1
|
Chen K, Wang H, Ma B, Knapp J, Henchy C, Lu J, Stevens T, Ranganathan S, Prochownik EV. Gas1-Mediated Suppression of Hepatoblastoma Tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:982-994. [PMID: 39889823 DOI: 10.1016/j.ajpath.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Hepatoblastoma (HB), the most common pediatric liver cancer, is associated with dysregulated Wnt/β-catenin, Hippo, and/or nuclear factor erythroid 2 ligand 2/nuclear respiratory factor 2 (NFE2L2/NRF2) pathways. In mice, pairwise combinations of oncogenically active forms of the terminal transcription factors of these pathways, namely, β-catenin (B), Yes-associated protein (YAP; Y), and Nrf2 (N), generate HBs, with the triple combination (B + Y + N) being particularly potent. Each tumor group alters the expression of thousands of B-, Y-, and N-driven unique and common target genes. The identification of those most involved in transformation might reveal mechanisms and opportunities for therapy. Herein, transcription profiling of >60 murine HBs revealed a common set of 22 "BYN" genes similarly deregulated in all cases. Most were associated with multiple cancer hallmarks, and their expression often correlated with survival in HBs, hepatocellular carcinomas, and other cancers. Among the most down-regulated of these genes was Gas1, which encodes a glycosylphosphatidylinositol-linked outer membrane protein. The restoration of Gas1 expression impaired B + Y + N-driven HB tumor growth in vivo and in HB-derived immortalized BY and BYN cell lines in vitro in a manner that requires membrane anchoring of the protein via its glycosylphosphatidylinositol moiety, implicating Gas1 as a proximal mediator of HB pathogenesis and validating the BYN gene set as deserving of additional scrutiny in future studies.
Collapse
Affiliation(s)
- Keyao Chen
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bingwei Ma
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Tongji University School of Medicine, Shanghai, China
| | - Jessica Knapp
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colin Henchy
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Xu M, Wu K, He R, He J, Yang G, Ma H, Peng L, Zhang S, Tan L, Zhang Z, Cai Q. Design, synthesis and evaluation of (E)-1-(4-(2-(1H-pyrazol-5-yl)vinyl)phenyl) derivatives as next generation selective RET inhibitors overcoming RET solvent front mutations (G810C/R). Eur J Med Chem 2025; 286:117294. [PMID: 39879936 DOI: 10.1016/j.ejmech.2025.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
RET is a well-recognized drug target for cancer treatment. Despite the promising efficacy of selective second-generation RET inhibitors Selpercatinib and Pralsetinib, the clinical benefits have been compromised due to the quickly developed resistance to these drugs. RET G810 mutations at the solvent front site have been identified as the major on-target mutations contributing to resistance against Selpercatinib and Pralsetinib. Therefore, there is an urgent need for the development of next-generation RET inhibitors to overcome acquired solvent-front resistance mutations. In this study, a series of (E)-1-(4-(2-(1H-pyrazol-5-yl)vinyl)phenyl) derivatives have been identified as selective next-generation RET inhibitors. The representative compound, CQ1373 exhibits potent cellular potency with IC50 values of 13.0, 25.7 and 28.4 nM against BaF3 cells expressing CCDC6-RET, CCDC6-RET-G810C and CCDC6-RET-G810R, respectively. A comprehensive selectivity profile across 89 kinases reveals that CQ1373 demonstrates good selectivity toward wild-type RET and solvent front mutants G810C/R with IC50 values of 4.2, 7.1 and 32.4 nM, respectively. Furthermore, western blot analysis reveals that CQ1373 effectively inhibits RET phosphorylation and downstream signaling through SHC. It also induces apoptosis and cell cycle arrest in a dose-dependent manner in BaF3 cells harboring CCDC6-RET, CCDC6-RET-G810C and CCDC6-RET-G810R fusions. More significantly, CQ1373 exhibits promising in vivo anti-tumor efficacy in a CCDC6-RET-G810R mice xenograft model, highlighting its potentials for RET-driven cancers treatment.
Collapse
Affiliation(s)
- Mingjin Xu
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Kaifu Wu
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Rui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiahuan He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gangpeng Yang
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China
| | - Haowen Ma
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China
| | - Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510632, China
| | - Li Tan
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China.
| | - Zhang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, School of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510632, China.
| | - Qian Cai
- College of Chemistry and Materials Science, Zhejiang Normal University, No. 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China.
| |
Collapse
|
3
|
Suzuki T, Kadoya K, Endo T, Yamasaki M, Watanabe M, Iwasaki N. GFRα1 Promotes Axon Regeneration after Peripheral Nerve Injury by Functioning as a Ligand. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2400812. [PMID: 39630029 PMCID: PMC11775530 DOI: 10.1002/advs.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 11/04/2024] [Indexed: 01/30/2025]
Abstract
The neurotrophic factor, Glial cell line derived neurotrophi factor (GDNF), exerts a variety of biological effects through binding to its receptors, GDNF family receptor alpha-1 (GFRα1), and RET. However, the existence of cells expressing GFRα1 but not RET raises the possibility that GFRα1 can function independently from RET. Here, it is shown that GFRα1 released from repair Schwann cells (RSCs) functions as a ligand in a GDNF-RET-independent manner to promote axon regeneration after peripheral nerve injury (PNI). Local administration of GFRα1 into injured nerve promoted axon regeneration, even more when combined with GDNF blockade. GFRα1 bound to a receptor complex consisting of NCAM and integrin α7β1 of dorsal root ganglion neurons in a GDNF-RET independent manner. This is further confirmed by the Ret Y1062F knock-in mice, which cannot transmit most of GDNF-RET signaling. Finally, local administration of GFRα1 into injured sciatic nerve promoted functional recovery. These findings reveal a novel role of GFRα1 as a ligand, the molecular mechanism supporting axon regeneration by RSCs, and a novel therapy for peripheral nerve repair.
Collapse
Affiliation(s)
- Tomoaki Suzuki
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| | - Ken Kadoya
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| | - Takeshi Endo
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| | - Miwako Yamasaki
- Department of AnatomyGraduate School of Medicine, Hokkaido UniversitySapporoHokkaido0608638Japan
| | - Masahiko Watanabe
- Department of AnatomyGraduate School of Medicine, Hokkaido UniversitySapporoHokkaido0608638Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| |
Collapse
|
4
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic analysis of psychosis Biotypes: shared Ancestry-adjusted polygenic risk and unique genomic associations. Mol Psychiatry 2024:10.1038/s41380-024-02876-z. [PMID: 39709506 DOI: 10.1038/s41380-024-02876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes, and isoforms showed significant genomic associations with specific Biotypes in a Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in the adult brain and fetal brain. TWAS inflation was addressed by the inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic Analysis of Psychosis Biotypes: Shared Ancestry-Adjusted Polygenic Risk and Unique Genomic Associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318404. [PMID: 39677452 PMCID: PMC11643284 DOI: 10.1101/2024.12.05.24318404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes and isoforms showed significant genomic associations with specific Biotypes in Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in adult brain and fetal brain. TWAS inflation was addressed by inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Godfrey D. Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT 06106, USA
| | - Sarah K. Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jennifer E. McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster 48149, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck 23538, Germany
| | - S. Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena I. Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Furong Laboratory, Changsha, Hunan 410000, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan 410000, China
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Drake LY, Roos BB, Teske JJ, Borkar NA, Ayyalasomayajula S, Klapperich C, Koloko Ngassie ML, Pabelick CM, Prakash YS. Effects of glial-derived neurotrophic factor on remodeling and mitochondrial function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2024; 327:L684-L693. [PMID: 39316680 PMCID: PMC11563586 DOI: 10.1152/ajplung.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Airway smooth muscle (ASM) cells play important roles in airway remodeling of asthma. Our previous studies show that in vivo administration of glial-derived neurotrophic factor (GDNF) in mice induces thickening and collagen deposition in bronchial airways, whereas chelation of GDNF by GFRα1-Fc attenuates airway remodeling in the context of allergen exposure. To determine whether GDNF has direct effects on ASM, in this study, we examined GDNF in ASM cells from normal versus asthmatic humans. We found that GDNF treatment of human ASM cells had only minor effects on cell proliferation and migration, intracellular expression or extracellular deposition of collagen I (COL1), collagen III (COL3), and fibronectin. Endoplasmic reticulum (ER) stress response and mitochondrial function have been implicated in asthma. We investigated whether GDNF regulates these aspects in human ASM. We found that GDNF treatment did not affect ER stress protein expression in normal or asthmatic cells. However, GDNF treatment impaired mitochondrial morphology in ASM but without significant effects on mitochondrial respiration. Thus, it is likely that in vivo effects of GDNF on airway remodeling per se involve cell types other than those on ASM, and thus ASM may serve more as a source of GDNF rather than a target.NEW & NOTEWORTHY Our previous study suggests that glial-derived neurotrophic factor (GDNF) is involved in allergen-induced airway hyperreactivity and remodeling in vivo. Here, we show that GDNF has no direct effects in remodeling of human airway smooth muscle (ASM) but GDNF dysregulates mitochondrial morphology in human ASM in the context of asthma.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A. Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Savita Ayyalasomayajula
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Courtney Klapperich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
7
|
Matrone A, Kroiss M, Gild ML, Hamidi S, Sayehli CM, Siddal R, Gambale C, Prete A, Hu MI, Robinson BG, Elisei R. Erectile Dysfunction in Patients Treated with Selpercatinib for RET-Altered Thyroid Cancer. Thyroid 2024; 34:1177-1180. [PMID: 38984927 DOI: 10.1089/thy.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Affiliation(s)
- Antonio Matrone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, Pisa University Hospital, Pisa, Italy
| | - Matthias Kroiss
- Department of Internal Medicine IV, Chair of Endocrinology/Diabetology, LMU University Hospital, LMU Munich, Munchen, Germany
- Department of Internal Medicine I, Chair of Endocrinology/Diabetology, University Hospital Würzburg, University of Würzburg, Munchen, Germany
| | - Matti L Gild
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, Texas, USA
| | - Cyrus Michael Sayehli
- Interdisciplinary Trial Center with Early Clinical Trial Unit, University Hospital Würzburg, Wurzburg, Germany
| | - Rhonda Siddal
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia
| | - Carla Gambale
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, Pisa University Hospital, Pisa, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, Pisa University Hospital, Pisa, Italy
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, Texas, USA
| | - Bruce G Robinson
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
8
|
Guzmán-Sastoque P, Sotelo S, Esmeral NP, Albarracín SL, Sutachan JJ, Reyes LH, Muñoz-Camargo C, Cruz JC, Bloch NI. Assessment of CRISPRa-mediated gdnf overexpression in an In vitro Parkinson's disease model. Front Bioeng Biotechnol 2024; 12:1420183. [PMID: 39175618 PMCID: PMC11338903 DOI: 10.3389/fbioe.2024.1420183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Parkinson's disease (PD) presents a significant challenge in medical science, as current treatments are limited to symptom management and often carry significant side effects. Our study introduces an innovative approach to evaluate the effects of gdnf overexpression mediated by CRISPRa in an in vitro model of Parkinson's disease. The expression of gdnf can have neuroprotective effects, being related to the modulation of neuroinflammation and pathways associated with cell survival, differentiation, and growth. Methods We have developed a targeted delivery system using a magnetite nanostructured vehicle for the efficient transport of genetic material. This system has resulted in a substantial increase, up to 200-fold) in gdnf expression in an In vitro model of Parkinson's disease using a mixed primary culture of astrocytes, neurons, and microglia. Results and Discussion The delivery system exhibits significant endosomal escape of more than 56%, crucial for the effective delivery and activation of the genetic material within cells. The increased gdnf expression correlates with a notable reduction in MAO-B complex activity, reaching basal values of 14.8 μU/μg of protein, and a reduction in reactive oxygen species. Additionally, there is up to a 34.6% increase in cell viability in an In vitro Parkinson's disease model treated with the neurotoxin MPTP. Our study shows that increasing gdnf expression can remediate some of the cellular symptoms associated with Parkinson's disease in an in vitro model of the disease using a novel nanostructured delivery system.
Collapse
Affiliation(s)
| | - Sebastián Sotelo
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Natalia P. Esmeral
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Sonia Luz Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon-Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Natasha I. Bloch
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Avenel ICN, Ewald JD, Ariey-Bonnet J, Kristensen IH, Petterson SA, Thesbjerg MN, Burton M, Thomassen M, Wennerberg K, Michaelsen SR, Kristensen BW. GDNF/GFRA1 signaling contributes to chemo- and radioresistance in glioblastoma. Sci Rep 2024; 14:17639. [PMID: 39085346 PMCID: PMC11292001 DOI: 10.1038/s41598-024-68626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults, characterized by an inherent aggressivity and resistance to treatment leading to poor prognoses. While some resistance mechanisms have been elucidated, a deeper understanding of these mechanisms is needed to increase therapeutic efficacy. In this study we first discovered glial-cell derived neurotrophic factor (GDNF) to be upregulated in patient-derived glioblastoma spheroid cultures after chemotherapeutic temozolomide treatment, through RNA-Seq experiments. Therefore, we investigated the role of the GDNF/GDNF receptor alpha 1 (GFRA1) signaling pathway as a resistance mechanism to chemotherapy with temozolomide and lomustine, as well as irradiation using patient-derived glioblastoma spheroid cultures. With qPCR experiments we showed a consistent upregulation of GDNF and its primary receptor GFRA1 following all three lines of treatment. Moreover, CRISPR/Cas9 knock-outs of GDNF in two patient-derived models sensitized these cells to chemotherapy treatment, but not radiotherapy. The increased sensitivity was completely reversed by the addition of exogeneous GDNF, confirming the key role of this factor in chemoresistance. Finally, a CRISPR KO of GFRA1 demonstrated a similar increased sensitivity to temozolomide and lomustine treatment, as well as radiotherapy. Together, our findings support the role of the GDNF/GFRA1 signaling pathway in glioblastoma chemo and radioresistance.
Collapse
Affiliation(s)
- Inès C N Avenel
- Department of Pathology, Bartholin Institute, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper D Ewald
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark Odense, Odense, Denmark
| | - Jérémy Ariey-Bonnet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ida H Kristensen
- Department of Pathology, Bartholin Institute, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Stine A Petterson
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark Odense, Odense, Denmark
| | - Martin N Thesbjerg
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark Odense, Odense, Denmark
| | - Mark Burton
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark Odense, Odense, Denmark
| | - Mads Thomassen
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark Odense, Odense, Denmark
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Signe R Michaelsen
- Department of Pathology, Bartholin Institute, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne W Kristensen
- Department of Pathology, Bartholin Institute, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
10
|
Lu S, Xu Y, Zhang H, Liu Z, Xu J, Zheng B, Shi D, Qiu F. Glycyrol Relieves Ulcerative Colitis by Promoting the Fusion of ZO-1 with the Cell Membrane through the Enteric Glial Cells GDNF/RET Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14653-14662. [PMID: 38860840 DOI: 10.1021/acs.jafc.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Shangyun Lu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Yang Xu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huixia Zhang
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Ziling Liu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiali Xu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Bowen Zheng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Dongxing Shi
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Fubin Qiu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
11
|
Moreno-Campos R, Singleton EW, Uribe RA. A targeted CRISPR-Cas9 mediated F0 screen identifies genes involved in establishment of the enteric nervous system. PLoS One 2024; 19:e0303914. [PMID: 38809858 PMCID: PMC11135701 DOI: 10.1371/journal.pone.0303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.
Collapse
Affiliation(s)
- Rodrigo Moreno-Campos
- Biosciences Department, Rice University, Houston, Texas, United States of America
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States of America
| | - Eileen W. Singleton
- Biosciences Department, Rice University, Houston, Texas, United States of America
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States of America
| | - Rosa A. Uribe
- Biosciences Department, Rice University, Houston, Texas, United States of America
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States of America
| |
Collapse
|
12
|
Morikawa M, Yoshizaki H, Yasui Y, Nishida S, Saikawa Y, Kohno M, Okajima H. Mesenchymal cells regulate enteric neural crest cell migration via RET-GFRA1b trans-signaling. Biochem Biophys Res Commun 2024; 710:149861. [PMID: 38581949 DOI: 10.1016/j.bbrc.2024.149861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Mari Morikawa
- Department of Pediatrics, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hisayoshi Yoshizaki
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| | - Yoshitomo Yasui
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Shoichi Nishida
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yutaka Saikawa
- Department of Pediatrics, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hideaki Okajima
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
13
|
Kakoty V, Sarathlal KC, Kaur P, Wadhwa P, Vishwas S, Khan FR, Alhazmi AYM, Almasoudi HH, Gupta G, Chellappan DK, Paudel KR, Kumar D, Dua K, Singh SK. Unraveling the role of glial cell line-derived neurotrophic factor in the treatment of Parkinson's disease. Neurol Sci 2024; 45:1409-1418. [PMID: 38082050 DOI: 10.1007/s10072-023-07253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2023] [Indexed: 03/16/2024]
Abstract
Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - K C Sarathlal
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Palwinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2050, Australia
| | - Dileep Kumar
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kamal Dua
- School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
14
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
15
|
Moreno-Campos R, Singleton EW, Uribe RA. A targeted CRISPR-Cas9 mediated F0 screen identifies genes involved in establishment of the enteric nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573581. [PMID: 38234831 PMCID: PMC10793464 DOI: 10.1101/2023.12.28.573581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding for opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.
Collapse
Affiliation(s)
- Rodrigo Moreno-Campos
- Biosciences Department, Rice University, Houston, Texas, 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, 77005, U.S.A
| | - Eileen W. Singleton
- Biosciences Department, Rice University, Houston, Texas, 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, 77005, U.S.A
| | - Rosa A. Uribe
- Biosciences Department, Rice University, Houston, Texas, 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, 77005, U.S.A
| |
Collapse
|
16
|
Sahakian N, Castinetti F, Romanet P. Molecular Basis and Natural History of Medullary Thyroid Cancer: It is (Almost) All in the RET. Cancers (Basel) 2023; 15:4865. [PMID: 37835559 PMCID: PMC10572078 DOI: 10.3390/cancers15194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Medullary thyroid cancer (MTC) is a rare disease, which can be either sporadic (roughly 75% of cases) or genetically determined (multiple endocrine neoplasia type 2, due to REarranged during Transfection RET germline mutations, 25% of cases). Interestingly, RET pathogenic variants (mainly M918T) have also been reported in aggressive forms of sporadic MTC, suggesting the importance of RET signalling pathways in the pathogenesis of MTC. The initial theory of RET codon-related MTC aggressiveness has been recently questioned by studies suggesting that this would only define the age at disease onset rather than the aggressiveness of MTC. Other factors might however impact the natural history of the disease, such as RET polymorphisms, epigenetic factors, environmental factors, MET (mesenchymal-epithelial transition) alterations, or even other genetic alterations such as RAS family (HRAS, KRAS, NRAS) genetic alterations. This review will detail the molecular bases of MTC, focusing on RET pathways, and the potential mechanisms that explain the phenotypic intra- and interfamilial heterogeneity.
Collapse
Affiliation(s)
- Nicolas Sahakian
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France; (N.S.); (F.C.)
| | - Frédéric Castinetti
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France; (N.S.); (F.C.)
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Laboratory of Molecular Biology, Marseille, France
| |
Collapse
|
17
|
La Monica G, Pizzolanti G, Baiamonte C, Bono A, Alamia F, Mingoia F, Lauria A, Martorana A. Design and Synthesis of Novel Thieno[3,2- c]quinoline Compounds with Antiproliferative Activity on RET-Dependent Medullary Thyroid Cancer Cells. ACS OMEGA 2023; 8:34640-34649. [PMID: 37779971 PMCID: PMC10536062 DOI: 10.1021/acsomega.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 10/03/2023]
Abstract
RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a-e and 7a-e were proposed as new potential RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a-d as promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new series of small heterocyclic molecules for the treatment of MTC.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Giuseppe Pizzolanti
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Concetta Baiamonte
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Francesco Mingoia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| |
Collapse
|
18
|
Mol P, Balaya RDA, Dagamajalu S, Babu S, Chandrasekaran P, Raghavan R, Suresh S, Ravishankara N, Raju AH, Nair B, Modi PK, Mahadevan A, Prasad TSK, Raju R. A network map of GDNF/RET signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2023; 17:1089-1095. [PMID: 36715855 PMCID: PMC10409931 DOI: 10.1007/s12079-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Pavithra Chandrasekaran
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Reshma Raghavan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Sneha Suresh
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Namitha Ravishankara
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Anu Hemalatha Raju
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
19
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Elisei R, Romei C. Looking for RET alterations in thyroid cancer: clinical relevance, methodology and timing. Endocrine 2023:10.1007/s12020-023-03368-w. [PMID: 37195581 DOI: 10.1007/s12020-023-03368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Thyroid carcinoma (TC) is a rare neoplasia of the endocrine system and account for about 2-3% of all human tumors. According to their cell origin and histological features, different histotypes of thyroid carcinoma are described. Genetic alterations involved in the pathogenesis of thyroid cancer have been described and it has been shown that alterations of the RET gene are common events in all TC hystotypes. Aim of this review is to give an overview of the relevance of RET alterations in TC and to provide indications, timing and methodologies, for RET genetic analysis. METHODS A revision of the literature has been performed and indications for the experimental approach for the RET analysis have been reported. CONCLUSIONS The analysis of RET mutations in TC has a very important clinical relevance for the early diagnosis of the hereditary forms of MTC, for the follow-up of TC patients and for the identification of those cases that can benefit from a specific treatment able to inhibit the effect of mutated RET.
Collapse
Affiliation(s)
- Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124, Pisa, Italy.
| | - Cristina Romei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124, Pisa, Italy
| |
Collapse
|
21
|
Ni B, He X, Zhang Y, Wang Z, Dong Z, Xia X, Zhao G, Cao H, Zhu C, Li Q, Liu J, Chen H, Zhang Z. Tumor-associated macrophage-derived GDNF promotes gastric cancer liver metastasis via a GFRA1-modulated autophagy flux. Cell Oncol (Dordr) 2023; 46:315-330. [PMID: 36808605 PMCID: PMC10060314 DOI: 10.1007/s13402-022-00751-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 02/23/2023] Open
Abstract
PURPOSE Liver metastasis, a lethal malignancy of gastric cancer (GC) patients, execrably impairs their prognosis. As yet, however, few studies have been designed to identify the driving molecules during its formation, except screening evidence pausing before their functions or mechanisms. Here, we aimed to survey a key driving event within the invasive margin of liver metastases. METHODS A metastatic GC tissue microarray was used for exploring malignant events during liver-metastasis formation, followed by assessing the expression patterns of glial cell-derived neurotrophic factor (GDNF) and GDNF family receptor alpha 1 (GFRA1). Their oncogenic functions were determined by both loss- and gain-of-function studies in vitro and in vivo, and validated by rescue experiments. Multiple cell biological studies were performed to identify the underlying mechanisms. RESULTS In the invasive margin, GFRA1 was identified as a pivotal molecule involved in cellular survival during liver metastasis formation, and we found that its oncogenic role depends on tumor associated macrophage (TAM)-derived GDNF. In addition, we found that the GDNF-GFRA1 axis protects tumor cells from apoptosis under metabolic stress via regulating lysosomal functions and autophagy flux, and participates in the regulation of cytosolic calcium ion signalling in a RET-independent and non-canonical way. CONCLUSION From our data we conclude that TAMs, homing around metastatic nests, induce the autophagy flux of GC cells and promote the development of liver metastasis via GDNF-GFRA1 signalling. This is expected to improve the comprehension of metastatic pathogenesis and to provide a novel direction of research and translational strategies for the treatment of metastatic GC patients.
Collapse
Affiliation(s)
- Bo Ni
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yeqian Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Zhongyi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiahua Liu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China.
| | - Huimin Chen
- State Key Laboratory for Oncogenes and Related GenesKey Laboratory of Gastroenterology & Hepatology, Ministry of HealthDivision of Gastroenterology and HepatologyShanghai Institute of Digestive DiseaseRenji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
22
|
Pecar G, Liu S, Hooda J, Atkinson JM, Oesterreich S, Lee AV. RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 2023; 25:26. [PMID: 36918928 PMCID: PMC10015789 DOI: 10.1186/s13058-023-01622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
RET, a single-pass receptor tyrosine kinase encoded on human chromosome 10, is well known to the field of developmental biology for its role in the ontogenesis of the central and enteric nervous systems and the kidney. In adults, RET alterations have been characterized as drivers of non-small cell lung cancer and multiple neuroendocrine neoplasms. In breast cancer, RET signaling networks have been shown to influence diverse functions including tumor development, metastasis, and therapeutic resistance. While RET is known to drive the development and progression of multiple solid tumors, therapeutic agents selectively targeting RET are relatively new, though multiple multi-kinase inhibitors have shown promise as RET inhibitors in the past; further, RET has been historically neglected as a potential therapeutic co-target in endocrine-refractory breast cancers despite mounting evidence for a key pathologic role and repeated description of a bi-directional relationship with the estrogen receptor, the principal driver of most breast tumors. Additionally, the recent discovery of RET enrichment in breast cancer brain metastases suggests a role for RET inhibition specific to advanced disease. This review assesses the status of research on RET in breast cancer and evaluates the therapeutic potential of RET-selective kinase inhibitors across major breast cancer subtypes.
Collapse
Affiliation(s)
- Geoffrey Pecar
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Simeng Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagmohan Hooda
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Numakawa T, Kajihara R. Neurotrophins and Other Growth Factors in the Pathogenesis of Alzheimer’s Disease. Life (Basel) 2023; 13:life13030647. [PMID: 36983803 PMCID: PMC10051261 DOI: 10.3390/life13030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD. On the other hand, it is well known that neurotrophic factors, especially brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB, have multiple roles in the central nervous system (CNS), including neuronal maintenance, synaptic plasticity, and neurogenesis, which are closely linked to learning and memory function. Thus, many investigations regarding therapeutic approaches to AD, and/or the screening of novel drug candidates for its treatment, focus on upregulation of the BDNF/TrkB system. Furthermore, current studies also demonstrate that GDNF, IGF1, and bFGF, which play roles in neuroprotection, are associated with AD. In this review, we introduce data demonstrating close relationships between the pathogenesis of AD, neurotrophic factors, and drug candidates, including natural compounds that upregulate the BDNF-mediated neurotrophic system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Correspondence:
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
24
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Staszkiewicz R, Gralewski M, Gładysz D, Bryś K, Garczarek M, Gadzieliński M, Marcol W, Sobański D, Grabarek BO, sobaÅ Ski D, Grabarek BO. Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. Mol Pain 2023; 19:17448069231158287. [PMID: 36733259 PMCID: PMC10071099 DOI: 10.1177/17448069231158287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Important neurotrophic factors that are potentially involved in degenerative intervertebral disc (IVD) disease of the spine's lumbosacral (L/S) region include glial cell-derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP-43). The aim of this study was to determine and compare the concentrations of GAP-43 and GDNF in degenerated and healthy IVDs and to quantify and compare the GAP-43-positive and GDNF-positive nerve fibers. The study group consisted of 113 Caucasian patients with symptomatic lumbosacral discopathy (confirmed by a specialist surgeon), an indication for surgical treatment. The control group included 81 people who underwent postmortem examination. GAP-43 and GDNF concentrations were significantly higher in IVD samples from the study group compared with the control group, and the highest concentrations were observed in the degenerated IVDs that were graded 4 on the Pfirrmann scale. In the case of GAP-43, it was found that as the degree of IVD degeneration increased, the number of GAP-43-positive nerve fibers decreased. In the case of GDNF, the greatest number of fibers per mm2 of surface area was found in the IVD samples graded 3 on the Pfirrmann scale, and the number was found to be lower in samples graded 4 and 5. Hence, GAP-43 and GDNF are promising targets for analgesic treatment of degenerative IVD disease of the lumbosacral region of the spine.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Marcin Gralewski
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Michał Garczarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Marcin Gadzieliński
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, 49613Medical University of Silesia, Katowice, Poland.,Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, Jastrzębie-Zdrój, Poland
| | - Dawid Sobański
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland.,Department of Neurosurgery, Szpital sw Rafala w Krakowie, Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | | | | |
Collapse
|
26
|
Embryology and anatomy of Hirschsprung disease. Semin Pediatr Surg 2022; 31:151227. [PMID: 36417785 DOI: 10.1016/j.sempedsurg.2022.151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bowel has its own elegant nervous system - the enteric nervous system (ENS) which is a complex network of neurons and glial clones. Derived from neural crest cells (NCCs), this little brain controls muscle contraction, motility, and bowel activities in response to stimuli. Failure of developing enteric ganglia at the distal bowel results in intestinal obstruction and Hirschsprung disease (HSCR). This Review summarises the important embryological development of the ENS including proliferation, migration, and differentiation of NCCs. We address the signalling pathways which determine NCC cell fate and discuss how they are altered in the context of HSCR. Finally, we outline the anatomical defects and the mechanisms underlying gut motility in HSCR.
Collapse
|
27
|
Mao J, Liu P, Han W, Mo R, Guo S, Sun J. The Influence of GFRαl Inhibition on Proliferation and Apoptosis of Spermatogenic Cells. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
RET rearrangements in non-small cell lung cancer: Evolving treatment landscape and future challenges. Biochim Biophys Acta Rev Cancer 2022; 1877:188810. [DOI: 10.1016/j.bbcan.2022.188810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
|
29
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
30
|
Yu ZY, Li HJ, Wang M, Luo WZ, Xue YK. GDNF regulates lipid metabolism and glioma growth through RET/ERK/HIF‑1/SREBP‑1. Int J Oncol 2022; 61:109. [PMID: 35894143 PMCID: PMC9436484 DOI: 10.3892/ijo.2022.5399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer cells rewire their metabolism to meet the demands of growth and survival and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. However, the respective mechanisms remain elusive and the contribution of aberrant lipid metabolism to the malignant phenotypes of glioma are unclear. The present study demonstrated that glial‑derived neurotrophic factor (GDNF) is highly expressed in glioma and associated with poor clinical outcomes. In addition, there was a significant correlation between GDNF/rearranged during transfection (RET)/ERK signaling and sterol regulatory element‑binding protein‑1 (SREBP‑1) expression in glioma cells. Pharmacological or genetic inhibition of GDNF‑induced RET/ERK activity downregulated SREBP‑1 expression and SREBP‑1‑mediated transcription of lipogenic genes. Additionally, GDNF regulated SREBP‑1 activity by promoting hypoxia‑inducible factor‑1α (HIF‑1α) mediated glucose absorption and hexosamine biosynthetic pathway mediated SREBP cleavage‑activating protein N‑glycosylation. In addition, the inhibition of SREBP‑1 reduced the in vitro GDNF‑induced glioma cell proliferation. The results elucidated the complex relationship between GDNF/RET/ERK signaling and dysregulated glycolipid‑metabolism, which shows great potential to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.
Collapse
Affiliation(s)
- Zhi-Yun Yu
- Correspondence to: Dr Zhi-Yun Yu or Dr Ya-Ke Xue, Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Road, Zhengzhou, Henan 450000, P.R. China, E-mail: E-mail:
| | | | - Meng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wen-Zheng Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ya-Ke Xue
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
31
|
Reawakening GDNF's regenerative past in mice and humans. Regen Ther 2022; 20:78-85. [PMID: 35509264 PMCID: PMC9043678 DOI: 10.1016/j.reth.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
The ability of an animal to regenerate lost tissue and body parts has obviously life-saving implications. Understanding how this ability became restricted or active in specific animal lineages will help us understand our own regeneration. According to phylogenic analysis, the glial cell line-derived neurotrophic factor (GDNF) signaling pathway, but not other family members, is conserved in axolotls, a salamander with remarkable regenerative capacity. Furthermore, comparing the pro-regenerative Spiny mouse to its less regenerative descendant, the House mouse, revealed that the GDNF signaling pathway, but not other family members, was induced in regenerating Spiny mice. According to GDNF receptor expression analysis, GDNF may promote hair follicle neogenesis – an important feature of skin regeneration – by determining the fate of dermal fibroblasts as part of new hair follicles. These findings support the idea that GDNF treatment will promote skin regeneration in humans by demonstrating the GDNF signaling pathway's ancestral and cellular nature. In pro-regenerative axolotls, the GDNF-GFR□1 signaling system is conserved. In pro-regenerative Spiny mice, the GDNF-GFR□1 signaling system is activated. In mice, GDNF targets upper-regeneration-competent dermal fibroblasts. GDNF-GFR□1 activation may promote skin regeneration in mice and humans.
Collapse
|
32
|
Ke N, Chen L, Liu Q, Xiong H, Chen X, Zhou X. Downregulation of miR-211-5p Promotes Carboplatin Resistance in Human Retinoblastoma Y79 Cells by Affecting the GDNF-LIF Interaction. Front Oncol 2022; 12:848733. [PMID: 35311096 PMCID: PMC8925320 DOI: 10.3389/fonc.2022.848733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the role of the miR-211-5p-GDNF signaling pathway in carboplatin resistance of retinoblastoma Y79 cells and what factors it may be affected by. Methods A carboplatin-resistant retinoblastoma cell line (Y79R) was established in vitro. RNA-seq and microRNA-seq were constructed between Y79 and Y79R cells. RNA interference, RT-PCR, Western blot (WB), and flow cytometry were used to verify the expression of genes and proteins between the two cell lines. The TargetScan database was used to predict the microRNAs that regulate the target genes. STING sites and Co-Immunoprecipitation (COIP) were used to study protein–protein interactions. Results GDNF was speculated to be the top changed gene in the drug resistance in Y79R cell lines. Moreover, the speculation was verified by subsequent RT-PCR and WB results. When the expression of GDNF was knocked down, the IC50 of the Y79R cell line significantly reduced. GDNF was found to be the target gene of miR-211-5p. Downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells. MiR-211-5p can regulate the expression of GDNF. Our further research also found that GDNF can bind to LIF which is also a secreted protein. Conclusion Our results suggest that downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells, and this process can be affected by GDNF–LIF interaction. These results can provide evidence for the reversal of drug resistance of RB.
Collapse
Affiliation(s)
- Ning Ke
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haibo Xiong
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinke Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconj J 2022; 39:27-38. [PMID: 35064857 PMCID: PMC8979868 DOI: 10.1007/s10719-021-10019-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson’s disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson’s disease etiology and progression.
Collapse
|
34
|
Molecular Testing and Treatment Strategies in RET-Rearranged NSCLC Patients: Stay on Target to Look Forward. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RET alterations are recognized as key oncogenic drivers in different cancer types, including non-small cell lung cancer (NSCLC). Multikinase inhibitors (MKIs) with anti-RET activities resulted in variable efficacy with significant toxicities because of low target specificity. Selective RET kinase inhibitors, such as pralsetinib and selepercatinib, demonstrated high efficacy and favorable tolerability in advanced RET-rearranged NSCLC patients, leading to their introduction in the clinical setting. Among the different approaches available for the identification of RET rearrangements, next-generation sequencing (NGS) assays present substantial advantages in terms of turnaround time and diagnostic accuracy, even if potentially limited by accessibility issues. The recent advent of novel effective targeted therapies raises several questions regarding the emergence of resistance mechanisms and the potential ways to prevent/overcome them. In this review, we discuss molecular testing and treatment strategies to manage RET fusion positive NSCLC patients with a focus on resistance mechanisms and future perspectives in this rapidly evolving scenario.
Collapse
|
35
|
TAKAHASHI M. RET receptor signaling: Function in development, metabolic disease, and cancer. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:112-125. [PMID: 35283407 PMCID: PMC8948417 DOI: 10.2183/pjab.98.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The RET proto-oncogene encodes a receptor tyrosine kinase whose alterations are responsible for various human cancers and developmental disorders, including thyroid cancer, non-small cell lung cancer, multiple endocrine neoplasia type 2, and Hirschsprung's disease. RET receptors are physiologically activated by glial cell line-derived neurotrophic factor (GDNF) family ligands that bind to the coreceptor GDNF family receptor α (GFRα). Signaling via the GDNF/GFRα1/RET ternary complex plays crucial roles in the development of the enteric nervous system, kidneys, and urinary tract, as well as in the self-renewal of spermatogonial stem cells. In addition, another ligand, growth differentiation factor-15 (GDF15), has been shown to bind to GFRα-like and activate RET, regulating body weight. GDF15 is a stress response cytokine, and its elevated serum levels affect metabolism and anorexia-cachexia syndrome. Moreover, recent development of RET-specific kinase inhibitors contributed significantly to progress in the treatment of patients with RET-altered cancer. This review focuses on the broad roles of RET in development, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Masahide TAKAHASHI
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi, Japan
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
36
|
Mechanistic Insight from Preclinical Models of Parkinson's Disease Could Help Redirect Clinical Trial Efforts in GDNF Therapy. Int J Mol Sci 2021; 22:ijms222111702. [PMID: 34769132 PMCID: PMC8583859 DOI: 10.3390/ijms222111702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by four pathognomonic hallmarks: (1) motor and non-motor deficits; (2) neuroinflammation and oxidative stress; (3) pathological aggregates of the α-synuclein (α-syn) protein; (4) neurodegeneration of the nigrostriatal system. Recent evidence sustains that the aggregation of pathological α-syn occurs in the early stages of the disease, becoming the first trigger of neuroinflammation and subsequent neurodegeneration. Thus, a therapeutic line aims at striking back α-synucleinopathy and neuroinflammation to impede neurodegeneration. Another therapeutic line is restoring the compromised dopaminergic system using neurotrophic factors, particularly the glial cell-derived neurotrophic factor (GDNF). Preclinical studies with GDNF have provided encouraging results but often lack evaluation of anti-α-syn and anti-inflammatory effects. In contrast, clinical trials have yielded imprecise results and have reported the emergence of severe side effects. Here, we analyze the discrepancy between preclinical and clinical outcomes, review the mechanisms of the aggregation of pathological α-syn, including neuroinflammation, and evaluate the neurorestorative properties of GDNF, emphasizing its anti-α-syn and anti-inflammatory effects in preclinical and clinical trials.
Collapse
|
37
|
Muzyka VV, Badea TC. Genetic interplay between transcription factor Pou4f1/Brn3a and neurotrophin receptor Ret in retinal ganglion cell type specification. Neural Dev 2021; 16:5. [PMID: 34548095 PMCID: PMC8454062 DOI: 10.1186/s13064-021-00155-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined. Methods Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development. Results We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs. Conclusions Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00155-z.
Collapse
Affiliation(s)
- Vladimir Vladimirovich Muzyka
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA. .,Institute of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia.
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA. .,Research and Development Institute, School of Medicine, Transilvania University of Brasov, Brasov, Romania.
| |
Collapse
|
38
|
Roles of Enteric Neural Stem Cell Niche and Enteric Nervous System Development in Hirschsprung Disease. Int J Mol Sci 2021; 22:ijms22189659. [PMID: 34575824 PMCID: PMC8465795 DOI: 10.3390/ijms22189659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
The development of the enteric nervous system (ENS) is highly modulated by the synchronized interaction between the enteric neural crest cells (ENCCs) and the neural stem cell niche comprising the gut microenvironment. Genetic defects dysregulating the cellular behaviour(s) of the ENCCs result in incomplete innervation and hence ENS dysfunction. Hirschsprung disease (HSCR) is a rare complex neurocristopathy in which the enteric neural crest-derived cells fail to colonize the distal colon. In addition to ENS defects, increasing evidence suggests that HSCR patients may have intrinsic defects in the niche impairing the extracellular matrix (ECM)-cell interaction and/or dysregulating the cellular niche factors necessary for controlling stem cell behaviour. The niche defects in patients may compromise the regenerative capacity of the stem cell-based therapy and advocate for drug- and niche-based therapies as complementary therapeutic strategies to alleviate/enhance niche-cell interaction. Here, we provide a summary of the current understandings of the role of the enteric neural stem cell niche in modulating the development of the ENS and in the pathogenesis of HSCR. Deciphering the contribution of the niche to HSCR may provide important implications to the development of regenerative medicine for HSCR.
Collapse
|
39
|
|
40
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
41
|
Liu L, Zhao L, Zhang J, Song G, Shields CL, Wei R. Aberrantly expressed GFRα-1/RET in patients with lacrimal adenoid cystic carcinoma is associated with high recurrence risk: a retrospective study of 51 LACC cases. Cancer Biol Med 2021; 18:199-205. [PMID: 33628594 PMCID: PMC7877180 DOI: 10.20892/j.issn.2095-3941.2020.0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Because of the poor prognosis of lacrimal adenoid cystic carcinoma (LACC), we aimed to investigate the effects of perineural invasion (PNI) and consequent aberrations in GDNF/GFRα-1/RET protein expression on LACC recurrence. Methods: Clinicopathological data for 51 histologically confirmed patients with LACC enrolled between 2001 and 2017 were retrospectively analyzed. Hematoxylin and eosin staining was applied to assess PNI. Tissue-based immunohistochemistry (IHC) detection of GDNF, GFRα-1, and RET proteins was performed on LACC formalin-fixed, paraffin-embedded specimens. We generated semi-quantitative data of the IHC results and compared them with the clinicopathological data for the 51 patients. Results: Of the 51 patients, 19 (37.3%) were PNI positive. Recurrence was more common for LACC with than without PNI (73.7% vs. 37.5%, P = 0.01). GDNF, GFRα-1, and RET proteins were expressed in 62.7%, 62.7%, and 54.9% of the 51 patients with LACC, respectively. The expression of all 3 proteins was more common in patients with than without PNI. In agreement with previous findings, PNI-associated GFRα-1 and RET positivity, as detected by IHC, remained significantly associated with recurrence, whereas GDNF expression, as detected by IHC, was not correlated with LACC recurrence. Specifically, patients with concurrent GFRα-1 and RET expression may have a high risk of PNI (89.5% positivity rate) and recurrence (84.2% positivity rate). Conclusions: PNI may contribute to LACC recurrence. The concurrent expression of GFRα-1 and RET proteins, as detected by IHC, may potentially be associated with LACC PNI and recurrence.
Collapse
Affiliation(s)
- Lin Liu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Liqiong Zhao
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Jie Zhang
- Tianjin Orbit Institute, Ophthalmology Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guoxiang Song
- Tianjin Orbit Institute, Ophthalmology Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia 19107, PA, USA
| | - Ruihua Wei
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
42
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Okafor C, Hogan J, Raygada M, Thomas BJ, Akshintala S, Glod JW, Del Rivero J. Update on Targeted Therapy in Medullary Thyroid Cancer. Front Endocrinol (Lausanne) 2021; 12:708949. [PMID: 34489865 PMCID: PMC8416904 DOI: 10.3389/fendo.2021.708949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that accounts for 2-4% of all thyroid cancers. All inherited MTC and approximately 50% of sporadic cases are driven by mutations in the REarranged during Transfection (RET) proto-oncogene. The recent expansion of the armamentarium of RET-targeting tyrosine kinase inhibitors (TKIs) has provided effective options for systemic therapy for patients with metastatic and progressive disease. However, patients that develop resistant disease as well as those with other molecular drivers such as RAS have limited options. An improved understanding of mechanisms of resistance to TKIs as well as identification of novel therapeutic targets is needed to improve outcomes for patients with MTC.
Collapse
Affiliation(s)
- Christian Okafor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Julie Hogan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Barbara J. Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Jaydira Del Rivero,
| |
Collapse
|