1
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
2
|
Nehmeh B, Rebehmed J, Nehmeh R, Taleb R, Akoury E. Unlocking therapeutic frontiers: harnessing artificial intelligence in drug discovery for neurodegenerative diseases. Drug Discov Today 2024; 29:104216. [PMID: 39428082 DOI: 10.1016/j.drudis.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Neurodegenerative diseases (NDs) pose serious healthcare challenges with limited therapeutic treatments and high social burdens. The integration of artificial intelligence (AI) into drug discovery has emerged as a promising approach to address these challenges. This review explores the application of AI techniques to unravel therapeutic frontiers for NDs. We examine the current landscape of AI-driven drug discovery and discuss the potentials of AI in accelerating the identification of novel therapeutic targets on ND research and drug development, optimization of drug candidates, and expediating personalized medicine approaches. Finally, we outline future directions and challenges in harnessing AI for the advancement of therapeutics in this critical area by emphasizing the importance of interdisciplinary collaboration and ethical considerations.
Collapse
Affiliation(s)
- Bilal Nehmeh
- Department of Physical Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Joseph Rebehmed
- Department of Computer Science and Mathematics, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Riham Nehmeh
- INSA Rennes, Institut d'électronique et de Télécommunications de Rennes IETR, UMR 6164, 35708 Rennes, France
| | - Robin Taleb
- Department of Physical Sciences, Lebanese American University, Byblos Campus, Blat, 4M8F+6QF, Lebanon
| | - Elias Akoury
- Department of Physical Sciences, Lebanese American University, Beirut 1102-2801, Lebanon.
| |
Collapse
|
3
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
4
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023; 28:6446. [PMID: 37764220 PMCID: PMC10537474 DOI: 10.3390/molecules28186446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
6
|
New developments in prion disease research. Cell Tissue Res 2023; 392:1-5. [PMID: 36918429 DOI: 10.1007/s00441-023-03760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Jheng CP, Lee CI. Combination of structure-based virtual screening, molecular docking and molecular dynamics approaches for the discovery of anti-prion fibril flavonoids. Front Mol Biosci 2023; 9:1088733. [PMID: 36685276 PMCID: PMC9849400 DOI: 10.3389/fmolb.2022.1088733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Prion diseases are a group of rare neurodegenerative diseases caused by the structural conversion of cellular prion into Scrapie prion resulting aggregated fibrils. Therapy of prion diseases has been developed for several decades, especially drug designs based on the structure of prion monomers. Unfortunately, none of the designed anti-prion drugs function well clinically. To fight against prion fibrils, a drug design based on the precise structure of mammalian prion fibrils is highly required. Fortunately, based on the advantage of newly advanced cryo-electron microscopy (cryo-EM) in the deconvolution of large complexes, three prion fibril structures were resolved in the last 2 years. Based on the cryo-EM solved prion fibril structures, we are able to find some molecules fighting against prion fibrils. Quercetin, one flavonoid molecule in the polyphenol group, has been found to disaggregate the prion fibrils in vitro. In this study, we performed the molecular docking and molecular dynamics simulation on quercetin-like molecules possessing pharmacological properties to evaluate the anti-prion ability of tested molecules. As a result, four quercetin-like molecules interact with prion fibril and decrease the β-strand content by converting some β-strands into loop and helical structures to disintegrate the existing fibril structure. The results of this study are significant in the treatment of prion diseases, and the approaches used in this study are applicable to other amyloid diseases.
Collapse
Affiliation(s)
- Cheng-Ping Jheng
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Cheng-I Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan,Center for Nano Bio-Detections, National Chung Cheng University, Chia-Yi, Taiwan,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chia-Yi, Taiwan,*Correspondence: Cheng-I Lee,
| |
Collapse
|
8
|
Kim S, Kim DK, Jeong S, Lee J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:5894. [PMID: 35682574 PMCID: PMC9180188 DOI: 10.3390/ijms23115894] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent pathological feature of neurodegenerative diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an impairment in proteostasis. Recent studies have suggested a close association between endoplasmic reticulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, amyotrophic lateral sclerosis, and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies. Thus, activating certain UPR components has been shown to alleviate ER stress and its associated neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER stress and its related neurodegenerations should be understood to develop effective therapeutics against aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the development of small molecules that selectively target individual UPR components and address ER stress in general.
Collapse
Affiliation(s)
- Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Doo Kyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Seho Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|