1
|
Stavtseva NA, Fielden LJ, Khokhlova IS, Krasnov BR. Fitness consequences of host colonization in two generalist fleas: Context-dependency and the effect of spatial co-occurrence. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:347-355. [PMID: 35324014 DOI: 10.1111/mve.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
We studied the fitness consequences of colonizing a novel host by experimental lines of fleas (Synosternus cleopatrae and Xenopsylla ramesis) maintained for 18-22 generations on the principal or novel (sympatric or allopatric) hosts via number, developmental success and size of the offspring of the fleas exploiting these hosts. We asked whether (a) fitness on non-principal hosts increases after prolonged maintenance; (b) the colonization success depends on the spatial co-occurrence of a flea and a host and (c) colonization of a novel host is accompanied by a decreased ability to exploit an original host. The ability of fleas to colonize novel hosts differed between species, with S. cleopatrae, but not X. ramesis, increasing its offspring production on novel hosts. Spatial co-occurrence did not affect colonization success. Maintenance on an alternative host was not accompanied by decreased adaptation to the original host. When fleas returned to the original host, their reproductive output was higher than that of their ancestors. We conclude that the success of colonizing a novel host is (a) context-dependent and varies between flea and host species and (b) not accompanied by the loss of ability to exploit an ancestral host but may lead to an increase in this ability.
Collapse
Affiliation(s)
- Nadezhda A Stavtseva
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Laura J Fielden
- Biology Department, School of Science and Mathematics, Truman State University, Kirksville, Missouri, USA
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
2
|
Khokhlova IS, van der Mescht L, Warburton EM, Stavtseva NA, Krasnov BR. Adaptation to a novel host and performance trade-off in host-generalist and host-specific insect ectoparasites. INSECT SCIENCE 2022; 29:567-580. [PMID: 34048132 DOI: 10.1111/1744-7917.12929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
We investigated the performance trade-offs of fleas (Siphonaptera) while adapting to a novel host using two host generalists (Xenopsylla conformis and Xenopsylla ramesis) and one host specialist (Parapulex chephrenis) maintained on their principal hosts (Meriones crassus for Xenopsylla and Acomys cahirinus for P. chephrenis). We asked whether, over generations, (i) a host generalist may become a specialist by evolving the ability to exploit a novel host and losing the ability to exploit an original host and (ii) a host specialist can become a generalist by evolving the ability to exploit a novel host without losing the ability to exploit an original host. We established an experimental line of each species on a novel host (Acomys russatus for Xenopsylla and M. crassus for P. chephrenis) and maintained this line on this host during 23 generations. We compared reproductive performance of progenitors of each line and their descendants when they exploited either original or novel host in terms of egg number and size, hatching success, offspring production, and offspring size. We found changes in performance over generations in female offspring size only. Xenopsylla conformis demonstrated a tendency to become a host specialist (increased performance on the novel host with a concomitant decreased performance on the original host), whereas P. chephrenis demonstrated a tendency to become a host generalist (increased performance on the novel host without a concomitant decreased performance on the original host). We conclude that the probability of generalist to specialist transition, and vice versa, is context-dependent and varies between species.
Collapse
Affiliation(s)
- Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Luther van der Mescht
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Present affiliation and address of Luther van der Mescht: Clinvet International, Uitzich Road, Bainsvlei, 9338 Bloemfontein, Free State, South Africa
| | - Elizabeth M Warburton
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Present affiliation and address of Elizabeth M. Warburton: Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, 203 D.W. Brooks Dr., Athens, GA, 30602, USA
| | - Nadezhda A Stavtseva
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
3
|
Manzoli DE, Saravia-Pietropaolo MJ, Arce SI, Percara A, Antoniazzi LR, Beldomenico PM. Specialist by preference, generalist by need: availability of quality hosts drives parasite choice in a natural multihost-parasite system. Int J Parasitol 2021; 51:527-534. [PMID: 33713648 DOI: 10.1016/j.ijpara.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Encountering suitable hosts is key for parasite success. A general assumption for disease transmission is that the contact of a parasite with a potential host is driven by the density or relative frequency of hosts. That assumption ignores the potential role of differential host attractiveness for parasites that can drive the encounter of hosts. It has been posited that hosts may be chosen by parasites as a function of their suitability, but the existing literature addressing that hypothesis is still very scarce. In a natural system involving a parasitic Philornis botfly and its multiple bird hosts, there are profound differences in host quality. The Great Kiskadee tolerates and does not invest in resisting the infection, which makes it an optimal host. Alternative hosts are frequently used, but whilst some of them may be good options, others are bad alternatives. Here we examined the host selection processes that drive parasite dynamics in this system with 8 years of data from a longitudinal study under natural conditions. We found that the use of an alternative host was not driven by its density or relative frequency, but instead selection of these hosts was strongly dependent on availability of more suitable hosts. When optimal hosts are plentiful, the parasite tends to ignore alternative ones. As broods of optimal hosts become limited, good alternative hosts are targeted. The parasite chooses bad alternative hosts only when better alternatives are not sufficiently available. These results add evidence from a natural system that some parasites choose their hosts as a function of their profitability, and show that host selection by this parasite is plastic and context-dependent. Such findings could have important implications for the epidemiology of some parasitic and vector-borne infections which should be considered when modelling and managing those diseases. The facultative host selection observed here can be of high relevance for public health, animal husbandry, and biodiversity conservation, because reductions in the richness of hosts might cause humans, domestic animals, or endangered species to become increasingly targeted by parasites that can drive the encounter of hosts.
Collapse
Affiliation(s)
- Darío Ezequiel Manzoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - María José Saravia-Pietropaolo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Sofía Irene Arce
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Alejandro Percara
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Leandro Raúl Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Pablo Martín Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina.
| |
Collapse
|
4
|
Alvarez-Baca JK, Alfaro-Tapia A, Lavandero B, Le Lann C, Van Baaren J. Suitability and Profitability of a Cereal Aphid for the Parasitoid Aphidius platensis in the Context of Conservation Biological Control of Myzus persicae in Orchards. INSECTS 2020; 11:insects11060381. [PMID: 32575581 PMCID: PMC7349642 DOI: 10.3390/insects11060381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
The use of cover crops can promote the abundance and early arrival of populations of natural enemies. Cereal cover crops between orchards rows could encourage the early arrival of the parasitoid Aphidius platensis, as they offer alternative winter hosts (e.g., Rhopalosiphum padi), enhancing the control of Myzus persicae in spring. However, the preference for and suitability of the alternative host must be addressed beforehand. To evaluate the potential of this strategy, we assessed host preference using behavioural choice tests, as well as no-choice tests measuring fitness traits, when developing on both host species. One source field for each aphid population from the above hosts was chosen. There was a clear choice for R. padi compared to M persicae, independently of the source, probably due to more defensive behaviours of M. persicae (i.e., kicks and escapes). Nevertheless, both aphid species were suitable for parasitoids’ development. The female progeny developed on R. padi were larger in size, irrespective of their origin. According to our results, in peach orchards with cereals sown between peach trees during the autumn, where we expect when R. padi populations will no longer be available during spring, A. platensis should be able to switch to M. persicae.
Collapse
Affiliation(s)
- Jeniffer K. Alvarez-Baca
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.K.A.-B.); (A.A.-T.)
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| | - Armando Alfaro-Tapia
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.K.A.-B.); (A.A.-T.)
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| | - Blas Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.K.A.-B.); (A.A.-T.)
- Correspondence: ; Tel.: +56-71-2200271
| | - Cécile Le Lann
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| | - Joan Van Baaren
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| |
Collapse
|
5
|
He J, He Y, Lai F, Chen X, Fu Q. Biological Traits of the Pincer Wasp Gonatopus Flavifemur (Esaki & Hashimoto) Associated with Different Stages of Its Host, the Brown Planthopper, Nilaparvata Lugens (Stål). INSECTS 2020; 11:E279. [PMID: 32370216 PMCID: PMC7290851 DOI: 10.3390/insects11050279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022]
Abstract
Gonatopus flavifemur (Esaki & Hashimoto) is a common parasitoid of the most important rice pest, the brown planthopper (BPH) Nilaparvata lugens (Stål), in eastern and southeastern Asia. We investigated the parasitism rates, feeding rates, and offspring development of G. flavifemur in association with five instars of BPH nymphs and male and female adults under laboratory conditions (27 ± 1 °C and 70 ± 5% Relative Humidity). The results showed that the life stage of the host significantly affects parasitism, host feeding, and offspring development by G. flavifemur. The parasitism rate was highest on 4th instar nymphs, and the feeding rate was highest on 1st instar nymphs. The cocooning rate on male adult BPHs was significantly lower than that on other stages; however, emergence rates did not significantly differ among the BPH stages. The rate of female offspring upon emergence from 5th instars was higher than other stages. Both the parasitism and host-feeding functional responses of G. flavifemur to different BPH stages fit well with Holling type II models, supporting the results of parasitism and feeding rates and indicating that G. flavifemur would be a good agent for BPH control. In conclusion, G. flavifemur prefers to feed on young nymphs but prefers to parasitize older nymphs. In addition, 5th instar nymphs are favorable to female offspring of the pincer wasp.
Collapse
Affiliation(s)
- Jiachun He
- Institute of Entomology, Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China;
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Y.H.); (F.L.)
| | - Yuting He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Y.H.); (F.L.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Y.H.); (F.L.)
| | - Xiangsheng Chen
- Institute of Entomology, Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China;
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Y.H.); (F.L.)
| |
Collapse
|
6
|
Manzoli DE, Saravia-Pietropaolo MJ, Antoniazzi LR, Barengo E, Arce SI, Quiroga MA, Beldomenico PM. Contrasting consequences of different defence strategies in a natural multihost-parasite system. Int J Parasitol 2018; 48:445-455. [PMID: 29391194 DOI: 10.1016/j.ijpara.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Hosts counteract infections using two distinct defence strategies, resistance (reduction in pathogen fitness) and tolerance (limitation of infection damage). These strategies have been minimally investigated in multi-host systems, where they may vary across host species, entailing consequences both for hosts (virulence) and parasites (transmission). Comprehending the interplay among resistance, tolerance, virulence and parasite success is highly relevant for our understanding of the ecology and evolution of infectious and parasitic diseases. Our work investigated the interaction between an insect parasite and its most common bird host species, focusing on two relevant questions: (i) are defence strategies different between main and alternative hosts and, (ii) what are the consequences (virulence and parasite success) of different defence strategies? We conducted a matched field experiment and longitudinal studies at the host and the parasite levels under natural conditions, using a system comprising Philornis torquans flies and three bird hosts - the main host and two of the most frequently used alternative hosts. We found that main and alternative hosts have contrasting defence strategies, which gave rise in turn to contrasting virulence and parasite success. In the main bird host, minor loss of fitness, no detectable immune response, and high parasite success suggest a strategy of high tolerance and negligible resistance. Alternative hosts, on the contrary, resisted by mounting inflammatory responses, although with very different efficiency, which resulted in highly dissimilar parasite success and virulence. These results show clearly distinct defence strategies between main and alternative hosts in a natural multi-host system. They also highlight the importance of defence strategies in determining virulence and infection dynamics, and hint that defence efficiency is a crucial intervening element in these processes.
Collapse
Affiliation(s)
- Darío E Manzoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - María J Saravia-Pietropaolo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Leandro R Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Emilce Barengo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Sofía I Arce
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Martín A Quiroga
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Pablo M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
7
|
Li X, Zhu L, Meng L, Li B. Brood size and sex ratio in response to host quality and wasp traits in the gregarious parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae). PeerJ 2017; 5:e2919. [PMID: 28149691 PMCID: PMC5267564 DOI: 10.7717/peerj.2919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/17/2016] [Indexed: 11/23/2022] Open
Abstract
This laboratory study investigated whether the larval-pupal parasitoid Oomyzus sokolowskii females adjust their brood size and sex ratio in response to body size and stage of Plutella xylostella larval hosts, as well as to their own body size and the order of oviposition. These factors were analyzed using multiple regression with simultaneous entry of them and their two-way interactions. Parasitoids brood size tended to increase with host body size at parasitism when the 4th instar larval host was attacked, but did not change when the 2nd and 3rd instar larvae were attacked. Parasitoids did not vary in brood size according to their body size, but decreased with their bouts of oviposition on a linear trend from 10 offspring adults emerged per host in the first bout of oviposition down to eight in the third. Parasitoid offspring sex ratio did not change with host instar, host body weight, wasp body size, and oviposition bout. Proportions of male offspring per brood were from 11% to 13% from attacking the 2nd to 4th instar larvae and from 13% to 16% across three successive bouts of oviposition, with a large variation for smaller host larvae and wasps. When fewer than 12 offspring were emerged from a host, one male was most frequently produced; when more than 12 offspring were emerged, two or more males were produced. Our study suggests that O. sokolowskii females may optimize their clutch size in response to body size of mature P. xylostella larvae, and their sex allocation in response to clutch size.
Collapse
Affiliation(s)
- Xianwei Li
- School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liangting Zhu
- School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ling Meng
- School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baoping Li
- School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Khatri D, He XZ, Wang Q. Trade-Off Between Fitness Gain and Cost Determines Profitability of a Peach Aphid Parasitoid. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1539-1544. [PMID: 27289084 DOI: 10.1093/jee/tow105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/22/2016] [Indexed: 06/06/2023]
Abstract
Aphidius colemani (Viereck) (Hymenoptera: Aphidiidae) is commercially produced and utilized for biological control of peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) on greenhouse crops in many countries. To provide knowledge for the evaluation of parasitoid-host interactions and development of effective mass rearing programs, we investigated how and why host age or size affected fitness gain in A. colemani We show that the parasitoid was significantly more likely to encounter larger hosts and that an encounter almost always triggered an attack attempt. However, the attack attempt did not proportionally translate into oviposition because larger aphids had greater ability to defend themselves and the parasitoid spent more time in handling larger aphids. The host age at parasitization had no effect on emergence rates and sex ratio of parasitoid progeny, suggesting that pupae and larvae have similar survival rate in hosts of different ages and/or the parasitoid females do not adjust sex allocation based on host size. When parasitizing mid-aged hosts, the parasitoid gained maximum fitness for their progeny in developmental period, body size, and parasitism. Taking all findings together, we suggest that parasitizing mid-aged green peach aphid nymphs is most profitable for A. colemani.
Collapse
Affiliation(s)
- Diwas Khatri
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand (; ; ), and
| | - Xiong Z He
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand (; ; ), and
| | - Qiao Wang
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand (; ; ), and
| |
Collapse
|
9
|
Kiefer D, Warburton EM, Khokhlova IS, Krasnov BR. Reproductive consequences of female size in haematophagous ectoparasites. ACTA ACUST UNITED AC 2016; 219:2368-76. [PMID: 27229473 DOI: 10.1242/jeb.140095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/22/2016] [Indexed: 11/20/2022]
Abstract
To test relationships between maternal size, egg size and size of new offspring, we studied (a) the effect of maternal size on egg size and number, and maternal survival after oviposition and (b) the effect of egg size on the duration of development and new imago size in three flea species (Xenopsylla ramesis, Synosternus cleopatrae, Parapulex chephrenis) with varying host and habitat specificity. In general, the number and size of eggs as well as total egg volume appeared to be independent of maternal body size. There was no trade-off between egg number and size. However, female body size was related to post-oviposition survival, with larger females surviving longer after oviposition than smaller females. In addition, females that produced more eggs died faster after oviposition in X. ramesis but not in the two other species. There were no significant size differences between eggs that developed into new imagoes and eggs that did not survive. Survivorship of male and female eggs did not differ; however, new adult females were significantly larger than new adult males. Female, but not male, new imagoes exhibited a significant positive relationship between egg size and duration of preimaginal development in all three species, with larger eggs developing faster than smaller eggs. In X. ramesis and S. cleopatrae, faster developing eggs also developed into larger new imagoes. We conclude that these patterns were largely consistent among the three flea species, suggesting that they result from the same mechanisms and are weakly affected by the ecological specialization of a given species.
Collapse
Affiliation(s)
- Daniel Kiefer
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Elizabeth M Warburton
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| |
Collapse
|
10
|
Abram PK, Parent JP, Brodeur J, Boivin G. Size-induced phenotypic reaction norms in a parasitoid wasp: an examination of life-history and behavioural traits. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12658] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul K. Abram
- Département de Sciences Biologiques; Institut de Recherche en Biologie Végétale; Université de Montréal; 4101 Rue Sherbrooke Est, Montréal QC, H1X 2B2 Canada
- Centre de Recherche et de Développement en Horticulture; Agriculture et Agroalimentaire Canada; 430 Boul. Gouin, St-Jean-sur-Richelieu QC, J3B 3E6 Canada
| | - Jean-Philippe Parent
- Département de Sciences Biologiques; Institut de Recherche en Biologie Végétale; Université de Montréal; 4101 Rue Sherbrooke Est, Montréal QC, H1X 2B2 Canada
- Centre de Recherche et de Développement en Horticulture; Agriculture et Agroalimentaire Canada; 430 Boul. Gouin, St-Jean-sur-Richelieu QC, J3B 3E6 Canada
| | - Jacques Brodeur
- Département de Sciences Biologiques; Institut de Recherche en Biologie Végétale; Université de Montréal; 4101 Rue Sherbrooke Est, Montréal QC, H1X 2B2 Canada
| | - Guy Boivin
- Centre de Recherche et de Développement en Horticulture; Agriculture et Agroalimentaire Canada; 430 Boul. Gouin, St-Jean-sur-Richelieu QC, J3B 3E6 Canada
| |
Collapse
|
11
|
Grain Diversity Effects on Banker Plant Growth and Parasitism by Aphidius colemani. INSECTS 2015; 6:772-91. [PMID: 26463416 PMCID: PMC4598666 DOI: 10.3390/insects6030772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/24/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Abstract
Green peach aphid (Myzus persicae Sulzer) (Hemiptera: Aphididae) is a serious greenhouse pest with a short generation time, parthenogenetic reproduction and a broad host range. Banker plant systems are becoming a more common form of biological control for this pest. This system consists of grain “banker plants” infested with R. padi, an alternative hosts for the parasitoid Aphidius colemani. Thus A. colemani can reproduce on the banker plant when M. persicae populations are low. This system can increase pest suppression; however, like other biological control tools, efficacy is inconsistent. One reason is because several different grain species have been used. Our studies determined if there were benefits to planting interspecific mixture banker plants, similar to when open agricultural systems use mixed cropping. Our study found that although banker plants grow larger when planted as mixtures this added plant growth does not increase in the number of aphids, or mummies an individual banker plant can sustain. Rye banker plants grew larger, and sustained more mummies than the other species we tested, but barley banker plants resulted in a similar number of aphids in a more condensed area. Ultimately, we did not see any differences in pest suppression between monoculture banker plants, mixture banker plants, or our augmentative release treatment. However, using banker plants resulted in more female parasitoids than the augmentative release, a benefit to using banker plant systems.
Collapse
|
12
|
Prado SG, Jandricic SE, Frank SD. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops. INSECTS 2015; 6:538-75. [PMID: 26463203 PMCID: PMC4553498 DOI: 10.3390/insects6020538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.
Collapse
Affiliation(s)
- Sara G Prado
- David Clark Labs, Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sarah E Jandricic
- Ontario Ministry of Agriculture, Food and Rural Affairs, 4890 Victoria Avenue North, Vineland, ON L0R 2E0, Canada.
| | - Steven D Frank
- Gardner Hall, Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
13
|
Tang LD, Lu YY, Zhao HY. Suitability of Bactrocera dorsalis (Diptera: Tephritidae) Pupae for Spalangia endius (Hymenoptera: Pteromalidae). ENVIRONMENTAL ENTOMOLOGY 2015; 44:689-694. [PMID: 26313975 DOI: 10.1093/ee/nvv066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Spalangia endius (Walker) (Hymenoptera: Pteromalidae) is found to be one of the most important natural enemies of Bactrocera dorsalis Hendel (Diptera: Tephritidae) pupae in China. In this study, the influence of host pupal age on the preference for and suitability of the host by the parasitoid S. endius was determined using choice and nonchoice tests. S. endius females accepted the 1-7 d-old B. dorsalis pupae for oviposition, and their offspring developed successfully. However, the S. endius preferentially parasitized the 2-, 3-, and 4-d-old host pupae. The emergence rate of the adult progeny was not affected by the host pupal age, nor was the male body weight, male longevity, and sex ratio of the parasitoid offspring. However, the shortest development time of both male and female progeny and the greatest size and adult longevity of female progeny were observed in hosts that were ≤4 d old. Females emerged later and lived longer than males, and they weighed more than the males. Host mortality decreased as the age of the host increased for 1-7-d-old hosts. Our findings suggest that 2-, 3-, and 4-d-old B. dorsalis pupae would be the best host ages at which to rear S. endius for effective control in field releases.
Collapse
Affiliation(s)
- Liang-De Tang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China.
| | - Yong-Yue Lu
- Department of Entomology, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 51064, People's Republic of China
| | - Hai-Yan Zhao
- Hainan Academy of Agricultural Sciences, Institute of Plant Protection, Hainan Key Laboratory for Control of Plant Diseases and Insect Pests, Haikou 571100, People's Republic of China.
| |
Collapse
|
14
|
The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 2013; 173:985-96. [DOI: 10.1007/s00442-013-2660-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
|
15
|
Bilodeau E, Simon JC, Guay JF, Turgeon J, Cloutier C. Does variation in host plant association and symbiont infection of pea aphid populations induce genetic and behaviour differentiation of its main parasitoid, Aphidius ervi? Evol Ecol 2012. [DOI: 10.1007/s10682-012-9577-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Wu GM, Barrette M, Boivin G, Brodeur J, Giraldeau LA, Hance T. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. ENVIRONMENTAL ENTOMOLOGY 2011; 40:737-742. [PMID: 22251653 DOI: 10.1603/en11018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is well known that increasing the ambient temperature increases the metabolic rate and consequently, the foraging rate of most insects. However, temperature experienced during the immature stages of insects affects their adult size (an inverse relationship). Because body size is generally correlated to foraging success, we hypothesized that temperature indirectly influences the foraging efficiency of adult insects through developmental effects. We first investigated the role of parasitoid: host body size ratio on the handling time of Aphidius colemani (Viereck) (Hymenoptera: Braconidae), then tested the prediction that increasing temperature during immature development increases the handling time of adults. As expected, parasitoids took longer to handle large aphids than small aphids. However, large parasitoids did not have shorter handling times than small parasitoids except when attacking large (adult) aphids. Developmental temperature had the predicted effect on parasitoids: Individuals reared at 25°C were smaller than those insects reared at 15°C. Parasitoids reared at 15°C had similar short handling times for both first instar and adult aphids, whereas parasitoids reared at 25°C took longer to handle adult aphids than first instar aphids. The size-mediated effect of temperature through development on parasitoid efficiency was opposite to the more familiar direct effect of temperature through metabolic rate. We conclude that the net effect of temperature on foraging insects will depend on its relative influence on immature and adult stages.
Collapse
Affiliation(s)
- G-M Wu
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Korenko S, Michalková V, Zwakhals K, Pekár S. Host specificity and temporal and seasonal shifts in host preference of a web-spider parasitoid Zatypota percontatoria. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:101. [PMID: 22216929 PMCID: PMC3281363 DOI: 10.1673/031.011.10101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/31/2010] [Indexed: 05/31/2023]
Abstract
Current knowledge about polysphinctine parasite wasps' interactions with their spider hosts is very fragmented and incomplete. This study presents the host specificity of Zatypota percontatoria (Müller) (Hymenoptera: Ichneumonidae) and its adaptation to varying host availability. Two years of field observations show that Z. percontatoria is a stenophagous parasitoid that parasitizes only five closely related web-building spiders of the family Theridiidae (Araneae). Within the Theridiidae it attacks only species belonging to a small group of species, here called the "Theridion" group. These hosts have a similar biology, but are available at different levels of abundance and at different sizes over the season. Laboratory experiments showed that this wasp species ignores linyphiid, araneid or dictynid spiders and accepts only theridiid spiders of the "Theridion" group. In the field study, wasp females preferred older juvenile and sub-adult female spider instars with intermediate body size. Only 5% of the parasitized spiders were males. Parasitism in the natural population of theridiid spiders was on average 1.3%. Parasitism was most frequent on two species, Theridion varians Hahn in 2007 and Neottiura bimaculata Linnaeus in 2008. The parasitization rate was positively correlated with spider abundance. The wasp responded adaptively to seasonal changes in host abundance and host body size and shifted host preference according to the availability of suitable hosts during, as well as between, seasons. In spring and summer the highest percentage of parasitism was on T. varians and in autumn it was on N. bimaculata.
Collapse
Affiliation(s)
- Stanislav Korenko
- Department of Agroecology and Biometeorology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
- Department of Botany and Zoology, Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Veronika Michalková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | | | - Stano Pekár
- Department of Botany and Zoology, Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
18
|
|