oocytes and consists of two compartments: perinuclear and cytoplasmic. In the cytoplasmic compartment, characteristic complexes of nuage and polymorphous mitochondria are present. Computer-aided 3D reconstructions revealed that mitochondria clustered around neighboring nuage accumulations remain in a physical contact and form an extensive, though dispersed network. As oogenesis progresses, nuage/mitochondria complexes are partitioned into progressively smaller entities that become separated from each other. Concurrently, the mitochondrial network splits into small individual mitochondria populating the whole ooplasm. Immunohistochemical analysis showed that the latter process involves dynamin-related protein 1 (Drp1). Collectively, our findings suggest that in basal insect species, the Bb might be responsible for the selection as well as multiplication of the oocyte mitochondria.
Collapse
Affiliation(s)
- Malgorzata Sekula
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
22
|
Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM. Int J Cell Biol 2020; 2020:7483467. [PMID: 32395131 PMCID: PMC7199535 DOI: 10.1155/2020/7483467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.
Collapse
|
23
|
Tworzydlo W, Sekula M, Bilinski SM. Transmission of Functional, Wild-Type Mitochondria and the Fittest mtDNA to the Next Generation: Bottleneck Phenomenon, Balbiani Body, and Mitophagy. Genes (Basel) 2020; 11:E104. [PMID: 31963356 PMCID: PMC7016935 DOI: 10.3390/genes11010104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
The most important role of mitochondria is to supply cells with metabolic energy in the form of adenosine triphosphate (ATP). As synthesis of ATP molecules is accompanied by the generation of reactive oxygen species (ROS), mitochondrial DNA (mtDNA) is highly vulnerable to impairment and, consequently, accumulation of deleterious mutations. In most animals, mitochondria are transmitted to the next generation maternally, i.e., exclusively from female germline cells (oocytes and eggs). It has been suggested, in this context, that a specialized mechanism must operate in the developing oocytes enabling escape from the impairment and subsequent transmission of accurate (devoid of mutations) mtDNA from one generation to the next. Literature survey suggest that two distinct and irreplaceable pathways of mitochondria transmission may be operational in various animal lineages. In some taxa, the mitochondria are apparently selected: functional mitochondria with high inner membrane potential are transferred to the cells of the embryo, whereas those with low membrane potential (overloaded with mutations in mtDNA) are eliminated by mitophagy. In other species, the respiratory activity of germline mitochondria is suppressed and ROS production alleviated leading to the same final effect, i.e., transmission of undamaged mitochondria to offspring, via an entirely different route.
Collapse
Affiliation(s)
| | | | - Szczepan M. Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (W.T.); (M.S.)
| |
Collapse
|
24
|
Bilinski SM, Jaglarz MK, Tworzydlo W. Organelle assemblages implicated in the transfer of oocyte components to the embryo: an insect perspective. CURRENT OPINION IN INSECT SCIENCE 2019; 31:1-7. [PMID: 31109662 DOI: 10.1016/j.cois.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
Besides reserve materials (yolk spheres, lipid droplets), ribosomes and various mRNA species, insect oocytes contain large easily morphologically recognizable organelle assemblages: the Balbiani body and the oosome (pole plasm). These assemblages are implicated in the transfer of oocyte components (mitochondria, polar granules) to the embryo that is to offspring. Here, we review present knowledge of morphology, morphogenesis, molecular composition and function/s of these assemblages. We discuss also the morphogenesis and presumed function of unconventional organelle assemblages, dormant stacks of endoplasmic reticulum, recently described in the oocytes and early embryos of a viviparous dermapteran, Hemimerus talpoides.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
25
|
Jamieson-Lucy A, Mullins MC. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Curr Top Dev Biol 2019; 135:1-34. [DOI: 10.1016/bs.ctdb.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Abstract
The subphylum Chelicerata represents one of the oldest groups among arthropods and comprises more than a dozen orders. Representatives of particular orders differ significantly in their external morphology, reproductive biology, behavior, and structure of internal organs, e.g. of the respiratory system. However, in almost all chelicerates (excluding some mites) the female gonads show a similar architecture. In this chapter, the chelicerate-type ovary structure and the course of oogenesis are described. Structural and functional diversities of the chelicerate-type ovary in non-matrotrophic and matrotrophic arachnids are also presented.
Collapse
Affiliation(s)
- Izabela Jędrzejowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Poland.
| |
Collapse
|
27
|
Małota K, Student S, Świątek P. Low mitochondrial activity within developing earthworm male germ-line cysts revealed by JC-1. Mitochondrion 2018; 44:111-121. [PMID: 29398303 DOI: 10.1016/j.mito.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
Abstract
The male germ-line cysts that occur in annelids appear to be a very convenient model for spermatogenesis studies. Germ-line cysts in the studied earthworm are composed of two compartments: (1) germ cells, where each cell is connected via one intercellular bridge to (2) an anuclear central cytoplasmic mass, the cytophore. In the present paper, confocal and transmission electron microscopy were used to follow the changes in the mitochondrial activity and ultrastructure within the cysts during spermatogenesis. JC-1 was used to visualize the populations of mitochondria with a high and low membrane potential. We used the spot detection Imaris software module to obtain the quantitative data. We counted and compared the 'mitochondrial spots' - the smallest detectable signals from mitochondria. It was found that in all of the stages of cyst development, the majority of mitochondria spots showed a green fluorescence, thus indicating a low mitochondrial membrane potential (MMP). Moreover, the number of active mitochondria spots that were visualized by red JC-1 fluorescence (high MMP) drastically decreased as spermatogenesis progressed. As much as 26% of the total number of mitochondrial spots in the spermatogonial cysts showed a high MMP - 19% in the spermatocytes, 24% in the isodiametric spermatids and 3% and 6%, respectively, in the cysts that were holding early and late elongate spermatids. The mitochondria were usually thread-like and had an electron-dense matrix and lamellar cristae. Then, during spermiogenesis, the mitochondria within both the spermatids and the cytophore had a tendency to form aggregates in which the mitochondria were cemented by an electron-dense material.
Collapse
Affiliation(s)
- Karol Małota
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
28
|
Complete elimination of a pathogenic homoplasmic mtDNA mutation in one generation. Mitochondrion 2018; 45:18-21. [PMID: 29408632 DOI: 10.1016/j.mito.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 01/23/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations have been implicated in a wide variety of neurological conditions and are maternally inherited through a complex process which is not fully understood. Genetic counselling for mitochondrial conditions secondary to a mtDNA mutation can be challenging as it is not currently possible to accurately predict the mutational load/heteroplasmy of the mutation which could be passed to the offspring. In general, one expects that the higher the level of heteroplasmy the more likely that the same mtDNA mutation will be seen in the offspring. We report here a family which places a caveat on genetic counselling for mtDNA disorders. The proband is a 63 year old woman with m.14459G>A associated dystonia/spasticity/ataxia. The m.14459G>A mutation was detected at homoplasmic/near homoplasmic levels in her muscle tissue and fibroblasts, but did not appear to have been passed on to any of her offspring. To our knowledge, this is the first report of complete selection against a homoplasmic variant within maternally transmitted mtDNA. It is not clear if this novel phenomenon occurred by random chance or by another method of mitochondrial selection.
Collapse
|
29
|
Bilinski SM, Kloc M, Tworzydlo W. Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 2017; 34:1405-1412. [PMID: 28755153 PMCID: PMC5699987 DOI: 10.1007/s10815-017-1006-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
Early oocytes of nearly all animal species contain a transient organelle assemblage termed the Balbiani body. Structure and composition of this assemblage may vary even between closely related species. Despite this variability, the Balbiani body always comprises of numerous tightly clustered mitochondria and accumulations of nuage material. It has been suggested that the Balbiani body is an evolutionarily ancestral structure, which plays a role in various processes such as the localization of organelles and macromolecules to the germ plasm, lipidogenesis, as well as the selection/elimination of dysfunctional mitochondria from female germline cells. We suggest that the selection/elimination of mitochondria is a primary and evolutionarily ancestral function of Balbiani body, and that the other functions are secondary, evolutionarily derived additions. We propose a simple model explaining the role of the Balbiani body in the selection of mitochondria, i.e., in the mitochondrial DNA (mtDNA) bottleneck phenomenon.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute and The Houston Methodist Hospital, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
30
|
Elkouby YM, Mullins MC. Coordination of cellular differentiation, polarity, mitosis and meiosis - New findings from early vertebrate oogenesis. Dev Biol 2017; 430:275-287. [PMID: 28666956 DOI: 10.1016/j.ydbio.2017.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline. Stem Cell Res 2017; 21:178-186. [PMID: 28336253 DOI: 10.1016/j.scr.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.
Collapse
|
32
|
Tworzydlo W, Marek M, Kisiel E, Bilinski SM. Meiosis, Balbiani body and early asymmetry of Thermobia oocyte. PROTOPLASMA 2017; 254:649-655. [PMID: 27180195 PMCID: PMC5309285 DOI: 10.1007/s00709-016-0978-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The meiotic division guarantees maintenance of a genetic diversity; it consists of several stages, with prophase I being the longest and the most complex. We decided to follow the course of initial stages of meiotic division in ovaries of Thermobia domestica using modified techniques of squash preparations, semithin sections, and electron microscopy. We show that germaria contain numerous germline cells that can be classified into three categories: cystoblasts, meiotic oocytes, and growing previtellogenic oocytes. The cystoblasts are located most apically. The meiotic oocytes occupy the middle part of the germarium, and the previtellogenic oocytes can be found in the most basal part, near the vitellarium. Analyses of the semithin sections and squash preparations show that post leptotene meiotic chromosomes gather in one region of the nucleoplasm where they form the so-called bouquet. The telomeres of the bouquet chromosomes are attached to a relatively small area (segment) of the nuclear envelope. Next to this envelope segment, the nucleolar organizers are also located. We show that in concert to sequential changes inside the oocyte nuclei, rearrangement of organelles within the ooplasm (oocyte cytoplasm) takes place. This leads to the formation of the Balbiani body and consequent asymmetry of the ooplasm. These early nuclear and cytoplasmic asymmetries, however, are transient. During diplotene, the chromosome bouquet disappears, while the Balbiani body gradually disperses throughout the ooplasm. Finally, our observations indicate the presence of lampbrush chromosomes in the nuclei of previtellogenic oocytes. In the close vicinity to lampbrush chromosomes, characteristic spherical nuclear bodies are present.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | - Magdalena Marek
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kisiel
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
33
|
Abstract
Acquisition of oocyte polarity involves complex translocation and aggregation of intracellular organelles, RNAs, and proteins, along with strict posttranscriptional regulation. While much is still unknown regarding the formation of the animal-vegetal axis, an early marker of polarity, animal models have contributed to our understanding of these early processes controlling normal oogenesis and embryo development. In recent years, it has become clear that proteins with self-assembling properties are involved in assembling discrete subcellular compartments or domains underlying subcellular asymmetries in the early mitotic and meiotic cells of the female germline. These include asymmetries in duplication of the centrioles and formation of centrosomes and assembly of the organelle and RNA-rich Balbiani body, which plays a critical role in oocyte polarity. Notably, at specific stages of germline development, these transient structures in oocytes are temporally coincident and align with asymmetries in the position and arrangement of nuclear components, such as the nuclear pore and the chromosomal bouquet and the centrioles and cytoskeleton in the cytoplasm. Formation of these critical, transient structures and arrangements involves microtubule pathways, intrinsically disordered proteins (proteins with domains that tend to be fluid or lack a rigid ordered three-dimensional structure ranging from random coils, globular domains, to completely unstructured proteins), and translational repressors and activators. This review aims to examine recent literature and key players in oocyte polarity.
Collapse
Affiliation(s)
- Mara Clapp
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA.
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029-6574, USA.
| |
Collapse
|
34
|
Żelazowska M, Fopp-Bayat D. Previtellogenic and vitellogenic oocytes in ovarian follicles of cultured siberian sturgeon Acipenser baerii (Chondrostei, Acipenseriformes). J Morphol 2016; 278:50-61. [PMID: 27859485 DOI: 10.1002/jmor.20618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 12/16/2022]
Abstract
Previtellogenic and vitellogenic oocytes in ovarian follicles from cultured Siberian sturgeon Acipenser baerii were examined. In previtellogenic oocytes, granular and homogeneous zones in the cytoplasm (the ooplasm) are distinguished. Material of nuclear origin, rough endoplasmic reticulum, Golgi complexes, complexes of mitochondria with cement and round bodies are numerous in the granular ooplasm. In vitellogenic oocytes, the ooplasm comprises three zones: perinuclear area, endoplasm and periplasm. The endoplasm contains yolk platelets, lipid droplets, and aggregations of mitochondria and granules immersed in amorphous material. In the nucleoplasm, lampbrush chromosomes, nucleoli, and two types of nuclear bodies are present. The first type of nuclear bodies is initially composed of fibrillar threads only. Their ultrastructure subsequently changes and they contain threads and medium electron dense material. The second type of nuclear bodies is only composed of electron dense particles. All nuclear bodies impregnate with silver, stain with propidium iodide, and are DAPI-negative. Their possible role is discussed. All oocytes are surrounded by follicular cells and a basal lamina which is covered by thecal cells. Egg envelopes are not present in previtellogenic oocytes. In vitellogenic oocytes, the plasma membrane (the oolemma) is covered by three envelopes: vitelline envelope, chorion, and extrachorion. Vitelline envelope comprises four sublayers: filamentous layer, trabecular layer 2 (t2), homogeneous layer, and trabecular layer 1 (t1). In the chorion, porous layer 1 and porous layer 2 are distinguished in most voluminous examined oocytes. Three micropylar cells that are necessary for the formation of micropyles are present between follicular cells at the animal hemisphere. J. Morphol. 278:50-61, 2017. ©© 2016 Wiley Periodicals,Inc.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, Kraków, 30-387, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, Olsztyn, 10-917, Poland
| |
Collapse
|