1
|
Ma W, Yang JW, Zhang T, Weng XH, Shen L, Zhao SH, He Y, Wu ZZ, Li FF, Shang Y, Guo JH, Li LY. The differentiation of glial precursors into neuronal-like cells through the Wnt and Neurotrophin signaling pathways via Ctnnβ1. Biotech Histochem 2025; 100:216-228. [PMID: 40302649 DOI: 10.1080/10520295.2025.2489499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Glial precursor cells are among the major types of glia in the dorsal root ganglias (DRGs) of the peripheral nervous system. Previous studies have shown that the transdifferentiation of DRGs-derived glial precursor cells contributes to peripheral neurogenesis. In the present study, we investigated the mRNA expression profiles and examined the effects of differential expression mRNAs (DEMs) during the differentiation of glial precursor cells derived from the rat DRGs. We characterized glial precursor cells derived from rat DRGs explants using immunofluorescence. Sequencing was subsequently conducted, followed by enrichment analysis utilizing gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The identified genes were subsequently subjected to protein-protein interaction (PPI) network analysis during the differentiation process of glial precursor cells derived from the rat DRGs. The establishment of a sciatic nerve injury (SNI) model was followed by the detection of the expression of key genes in the Wnt and Neurotrophin pathways in the DRGs of SNI rats via qRT-PCR. Additionally, the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was employed to assess apoptosis in the DRGs. We detected the mRNA expression profiles during the neuronal differentiation of rat DRGs-derived glial precursor cells. More DEMs and GO terms were detected on the third day of DRGs-derived glial precursor cells transdifferentiation, accompanied by morphological alterations in the cells; that is, some cells presented neuronal-like phenotypic characteristics (the early neuronal marker Tuj1 was positive). KEGG enrichment and PPI network analyses revealed that Wnt and Neurotrophin pathways play crucial roles in the process of glial precursor cell differentiation into neuronal-like cells. After knocking down cadherin-associated protein beta 1 (Ctnnβ1) in the SNI model, the number of apoptotic cells was significantly reduced, and the expression of Wnt4 and Ntrk3 was significantly increased. The Ctnnβ1 gene may be a crosstalk factor between the Wnt and Neurotrophin pathways that negatively regulates the differentiation of glial precursor cells.
Collapse
Affiliation(s)
- W Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - J W Yang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - T Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - X H Weng
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - L Shen
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - S H Zhao
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Y He
- Gastroenterology Department, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Z Z Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - F F Li
- Gastroenterology Department, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Y Shang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - J H Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - L Y Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Sirinoglu D, Sarigul B, Kanat A, Aydin MD, Demirtas R. Interaction between Neurogenic Pulmonary Edema and Thoracic 3 DRG Degeneration Following Spinal Subarachnoid Hemorrhage: First Experimental Study. J Neurol Surg A Cent Eur Neurosurg 2025; 86:265-271. [PMID: 38154469 DOI: 10.1055/a-2235-8556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
BACKGROUND Neurogenic pulmonary edema (NPE) following subarachnoid hemorrhage (SAH) is still one of the most catastrophic complications with high morbidity and mortality rates. Systemic sympathetic hyperactivity has been considered in the pathogenesis, but it has not been clarified. In this study, we investigate the relationship between the degeneration of the T3 dorsal root ganglion (DRG) and the development of NPE following spinal SAH. METHODS The study was conducted on 23 rabbits. Five rabbits were used as the control group, 5 as the sham group (n = 5), and 13 as the study group. The correlation between the degenerated neuronal densities of the T3 nerve axons and neurons in the DRG and NPE scores was analyzed statistically. RESULTS A correlation between the neuronal degeneration of the T3 nerve, its DRG, and high NPE scores was found in the study group and the sham group. Massive NPE was detected in the study group along with neural degeneration of T3 axons and ganglia. CONCLUSION The present study indicates that NPE and pulmonary artery vasospasm can be prevented by reducing T3 DRG degeneration.
Collapse
Affiliation(s)
- Deniz Sirinoglu
- Department of Neurosurgery, Ok Meydani Education and Research Hospital, Istanbul, Turkey
| | - Buse Sarigul
- Department of Neurosurgery, Tuzla Government Hospital, Tuzla Istanbul, Turkey
| | - Ayhan Kanat
- Department of Neurosurgery, Recep Tayyip Erdogan University, Medical Faculty, Rize, Turkey
| | - Mehmet Dumlu Aydin
- Department of Neurosurgery, Ataturk University Medical Faculty, Erzurum, Turkey
| | - Rabia Demirtas
- Department of Pathology, Ataturk University Medical Faculty, Erzurum, Turkey
| |
Collapse
|
3
|
Jia R, Wan L, Jin L, Tian Q, Chen Y, Zhu X, Zhang M, Zhang Y, Zong L, Wu X, Miao C, Cai Y, Ma J, Hu L, Liu WT. Fucoidan reduces NET accumulation and alleviates chemotherapy-induced peripheral neuropathy via the gut-blood-DRG axis. J Neuroinflammation 2025; 22:100. [PMID: 40186245 PMCID: PMC11969723 DOI: 10.1186/s12974-025-03431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse reaction to chemotherapy with limited treatment options. Research has indicated that neutrophil extracellular traps (NETs) are critical for the pathogenesis of CIPN. LPS/HMGB1 serve as important inducers of NETs. Here, we aimed to target the inhibition of NET formation (NETosis) to alleviate CIPN. METHODS Oxaliplatin (L-OHP) was used to establish a CIPN model. The mice were pretreated with fucoidan to investigate the therapeutic effect. SR-A1-/- mice were used to examine the role of scavenger receptor A1 (SR-A1) in CIPN. Bone marrow-derived macrophages (BMDMs) isolated from SR-A1-/- mice and WT mice were used to investigate the mechanism by which macrophage phagocytosis of NETs alleviates CIPN. RESULTS Clinically, we found that the contents of LPS, HMGB1 and NETs in the plasma of CIPN patients were significantly increased and positively correlated with the VAS score. Fucoidan decreased the LPS/HMGB1/NET contents and relieved CIPN in mice. Mechanistically, fucoidan upregulated SR-A1 expression and promoted the phagocytosis of LPS/HMGB1 by BMDMs. Fucoidan also facilitated the engulfment of NETs by BMDMs via the recognition and localization of SR-A1 and HMGB1. The therapeutic effects of fucoidan were abolished by SR-A1 knockout. RNA-seq analysis revealed that fucoidan increased sqstm1 (p62) gene expression. Fucoidan promoted the competitive binding of sqstm1 and Nrf2 to Keap1, increasing Nrf2 nuclear translocation and SR-A1 transcription. Additionally, the sequencing analysis (16 S) of microbial diversity revealed that fucoidan increased the gut microbiota diversity and abundance and increased the Bacteroides/Firmicutes ratio. CONCLUSIONS Altogether, fucoidan promotes the SR-A1-mediated phagocytosis of LPS/HMGB1/NETs and maintains gut microbial homeostasis, which may provide a potential therapeutic strategy for CIPN.
Collapse
Affiliation(s)
- Rumeng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Li Wan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qingyan Tian
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yongyi Chen
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Xia Zhu
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China
| | - Mengyao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yajie Zhang
- Central Laboratory, Department of Biobank, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Lijuan Zong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Cai
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianxin Ma
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China.
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
4
|
Kuete CF, Granja-Vazquez R, Truong V, Walsh P, Price T, Biswas S, Dussor G, Pancrazio J, Kolber B. Profiling Human iPSC-Derived Sensory Neurons for Analgesic Drug Screening Using a Multi-Electrode Array. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623405. [PMID: 39605708 PMCID: PMC11601878 DOI: 10.1101/2024.11.18.623405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic pain is a major global health issue, yet effective treatments are limited by poor translation from preclinical studies to humans. To address this, we developed a high-content screening (HCS) platform for analgesic discovery using hiPSC-derived nociceptors. These cells were cultured on multi-well micro-electrode arrays to monitor activity, achieving nearly 100% active electrodes by week two, maintaining stable activity for at least two weeks. After maturation (28 days), we exposed the nociceptors to various drugs, assessing their effects on neuronal activity, with excellent assay performance (Z' values >0.5). Pharmacological tests showed responses to analgesic targets, including ion channels (Nav, Cav, Kv, TRPV1), neurotransmitter receptors (AMPAR, GABA-R), and kinase inhibitors (tyrosine, JAK1/2). Transcriptomic analysis confirmed the presence of these drug targets, although expression levels varied compared to primary human dorsal root ganglion cells. This HCS platform facilitates the rapid discovery of novel analgesics, reducing the risk of preclinical-to-human translation failure. Motivation Chronic pain affects approximately 1.5 billion people worldwide, yet effective treatments remain elusive. A significant barrier to progress in analgesic drug discovery is the limited translation of preclinical findings to human clinical outcomes. Traditional rodent models, although widely used, often fail to accurately predict human responses, while human primary tissues are limited by scarcity, technical difficulties, and ethical concerns. Recent advancements have identified human induced pluripotent stem cell (hiPSC)-derived nociceptors as promising alternatives; however, current differentiation protocols produce cells with inconsistent and physiologically questionable phenotypes.To address these challenges, our study introduces a novel high-content screening (HCS) platform using hiPSC-derived nociceptors cultured on multi-well micro-electrode arrays (MEAs). The "Anatomic" protocol, used to generate these nociceptors, ensures cells with transcriptomic profiles closely matching human primary sensory neurons. Our platform achieves nearly 100% active electrode yield within two weeks and demonstrates sustained, stable activity over time. Additionally, robust Z' factor analysis (exceeding 0.5) confirms the platform's reliability, while pharmacological validation establishes the functional expression of critical analgesic targets. This innovative approach improves both the efficiency and clinical relevance of analgesic drug screening, potentially bridging the translational gap between preclinical studies and human clinical trials, and offering new hope for effective pain management.
Collapse
|
5
|
Haberberger RV, Matusica D, Shiers S, Sankaranarayanan I, Price TJ. Transcriptomic and histological characterization of telocytes in the human dorsal root ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614693. [PMID: 39386553 PMCID: PMC11463542 DOI: 10.1101/2024.09.24.614693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Telocytes are interstitial cells with long processes that cover distances in tissues and likely coordinate interacts with other cell types. Though present in central and peripheral neuronal tissues, their role remains unclear. Dorsal root ganglia (DRG) house pseudounipolar afferent neurons responsible for signals such as temperature, proprioception and nociception. This study aimed to investigate the presence and function of telocytes in human DRG by investigating their transcriptional profile, location and ultrastructure. Sequencing data revealed CD34 and PDGFRA expressing cells comprise roughly 1.5-3% of DRG cells. Combined expression of CD34 and PDGFRA is a putative marker gene set for telocytes. Further analysis identified nine subclusters with enriched cluster-specific genes. KEGG and GO pathway analysis suggested vascular, immune and connective tissue associated putative telocyte subtypes. Over 3000 potential receptor-ligand interactions between sensory neurons and these CD34 and PDGFRA expressing putative telocytes were identified using a ligand-receptors interactome platform. Immunohisto-chemistry showed CD34+ telocytes in the endoneural space of DRGs, next to neuron-satellite complexes, in perivascular spaces and in the endoneural space between nerve fibre bundles, consistent with pathway analysis. Transmission electron microscopy (TEM) confirmed their location identifying characteristic elongated nucleus, long and thin telopods containing vesicles, surrounded by a basal lamina. This is the first study that provides gene expression analysis of telocytes in complex human tissue such as the DRG, highlighting functional differences based on tissue location with no significant ultrastructural variation.
Collapse
Affiliation(s)
- Rainer V Haberberger
- Department of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Dusan Matusica
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| |
Collapse
|
6
|
Álvarez-Tosco K, González-Fernández R, González-Nicolás MÁ, Martín-Ramírez R, Morales M, Gutiérrez R, Díaz-Flores L, Arnau MR, Machín F, Ávila J, Lázaro A, Martín-Vasallo P. Dorsal root ganglion inflammation by oxaliplatin toxicity: DPEP1 as possible target for peripheral neuropathy prevention. BMC Neurosci 2024; 25:44. [PMID: 39278931 PMCID: PMC11403972 DOI: 10.1186/s12868-024-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Peripheral neuropathy (PN) constitutes a dose-limiting side effect of oxaliplatin chemotherapy that often compromises the efficacy of antineoplastic treatments. Sensory neurons damage in dorsal root ganglia (DRG) are the cellular substrate of PN complex molecular origin. Dehydropeptidase-1 (DPEP1) inhibitors have shown to avoid platin-induced nephrotoxicity without compromising its anticancer efficiency. The objective of this study was to describe DPEP1 expression in rat DRG in health and in early stages of oxaliplatin toxicity. To this end, we produced and characterized anti-DPEP1 polyclonal antibodies and used them to define the expression, and cellular and subcellular localization of DPEP1 by immunohistochemical confocal microscopy studies in healthy controls and short term (six days) oxaliplatin treated rats. RESULTS DPEP1 is expressed mostly in neurons and in glia, and to a lesser extent in endothelial cells. Rats undergoing oxaliplatin treatment developed allodynia. TNF-𝛼 expression in DRG revealed a pattern of focal and at different intensity levels of neural cell inflammatory damage, accompanied by slight variations in DPEP1 expression in endothelial cells and in nuclei of neurons. CONCLUSIONS DPEP1 is expressed in neurons, glia and endothelial cells of DRG. Oxaliplatin caused allodynia in rats and increased TNF-α expression in DRG neurons. The expression of DPEP1 in neurons and other cells of DRG suggest this protein as a novel strategic molecular target in the prevention of oxaliplatin-induced acute neurotoxicity.
Collapse
Affiliation(s)
- Karen Álvarez-Tosco
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Departamento de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Ángeles González-Nicolás
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Departamento de Oncología Médica, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Ricardo Gutiérrez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Lucio Díaz-Flores
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario y Animalario del Servicio General de Apoyo a la Investigación (SEGAI), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Alberto Lázaro
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
7
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Liu Y, Gao H, Shang Y, Sun S, Guan W, Zheng T, Wu L, Cong M, Zhang L, Li G. IKVAV functionalized oriented PCL/Fe 3O 4 scaffolds for magnetically modulating DRG growth behavior. Colloids Surf B Biointerfaces 2024; 239:113967. [PMID: 38761494 DOI: 10.1016/j.colsurfb.2024.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.
Collapse
Affiliation(s)
- Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yuqing Shang
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; The People's Hospital of Rugao, Affiliated Hospital of Nantong University, Nantong 226599, PR China
| | - Meng Cong
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Mecklenburg J, Shein SA, Malmir M, Hovhannisyan AH, Weldon K, Zou Y, Lai Z, Jin YF, Ruparel S, Tumanov AV, Akopian AN. Transcriptional profiles of non-neuronal and immune cells in mouse trigeminal ganglia. FRONTIERS IN PAIN RESEARCH 2023; 4:1274811. [PMID: 38028432 PMCID: PMC10644122 DOI: 10.3389/fpain.2023.1274811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Non-neuronal cells constitute 90%-95% of sensory ganglia. These cells, especially glial and immune cells, play critical roles in the modulation of sensory neurons. This study aimed to identify, profile, and summarize the types of trigeminal ganglion (TG) non-neuronal cells in naïve male mice using published and our own data generated by single-cell RNA sequencing, flow cytometry, and immunohistochemistry. TG has five types of non-neuronal cells, namely, glial, fibroblasts, smooth muscle, endothelial, and immune cells. There is an agreement among publications for glial, fibroblasts, smooth muscle, and endothelial cells. Based on gene profiles, glial cells were classified as myelinated and non-myelinated Schwann cells and satellite glial cells. Mpz has dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2+ fibroblasts located throughout TG were distinguished. TG smooth muscle and endothelial cells in the blood vessels were detected using well-defined markers. Our study reported three types of macrophages (Mph) and four types of neutrophils (Neu) in TG. Mph were located in the neuronal bodies and nerve fibers and were sub-grouped by unique transcriptomic profiles with Ccr2, Cx3cr1, and Iba1 as markers. A comparison of databases showed that type 1 Mph is similar to choroid plexus-low (CPlo) border-associated Mph (BAMs). Type 2 Mph has the highest prediction score with CPhi BAMs, while type 3 Mph is distinct. S100a8+ Neu were located in the dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r, Ly6G, Ngp, Elane, and Mpo. Integrative analysis of published datasets indicated that Neu-1, Neu-2, and Neu-3 are similar to the brain Neu-1 group, while Neu-4 has a resemblance to the monocyte-derived cells. Overall, the generated and summarized datasets on non-neuronal TG cells showed a unique composition of myeloid cell types in TG and could provide essential and fundamental information for studies on cell plasticity, interactomic networks between neurons and non-neuronal cells, and function during a variety of pain conditions in the head and neck regions.
Collapse
Affiliation(s)
- Jennifer Mecklenburg
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Sergey A. Shein
- Microbiology, Immunology & Molecular Genetics Departments, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Mostafa Malmir
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX, United States
| | - Anahit H. Hovhannisyan
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Korri Weldon
- Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Yi Zou
- Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Zhao Lai
- Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States
- Greehey Children’s Cancer Research Institute, UTHSCSA, San Antonio, TX, United States
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX, United States
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Alexei V. Tumanov
- Microbiology, Immunology & Molecular Genetics Departments, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Armen N. Akopian
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| |
Collapse
|
10
|
Mecklenburg J, Shein SA, Hovhannisyan AH, Zou Y, Lai Z, Ruparel S, Tumanov AV, Akopian AN. Transcriptional Profiles of Non-neuronal and Immune Cells in Mouse Trigeminal Ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553897. [PMID: 37645736 PMCID: PMC10462109 DOI: 10.1101/2023.08.18.553897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Non-neuronal cells constitute 90-95% of sensory ganglia. These cells play critical roles in modulation of nociceptive signal transmissions by sensory neurons. Accordingly, the aim of this review-study was to identify, profile and summarize TG non-neuronal cell types in naïve male mice using published and our own data generated by single-cell RNA sequencing (scRNA-seq), flow cytometry (FC) and immunohistochemistry (IHC). TG contains 5 types of non-neuronal cells: glial, fibroblasts, smooth muscle, endothelial and immune cells. There is agreement among publications for glial, fibroblasts, smooth muscle and endothelial cells. Based on gene profiles, glial cells were classified as Schwann cells and satellite glial cells (SGC). Mpz had dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2 + fibroblasts located throughout TG were distinguished using gene profiles. TG smooth muscle and endothelial cells representing blood vessels were detected with well recognized markers. Our study split reported single TG immune cell group into 3 types of macrophages and 4 types of neutrophils. Macrophages were located among neuronal bodies and nerve fibers, and were sub-grouped by unique transcriptomic profiles and using Ccr2 , Cx3cr1 and Iba1 as markers. S100a8 + neutrophils were located in dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r , Ly6G, Ngp, Elane and Mpo . Overall, generated and summarized here dataset on non-neuronal TG cells could provide essential and fundamental information for studies on cell plasticity, interactomic network between neurons and non-neuronal cells and function during variety of pain conditions in the head and neck region.
Collapse
|
11
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|