1
|
Yazdanian M, Kankaanpää T, Merckx T, Huikkonen IM, Itämies J, Jokimäki J, Lehikoinen A, Leinonen R, Pöyry J, Sihvonen P, Suuronen A, Välimäki P, Kivelä SM. Evidence for bottom-up effects of moth abundance on forest birds in the north-boreal zone alone. Ecol Lett 2024; 27:e14467. [PMID: 39739322 DOI: 10.1111/ele.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 01/02/2025]
Abstract
Insect declines are raising alarms regarding cascading effects on ecosystems, especially as many insectivorous bird populations are also declining. Here, we leveraged long-term monitoring datasets across Finland to investigate trophic dynamics between functional groups of moths and birds in forested habitats. We reveal a positive association between the biomass of adult- or egg-overwintering moths and the biomasses of resident and long-distance migrant birds reliant on caterpillars as breeding-season food in the north-boreal zone. Contrary to expectations, similar signs of moth bottom-up effects on insectivorous birds were not observed in other Finnish regions or for moths overwintering in other life stages. In fact, some negative associations between moths and birds were even detected, possibly attributable to opposite abundance trends. While supporting the existence of bottom-up effects in the north-boreal zone, our study emphasizes the need for further investigation to elucidate moth-mediated trophic dynamics in areas characterized by the insect decline.
Collapse
Affiliation(s)
| | | | - Thomas Merckx
- WILD, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, Kajaani, Finland
| | - Juha Pöyry
- Nature Solutions, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Pasi Sihvonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Anna Suuronen
- Nature Solutions, Finnish Environment Institute (SYKE), Helsinki, Finland
| | | | - Sami M Kivelä
- Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Whitenack LE, Sonnenberg BR, Branch CL, Pitera AM, Welklin JF, Heinen VK, Benedict LM, Pravosudov VV. Relative breeding timing and reproductive success of a resident montane bird species. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240769. [PMID: 39156660 PMCID: PMC11330559 DOI: 10.1098/rsos.240769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Wild populations appear to synchronize their reproductive phenology based on numerous environmental and ecological factors; yet, there is still individual variation in the timing of reproduction within populations and such variation may be associated with fitness consequences. For example, many studies have documented a seasonal decline in reproductive fitness, but breeding timing may have varying consequences across different environments. Using 11 years of data, we investigated the relationship between relative breeding timing and reproductive success in resident mountain chickadees (Poecile gambeli) across two elevational bands in the Sierra Nevada mountains, USA. Chickadees that synchronized breeding with the majority of the population ('peak' of breeding) did not have the highest breeding success. Instead, birds that bred early performed best at high elevation, while at low elevation early and peak nests performed similarly. At both elevations, late nests consistently performed the worst. Overall, breeding success decreased with increasing relative timing at both high and low elevations, but the relationship between breeding success and timing differed among years. Our results suggest that in mountain chickadees, earlier breeding is associated with higher reproductive success, especially at high elevations, while late breeding is consistently associated with lower reproductive success at both elevations.
Collapse
Affiliation(s)
- Lauren E. Whitenack
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Benjamin R. Sonnenberg
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Carrie L. Branch
- Department of Psychology, University of Western Ontario, London, Canada
| | - Angela M. Pitera
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Joseph F. Welklin
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Virginia K. Heinen
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Lauren M. Benedict
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Vladimir V. Pravosudov
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| |
Collapse
|
3
|
Laczi M, Sarkadi F, Herényi M, Nagy G, Hegyi G, Jablonszky M, Könczey R, Krenhardt K, Markó G, Rosivall B, Szász E, Szöllősi E, Tóth L, Zsebők S, Török J. Responses in the breeding parameters of the collared flycatcher to the changing climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171945. [PMID: 38531456 DOI: 10.1016/j.scitotenv.2024.171945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Global climate change involves various aspects of climate, including precipitation changes and declining surface wind speeds, but studies investigating biological responses have often focused on the impacts of rising temperatures. Additionally, related long-term studies on bird reproduction tend to concentrate on breeding onset, even though other aspects of breeding could also be sensitive to the diverse weather aspects. This study aimed to explore how multiple aspects of breeding (breeding onset, hatching delay, breeding season length, clutch size, fledgling number) were associated with different weather components. We used an almost four-decade-long dataset to investigate the various aspects of breeding parameters of a collared flycatcher (Ficedula albicollis) population in the Carpathian Basin. Analyses revealed some considerable associations, for example, breeding seasons lengthened with the amount of daily precipitation, and clutch size increased with the number of cool days. Parallel and opposing changes in the correlated pairs of breeding and weather parameters were also observed. The phenological mismatch between prey availability and breeding time slightly increased, and fledgling number strongly decreased with increasing mistiming. Our results highlighted the intricate interplay between climate change and the reproductive patterns of migratory birds, emphasizing the need for a holistic approach. The results also underscored the potential threats posed by climate change to bird populations and the importance of adaptive responses to changing environmental conditions.
Collapse
Affiliation(s)
- Miklós Laczi
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; The Barn Owl Foundation, Temesvári út 8., H-8744 Orosztony, Hungary.
| | - Fanni Sarkadi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| | - Márton Herényi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2103 Gödöllő, Hungary.
| | - Gergely Nagy
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány út 4., H-2163 Vácrátót, Hungary.
| | - Gergely Hegyi
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| | - Mónika Jablonszky
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány út 4., H-2163 Vácrátót, Hungary.
| | - Réka Könczey
- Hungarian Institute for Educational Research and Development, Eszterházy Károly University, Rákóczi út 70, H-1074 Budapest, Hungary
| | - Katalin Krenhardt
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány út 4., H-2163 Vácrátót, Hungary.
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi út 44., H-1118 Budapest, Hungary.
| | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| | - Eszter Szász
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| | - Eszter Szöllősi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| | - László Tóth
- Institute for Rural Development and Landscape Management, Faculty of Agricultural and Rural Development, Eszterházy Károly University, Mátrai út 36., H-3200 Gyöngyös, Hungary.
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány út 4., H-2163 Vácrátót, Hungary.
| | - János Török
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
4
|
Jantzen CC, Visser ME. Climate change does not equally affect temporal patterns of natural selection on reproductive timing across populations in two songbird species. Proc Biol Sci 2023; 290:20231474. [PMID: 37848060 PMCID: PMC10581764 DOI: 10.1098/rspb.2023.1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Climate change has led to changes in the strength of directional selection on seasonal timing. Understanding the causes and consequences of these changes is crucial to predict the impact of climate change. But are observed patterns in one population generalizable to others, and can spatial variation in selection be explained by environmental variation among populations? We used long-term data (1955-2022) on blue and great tits co-occurring in four locations across the Netherlands to assess inter-population variation in temporal patterns of selection on laying date. To analyse selection, we combine reproduction and adult survival into a joined fitness measure. We found distinct spatial variation in temporal patterns of selection which overall acted towards earlier laying, and which was due to selection through reproduction rather than through survival. The underlying relationships between temperature, bird and caterpillar phenology were however the same across populations, and the spatial variation in selection patterns is thus caused by spatial variation in the temperatures and other habitat characteristics to which birds and caterpillars respond. This underlines that climate change is not necessarily equally affecting populations, but that we can understand this spatial variation, which enables us to predict climate change effects on selection for other populations.
Collapse
Affiliation(s)
- Cherine C. Jantzen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Gelderland 6708 PB, The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Gelderland 6708 PB, The Netherlands
| |
Collapse
|
5
|
Kharouba HM, Wolkovich EM. Lack of evidence for the match-mismatch hypothesis across terrestrial trophic interactions. Ecol Lett 2023; 26:955-964. [PMID: 36888547 DOI: 10.1111/ele.14185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 03/09/2023]
Abstract
Climate change has led to widespread shifts in the timing of key life history events between interacting species (phenological asynchrony) with hypothesized cascading negative fitness impacts on one or more of the interacting species-often termed 'mismatch'. Yet, predicting the types of systems prone to mismatch remains a major hurdle. Recent reviews have argued that many studies do not provide strong evidence of the underlying match-mismatch hypothesis, but none have quantitatively analysed support for it. Here, we test the hypothesis by estimating the prevalence of mismatch across antagonistic trophic interactions in terrestrial systems and then examine whether studies that meet the assumptions of the hypothesis are more likely to find a mismatch. Despite a large range of synchrony to asynchrony, we did not find general support for the hypothesis. Our results thus question the general applicability of this hypothesis in terrestrial systems, but they also suggest specific types of data missing to robustly refute it. We highlight the critical need to define resource seasonality and the window of 'match' for the most rigorous tests of the hypothesis. Such efforts are necessary if we want to predict systems where mismatches are likely to occur.
Collapse
Affiliation(s)
| | - E M Wolkovich
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Cimino MA, Conroy JA, Connors E, Bowman J, Corso A, Ducklow H, Fraser W, Friedlaender A, Kim HH, Larsen GD, Moffat C, Nichols R, Pallin L, Patterson‐Fraser D, Roberts D, Roberts M, Steinberg DK, Thibodeau P, Trinh R, Schofield O, Stammerjohn S. Long‐term patterns in ecosystem phenology near Palmer Station, Antarctica, from the perspective of the Adélie penguin. Ecosphere 2023. [DOI: 10.1002/ecs2.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Megan A. Cimino
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - John A. Conroy
- Virginia Institute of Marine Science, William & Mary Gloucester Point Virginia USA
| | - Elizabeth Connors
- Scripps Institution of Oceanography UC San Diego La Jolla California USA
- Scripps Polar Center UC San Diego La Jolla California USA
| | - Jeff Bowman
- Scripps Institution of Oceanography UC San Diego La Jolla California USA
- Scripps Polar Center UC San Diego La Jolla California USA
| | - Andrew Corso
- Virginia Institute of Marine Science, William & Mary Gloucester Point Virginia USA
| | - Hugh Ducklow
- Department of Earth and Environmental Sciences Columbia University New York New York USA
- Lamont‐Doherty Earth Observatory Palisades New York USA
| | | | - Ari Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - Heather Hyewon Kim
- Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution Woods Hole Massachusetts USA
| | - Gregory D. Larsen
- Nicholas School of the Environment Duke University Marine Laboratory Beaufort North Carolina USA
| | - Carlos Moffat
- School of Marine Science & Policy University of Delaware Newark Delaware USA
| | - Ross Nichols
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - Logan Pallin
- Department of Ecology and Evolutionary Biology University of California Santa Cruz, Ocean Health Building Santa Cruz California USA
| | | | - Darren Roberts
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - Megan Roberts
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - Deborah K. Steinberg
- Virginia Institute of Marine Science, William & Mary Gloucester Point Virginia USA
| | - Patricia Thibodeau
- University of Rhode Island, Graduate School of Oceanography Kingston Rhode Island USA
| | - Rebecca Trinh
- Department of Earth and Environmental Sciences Columbia University New York New York USA
- Lamont‐Doherty Earth Observatory Palisades New York USA
| | - Oscar Schofield
- Center of Ocean Observing Leadership Rutgers University New Brunswick New Jersey USA
| | - Sharon Stammerjohn
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado USA
| |
Collapse
|
7
|
Vriend SJG, Grøtan V, Gamelon M, Adriaensen F, Ahola MP, Álvarez E, Bailey LD, Barba E, Bouvier JC, Burgess MD, Bushuev A, Camacho C, Canal D, Charmantier A, Cole EF, Cusimano C, Doligez BF, Drobniak SM, Dubiec A, Eens M, Eeva T, Erikstad KE, Ferns PN, Goodenough AE, Hartley IR, Hinsley SA, Ivankina E, Juškaitis R, Kempenaers B, Kerimov AB, Kålås JA, Lavigne C, Leivits A, Mainwaring MC, Martínez-Padilla J, Matthysen E, van Oers K, Orell M, Pinxten R, Reiertsen TK, Rytkönen S, Senar JC, Sheldon BC, Sorace A, Török J, Vatka E, Visser ME, Saether BE. Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines. Ecology 2023; 104:e3908. [PMID: 36314902 PMCID: PMC10078612 DOI: 10.1002/ecy.3908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 02/03/2023]
Abstract
Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.
Collapse
Affiliation(s)
- Stefan J G Vriend
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Vidar Grøtan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marlène Gamelon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Frank Adriaensen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Markus P Ahola
- Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Elena Álvarez
- Ecology of Terrestrial Vertebrates, 'Cavanilles' Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Liam D Bailey
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V, Berlin, Germany
| | - Emilio Barba
- Ecology of Terrestrial Vertebrates, 'Cavanilles' Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | | | - Malcolm D Burgess
- RSPB Centre for Conservation Science, Sandy, UK.,Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Andrey Bushuev
- Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - David Canal
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | | | - Ella F Cole
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | | | - Blandine F Doligez
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France.,Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Szymon M Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.,Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland.,Kevo Subarctic Research Institute, University of Turku, Turku, Finland
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research (NINA), FRAM High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Peter N Ferns
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Anne E Goodenough
- School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK
| | - Ian R Hartley
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Elena Ivankina
- Zvenigorod Biological Station, Moscow State University, Moscow, Russia
| | | | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Anvar B Kerimov
- Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
| | - John Atle Kålås
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Claire Lavigne
- INRAE, Plantes et Systèmes de culture Horticoles, Avignon, France
| | - Agu Leivits
- Department of Nature Conservation, Environmental Board, Saarde, Estonia
| | | | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Markku Orell
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Rianne Pinxten
- Research Group Didactica, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Tone Kristin Reiertsen
- Norwegian Institute for Nature Research (NINA), FRAM High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Seppo Rytkönen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Juan Carlos Senar
- Evolutionary and Behavioural Ecology Research Unit, Museu de Ciències Naturals de Barcelona, Barcelona, Spain
| | - Ben C Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Alberto Sorace
- Institute for Environmental Protection and Research, Rome, Italy
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Emma Vatka
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Zhemchuzhnikov MK, Versluijs TSL, Lameris TK, Reneerkens J, Both C, van Gils JA. Exploring the drivers of variation in trophic mismatches: A systematic review of long-term avian studies. Ecol Evol 2021; 11:3710-3725. [PMID: 33976770 PMCID: PMC8093693 DOI: 10.1002/ece3.7346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output.Here, we explore the potential causes for variation in the strength of trophic mismatches in published studies of birds. Specifically, we ask whether the changes in the degree of mismatch that have occurred over time can be explained by a bird's (a) breeding latitude, (b) migration distance, and/or (c) life-history traits.We found that none of these three factors explain changes in the degree of mismatch over time. Nevertheless, food phenology did advance faster at more northerly latitudes, while shifts in bird phenology did not show a trend with latitude.We argue that the lack of support in our results is attributable to the large variation in the metrics used to describe timing of food availability. We propose a pathway to improve the quantification of trophic mismatches, guided by a more rigorous understanding of links between consumers and their resources.
Collapse
Affiliation(s)
| | | | - Thomas K. Lameris
- NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
| | - Jeroen Reneerkens
- NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
- University of GroningenGroningenThe Netherlands
| | | | - Jan A. van Gils
- NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
- University of GroningenGroningenThe Netherlands
| |
Collapse
|
9
|
Vatka E, Orell M, Rytkönen S, Merilä J. Effects of ambient temperatures on evolutionary potential of reproductive timing in boreal passerines. J Anim Ecol 2020; 90:367-375. [PMID: 33090475 DOI: 10.1111/1365-2656.13370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/29/2020] [Indexed: 01/12/2023]
Abstract
Many populations need to adapt to changing environmental conditions, such as warming climate. Changing conditions generate directional selection for traits critical for fitness. For evolutionary responses to occur, these traits need to be heritable. However, changes in environmental conditions can alter the amount of heritable variation a population expresses, making predictions about expected responses difficult. The aim of this study was to evaluate the effects of ambient temperatures on evolutionary potential and strength of natural selection on the timing of reproduction in two passerine birds breeding in boreal forests. Long-term data on individually marked Willow Tits Poecile montanus (1975-2018) and Great Tits Parus major (1969-2018) were analysed with random regression animal models to assess if spring temperatures affect the expressed amount of additive genetic variation (VA ) and heritability (h2 ) in the timing of breeding. We assessed if ambient temperatures of different seasons influenced the direction and strength of selection on breeding time. We also evaluated if the strength of selection covaried with evolutionary potential. Levels of VA or h2 expressed in laying date were unaffected by spring temperatures in both study species. Selection for earlier breeding was found in the Willow Tit, but not in the Great Tit. In the Willow Tit, selection for earlier breeding was more intense when the temperatures of following autumns and winters were low. Different measures of evolutionary potential did not covary strongly with the strength of selection in either species. We conclude that there is no or little evidence that climate warming would either constrain or promote evolutionary potential in timing of breeding through changes in amount of genetic variance expressed in boreal Willow and Great Tits. However, selection on the timing of breeding, a life-history event taking place in springtime, is regulated by temperatures of autumns and winters. Rapid warming of these periods have thus potential to reduce the rate of expected evolutionary response in reproductive timing.
Collapse
Affiliation(s)
- Emma Vatka
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Orell
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Seppo Rytkönen
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland.,Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
10
|
Telenský T, Klvaňa P, Jelínek M, Cepák J, Reif J. The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Sci Rep 2020; 10:17592. [PMID: 33067507 PMCID: PMC7567877 DOI: 10.1038/s41598-020-74658-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
Climate is an important driver of changes in animal population size, but its effect on the underlying demographic rates remains insufficiently understood. This is particularly true for avian long-distance migrants which are exposed to different climatic factors at different phases of their annual cycle. To fill this knowledge gap, we used data collected by a national-wide bird ringing scheme for eight migratory species wintering in sub-Saharan Africa and investigated the impact of climate variability on their breeding productivity and adult survival. While temperature at the breeding grounds could relate to the breeding productivity either positively (higher food availability in warmer springs) or negatively (food scarcity in warmer springs due to trophic mismatch), water availability at the non-breeding should limit the adult survival and the breeding productivity. Consistent with the prediction of the trophic mismatch hypothesis, we found that warmer springs at the breeding grounds were linked with lower breeding productivity, explaining 29% of temporal variance across all species. Higher water availability at the sub-Saharan non-breeding grounds was related to higher adult survival (18% temporal variance explained) but did not carry-over to breeding productivity. Our results show that climate variability at both breeding and non-breeding grounds shapes different demographic rates of long-distance migrants.
Collapse
Affiliation(s)
- Tomáš Telenský
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Benátská 2, 128 01, Praha 2, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Petr Klvaňa
- Bird Ringing Centre, National Museum, Prague, Hornoměcholupská 34, 102 00, Praha 10, Czech Republic
| | - Miroslav Jelínek
- Bird Ringing Centre, National Museum, Prague, Hornoměcholupská 34, 102 00, Praha 10, Czech Republic
| | - Jaroslav Cepák
- Bird Ringing Centre, National Museum, Prague, Hornoměcholupská 34, 102 00, Praha 10, Czech Republic
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Benátská 2, 128 01, Praha 2, Czech Republic.
- Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University in Olomouc, 17. listopadu 50, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
11
|
Ramakers JJC, Gienapp P, Visser ME. Comparing two measures of phenological synchrony in a predator-prey interaction: Simpler works better. J Anim Ecol 2020; 89:745-756. [PMID: 31691954 PMCID: PMC7078916 DOI: 10.1111/1365-2656.13143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/11/2019] [Indexed: 11/27/2022]
Abstract
Global climate change has sparked a vast research effort into the demographic and evolutionary consequences of mismatches between consumer and resource phenology. Many studies have used the difference in peak dates to quantify phenological synchrony (match in dates, MD), but this approach has been suggested to be inconclusive, since it does not incorporate the temporal overlap between the phenological distributions (match in overlap, MO). We used 24 years of detailed data on the phenology of a predator-prey system, the great tit (Parus major) and the main food for its nestlings, caterpillars, to estimate MD and MO at the population and brood levels. We compared the performance of both metrics on two key demographic parameters: offspring recruitment probability and selection on the timing of reproduction. Although MD and MO correlated quadratically as expected, MD was a better predictor for both offspring recruitment and selection on timing than MO. We argue-and verify through simulations-that this is because quantifying MO has to be based on nontrivial, difficult-to-verify assumptions that likely render MO too inaccurate as a proxy for food availability in practice. Our results have important implications for the allocation of research efforts in long-term population studies in highly seasonal environments.
Collapse
Affiliation(s)
- Jip J. C. Ramakers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
- BiometrisWageningen University & ResearchWageningenThe Netherlands
| | - Phillip Gienapp
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
- Michael‐Otto‐Institut im NABUBergenhusenGermany
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| |
Collapse
|
12
|
Hidalgo Aranzamendi N, Hall ML, Kingma SA, van de Pol M, Peters A. Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. J Anim Ecol 2019; 88:1799-1811. [PMID: 31407349 DOI: 10.1111/1365-2656.13068] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023]
Abstract
Changes in climate are shifting the timing of life cycle events in the natural world. Compared to northern temperate areas, these effects are relatively poorly understood in tropical and southern regions, where there is limited information on how timing of breeding and food availability are affected by climatic factors, and where patterns of breeding activity are more unpredictable within and between years. Combining a new statistical modelling approach with 5 years of continuous individual-based monitoring of a monsoonal tropical insectivorous bird, we quantified (a) the proximate climatic drivers at two trophic levels: timing of breeding and abundance of arthropod prey; (b) the effect of climate variation on reproductive output and (c) the role of individual plasticity. Rainfall was identified as the main determinant of phenology at both trophic levels. Throughout the year, likelihood of egg laying increased very rapidly in response to even small amounts of rain during the preceding 0-3 weeks. Adult body mass and male sperm storage also increased rapidly after rain, suggesting high breeding preparedness. Additionally, females were flexible, since they were more likely to nest whether their previous attempt was longer ago and unsuccessful. Arthropod abundance also increased after rainfall, but more slowly, with a peak around 10 weeks. Therefore, the peak food availability coincided with the presence of dependent fledglings. Fitness benefits of nesting after more rain appeared to be linked to offspring quantity rather than quality: nest attempts following higher rainfall produced larger clutches, but showed no improvement in nestling mass or relative fledging success. The response of clutch size to rainfall was plastic, since repeated sampling showed that individual females laid larger clutches after more rain, possibly mediated by improved body mass. Rapid, individually flexible breeding in response to rainfall and slower increase in arthropod abundance also as a response to rainfall, might buffer insectivorous species living in tropical seasonal environments from climate change-induced phenological trophic mismatches.
Collapse
Affiliation(s)
| | - Michelle L Hall
- Max Planck Institute for Ornithology, Radolfzell, Germany.,School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Sjouke A Kingma
- Max Planck Institute for Ornithology, Radolfzell, Germany.,Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Anne Peters
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia.,Max Planck Institute for Ornithology, Radolfzell, Germany
| |
Collapse
|
13
|
Pakanen VM, Ahonen E, Hohtola E, Rytkönen S. Northward expanding resident species benefit from warming winters through increased foraging rates and predator vigilance. Oecologia 2018; 188:991-999. [PMID: 30357531 PMCID: PMC6244859 DOI: 10.1007/s00442-018-4271-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Species distributions shift northwards due to climate change, but the ecological mechanisms allowing range expansions are not fully understood. Most studies have concentrated on breeding seasons, but winter warming may also be important. Wintering distributions are restricted by food availability and temperature, which may also interact. Foraging in cold conditions requires adaptations as individuals have to be efficient in foraging, while staying warm and vigilant for predators. When the ambient temperature declines, foraging rates should be reduced due to increased time spent on warming behaviours. In addition, predator vigilance should decline, because more time has to be invested in foraging. Cold weather should limit northward expanding southern species in particular, while northern species should perform better in cold conditions. We tested this by studying temperature responses (between 0 and − 35 °C) among wintering birds at feeders. We compared foraging behaviours of two northward expanding southern species, the great tit (Parus major) and the blue tit (Cyanistes caeruleus) to a northern species, the willow tit (Poecile montanus). Foraging rate and vigilance decreased, and warming behaviour increased when temperatures declined. Importantly, the performance in these traits was poorer in the southern species compared to the willow tit. Furthermore, the response to decreasing temperatures in foraging rates and warming behaviour was stronger in the great tits than willow tits. As the winters become warmer, these mechanisms should increase wintering success of southern species wintering at high latitudes, and lead to higher survival, increased population growth, and consequent range expansion.
Collapse
Affiliation(s)
- Veli-Matti Pakanen
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014, Oulu, Finland.
| | - Eveliina Ahonen
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| | - Esa Hohtola
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| | - Seppo Rytkönen
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| |
Collapse
|
14
|
English PA, Nocera JJ, Green DJ. Nightjars may adjust breeding phenology to compensate for mismatches between moths and moonlight. Ecol Evol 2018; 8:5515-5529. [PMID: 29938070 PMCID: PMC6010731 DOI: 10.1002/ece3.4077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022] Open
Abstract
Phenology match-mismatch usually refers to the extent of an organism's ability to match reproduction with peaks in food availability, but when mismatch occurs, it may indicate a response to another selective pressure. We assess the value of matching reproductive timing to multiple selective pressures for a migratory lunarphilic aerial insectivore bird, the whip-poor-will (Antrostomus vociferus). We hypothesize that a whip-poor-will's response to shifts in local phenology may be constrained by long annual migrations and a foraging mode that is dependent on both benign weather and the availability of moonlight. To test this, we monitored daily nest survival and overall reproductive success relative to food availability and moon phase in the northern part of whip-poor-will's breeding range. We found that moth abundance, and potentially temperature and moonlight, may all have a positive influence on daily chick survival rates and that the lowest chick survival rates for the period between hatching and fledging occurred when hatch was mismatched with both moths and moonlight. However, rather than breeding too late for peak moth abundance, the average first brood hatch date actually preceded the peak moth abundance and occurred during a period with slightly higher available moonlight than the period of peak food abundance. As a result, a low individual survival rate was partially compensated for by initiating more nesting attempts. This suggests that nightjars were able to adjust their breeding phenology in such a way that the costs of mismatch with food supply were at least partially balanced by a longer breeding season.
Collapse
Affiliation(s)
| | - Joseph J. Nocera
- Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonNBCanada
| | - David J. Green
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
15
|
Meller K, Piha M, Vähätalo AV, Lehikoinen A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 2018; 186:883-893. [PMID: 29350284 DOI: 10.1007/s00442-017-4053-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Anthropogenic climate warming has already affected the population dynamics of numerous species and is predicted to do so also in the future. To predict the effects of climate change, it is important to know whether productivity is linked to temperature, and whether species' traits affect responses to climate change. To address these objectives, we analysed monitoring data from the Finnish constant effort site ringing scheme collected in 1987-2013 for 20 common songbird species together with climatic data. Warm spring temperature had a positive linear relationship with productivity across the community of 20 species independent of species' traits (realized thermal niche or migration behaviour), suggesting that even the warmest spring temperatures remained below the thermal optimum for reproduction, possibly due to our boreal study area being closer to the cold edge of all study species' distributions. The result also suggests a lack of mismatch between the timing of breeding and peak availability of invertebrate food of the study species. Productivity was positively related to annual growth rates in long-distance migrants, but not in short-distance migrants. Across the 27-year study period, temporal trends in productivity were mostly absent. The population sizes of species with colder thermal niches had decreasing trends, which were not related to temperature responses or temporal trends in productivity. The positive connection between spring temperature and productivity suggests that climate warming has potential to increase the productivity in bird species in the boreal zone, at least in the short term.
Collapse
Affiliation(s)
- Kalle Meller
- The Helsinki Lab of Ornithology, The Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| | - Markus Piha
- The Helsinki Lab of Ornithology, The Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Anssi V Vähätalo
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Aleksi Lehikoinen
- The Helsinki Lab of Ornithology, The Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Halupka L, Halupka K. The effect of climate change on the duration of avian breeding seasons: a meta-analysis. Proc Biol Sci 2017; 284:20171710. [PMID: 29167360 PMCID: PMC5719171 DOI: 10.1098/rspb.2017.1710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/20/2017] [Indexed: 11/12/2022] Open
Abstract
Many bird species are advancing the timing of their egg-laying in response to a warming climate. Little is known, however, of whether this advancement affects the respective length of the breeding seasons. A meta-analysis of 65 long-term studies of 54 species from the Northern Hemisphere has revealed that within the last 45 years an average population has lengthened the season by 1.4 days per decade, which was independent from changes in mean laying dates. Multi-brooded birds have prolonged their seasons by 4 days per decade, while single-brooded have shortened by 2 days. Changes in season lengths covaried with local climate changes: warming was correlated with prolonged seasons in multi-brooded species, but not in single-brooders. This might be a result of higher ecological flexibility of multi-brooded birds, whereas single brooders may have problems with synchronizing their reproduction with the peak of food resources. Sedentary species and short-distance migrants prolonged their breeding seasons more than long-distance migrants, which probably cannot track conditions at their breeding grounds. We conclude that as long as climate warming continues without major changes in ecological conditions, multi-brooded or sedentary species will probably increase their reproductive output, while the opposite effect may occur in single-brooded or migratory birds.
Collapse
Affiliation(s)
- Lucyna Halupka
- Wrocław University, Ornithological Station, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Konrad Halupka
- Department of Behavioural Ecology, Wrocław University, Sienkiewicza 21, Wrocław 50-335, Poland
| |
Collapse
|
17
|
Pakanen VM, Orell M, Vatka E, Rytkönen S, Broggi J. Different Ultimate Factors Define Timing of Breeding in Two Related Species. PLoS One 2016; 11:e0162643. [PMID: 27611971 PMCID: PMC5017718 DOI: 10.1371/journal.pone.0162643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Correct reproductive timing is crucial for fitness. Breeding phenology even in similar species can differ due to different selective pressures on the timing of reproduction. These selection pressures define species' responses to warming springs. The temporal match-mismatch hypothesis suggests that timing of breeding in animals is selected to match with food availability (synchrony). Alternatively, time-dependent breeding success (the date hypothesis) can result from other seasonally deteriorating ecological conditions such as intra- or interspecific competition or predation. We studied the effects of two ultimate factors on the timing of breeding, synchrony and other time-dependent factors (time-dependence), in sympatric populations of two related forest-dwelling passerine species, the great tit (Parus major) and the willow tit (Poecile montanus) by modelling recruitment with long-term capture-recapture data. We hypothesized that these two factors have different relevance for fitness in these species. We found that local recruitment in both species showed quadratic relationships with both time-dependence and synchrony. However, the importance of these factors was markedly different between the studied species. Caterpillar food played a predominant role in predicting the timing of breeding of the great tit. In contrast, for the willow tit time-dependence modelled as timing in relation to conspecifics was more important for local recruitment than synchrony. High caterpillar biomass experienced during the pre- and post-fledging periods increased local recruitment of both species. These contrasting results confirm that these species experience different selective pressures upon the timing of breeding, and hence responses to climate change may differ. Detailed information about life-history strategies is required to understand the effects of climate change, even in closely related taxa. The temporal match-mismatch hypothesis should be extended to consider subsequent critical periods when food needs to be abundantly available.
Collapse
Affiliation(s)
- Veli-Matti Pakanen
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Markku Orell
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Emma Vatka
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Seppo Rytkönen
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Juli Broggi
- Research Unit of Biodiversity, (UMIB, UO-CISC, PA). Ed. de Investigación 5ª C/ Gonzalo Gutiérrez Quirós s/n. 33600 Mieres, Spain
| |
Collapse
|
18
|
Vaugoyeau M, Adriaensen F, Artemyev A, Bańbura J, Barba E, Biard C, Blondel J, Bouslama Z, Bouvier JC, Camprodon J, Cecere F, Charmantier A, Charter M, Cichoń M, Cusimano C, Czeszczewik D, Demeyrier V, Doligez B, Doutrelant C, Dubiec A, Eens M, Eeva T, Faivre B, Ferns PN, Forsman JT, García-Del-Rey E, Goldshtein A, Goodenough AE, Gosler AG, Grégoire A, Gustafsson L, Harnist I, Hartley IR, Heeb P, Hinsley SA, Isenmann P, Jacob S, Juškaitis R, Korpimäki E, Krams I, Laaksonen T, Lambrechts MM, Leclercq B, Lehikoinen E, Loukola O, Lundberg A, Mainwaring MC, Mänd R, Massa B, Mazgajski TD, Merino S, Mitrus C, Mönkkönen M, Morin X, Nager RG, Nilsson JÅ, Nilsson SG, Norte AC, Orell M, Perret P, Perrins CM, Pimentel CS, Pinxten R, Richner H, Robles H, Rytkönen S, Senar JC, Seppänen JT, Pascoal da Silva L, Slagsvold T, Solonen T, Sorace A, Stenning MJ, Tryjanowski P, von Numers M, Walankiewicz W, Møller AP. Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of hole-nesting birds. Ecol Evol 2016; 6:5907-20. [PMID: 27547364 PMCID: PMC4983601 DOI: 10.1002/ece3.2335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 01/20/2023] Open
Abstract
The increase in size of human populations in urban and agricultural areas has resulted in considerable habitat conversion globally. Such anthropogenic areas have specific environmental characteristics, which influence the physiology, life history, and population dynamics of plants and animals. For example, the date of bud burst is advanced in urban compared to nearby natural areas. In some birds, breeding success is determined by synchrony between timing of breeding and peak food abundance. Pertinently, caterpillars are an important food source for the nestlings of many bird species, and their abundance is influenced by environmental factors such as temperature and date of bud burst. Higher temperatures and advanced date of bud burst in urban areas could advance peak caterpillar abundance and thus affect breeding phenology of birds. In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity of urbanization as a measure of human impact in 199 nest box plots across Europe, North Africa, and the Middle East (i.e., the Western Palearctic) for four species of hole‐nesters: blue tits (Cyanistes caeruleus), great tits (Parus major), collared flycatchers (Ficedula albicollis), and pied flycatchers (Ficedula hypoleuca). Meanwhile, we estimated the intensity of urbanization as the density of buildings surrounding study plots measured on orthophotographs. For the four study species, the intensity of urbanization was not correlated with laying date. Clutch size in blue and great tits does not seem affected by the intensity of urbanization, while in collared and pied flycatchers it decreased with increasing intensity of urbanization. This is the first large‐scale study showing a species‐specific major correlation between intensity of urbanization and the ecology of breeding. The underlying mechanisms for the relationships between life history and urbanization remain to be determined. We propose that effects of food abundance or quality, temperature, noise, pollution, or disturbance by humans may on their own or in combination affect laying date and/or clutch size.
Collapse
Affiliation(s)
- Marie Vaugoyeau
- Ecologie Systématique Evolution Université Paris-Sud, CNRS, Agro Paris Tech, Université Paris-Saclay Orsay France
| | - Frank Adriaensen
- Department of Biology Evolutionary Ecology Group University of Antwerp Antwerp Belgium
| | - Alexandr Artemyev
- Institute of Biology Karelian Research Centre Russian Academy of Sciences Petrozavodsk Russia
| | - Jerzy Bańbura
- Department of Experimental Zoology & Evolutionary Biology University of Lodź Lodź Poland
| | - Emilio Barba
- Terrestrial Vertebrates Research Unit "Cavanilles" Institute of Biodiversity and Evolutionary Biology University of Valencia Paterna Spain
| | - Clotilde Biard
- Université Pierre et Marie Curie Sorbonne universités UPMC Univ Paris 06, UPEC, Paris 7 CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris Paris France
| | - Jacques Blondel
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Zihad Bouslama
- Research Laboratory "Ecology of Terrestrial and Aquatic Systems" University Badji Mokhtar Annaba Algeria
| | | | - Jordi Camprodon
- Àrea de Biodiversitat Grup de Biologia de la Conservació Centre Tecnològic Forestal de Catalunya Solsona Spain
| | | | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Motti Charter
- University of Haifa Haifa Israel; Society for the Protection of Nature University of Lausanne Lausanne Switzerland
| | - Mariusz Cichoń
- Institute of Environmental Science Jagiellonian University Krakow Poland
| | - Camillo Cusimano
- Department of Agriculture and Forest Sciences Università di Palermo Palermo Italy
| | - Dorota Czeszczewik
- Department of Zoology Faculty of Natural Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| | - Virginie Demeyrier
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Blandine Doligez
- Department of Biometry & Evolutionary Biology University of Lyon 1 Villeurbanne France
| | - Claire Doutrelant
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Anna Dubiec
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Marcel Eens
- Department of Biology Behavioural Ecology and Ecophysiology Group University of Antwerp Antwerp Belgium
| | - Tapio Eeva
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Bruno Faivre
- BioGéoSciences Université de Bourgogne Dijon France
| | | | | | - Eduardo García-Del-Rey
- Departamento de Ecología Facultad de Biología Universidad de La Laguna, San Cristóbal de La Laguna Tenerife Canary Islands Spain
| | | | - Anne E Goodenough
- Department of Natural and Social Sciences University of Gloucestershire Gloucestershire UK
| | - Andrew G Gosler
- Department of Zoology Edward Grey Institute of Field Ornithology & Institute of Human Sciences Oxford UK
| | - Arnaud Grégoire
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Lars Gustafsson
- Department of Animal Ecology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Iga Harnist
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Ian R Hartley
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Philipp Heeb
- Laboratoire Évolution & Diversité Biologique UPS Toulouse III Toulouse France
| | | | - Paul Isenmann
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Staffan Jacob
- Laboratoire Évolution & Diversité Biologique UPS Toulouse III Toulouse France
| | - Rimvydas Juškaitis
- Institute of Ecology of Nature Research Centre Akademijos 2 Vilnius Lithuania
| | - Erkki Korpimäki
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Indrikis Krams
- Institute of Ecology & Earth Sciences University of Tartu Tartu Estonia
| | - Toni Laaksonen
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Marcel M Lambrechts
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | | | - Esa Lehikoinen
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Olli Loukola
- Department of Ecology University of Oulu Oulu Finland
| | - Arne Lundberg
- Department of Animal Ecology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | | | - Raivo Mänd
- Institute of Ecology & Earth Sciences University of Tartu Tartu Estonia
| | - Bruno Massa
- Department of Agriculture and Forest Sciences Università di Palermo Palermo Italy
| | - Tomasz D Mazgajski
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Santiago Merino
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias Naturales Agencia Estatal Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Cezary Mitrus
- Department of Zoology Rzeszów University Rzeszów Poland
| | - Mikko Mönkkönen
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France; Department of Biological and Environmental Sciences University of Jyväskylä Jyväskylä Finland
| | - Xavier Morin
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Ruedi G Nager
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Glasgow UK
| | | | | | - Ana C Norte
- Department of Life SciencesInstitute of Marine ResearchUniversity of CoimbraCoimbraPortugal; Department of Life SciencesMARE - Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal
| | - Markku Orell
- Department of Ecology University of Oulu Oulu Finland
| | - Philippe Perret
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Christopher M Perrins
- Department of Zoology Edward Grey Institute of Field Ornithology & Institute of Human Sciences Oxford UK
| | - Carla S Pimentel
- Centro de Estudos Florestais Instituto Superior de Agronomia University of Lisbon Lisbon Portugal
| | - Rianne Pinxten
- Department of Biology Behavioural Ecology and Ecophysiology Group University of Antwerp Antwerp Belgium; Didactica Research Unit Faculty of Social Sciences University of Antwerp Antwerp Belgium
| | - Heinz Richner
- Institute of Ecology & Evolution (IEE) University of Bern Bern Switzerland
| | - Hugo Robles
- Department of Biology Evolutionary Ecology Group University of Antwerp Antwerp Belgium; Evolutionary Biology Group (GIBE) Falculty of Sciences University of A Coruña A Coruña Spain
| | | | - Juan Carlos Senar
- Unidad Asociada CSIC de Ecología Evolutiva y de la Conducta Nat-Museu de Ciències Naturals de Barcelona Barcelona Spain
| | | | - Luis Pascoal da Silva
- Department of Life Sciences Institute of Marine Research University of Coimbra Coimbra Portugal
| | - Tore Slagsvold
- Department of Biosciences University of Oslo Oslo Norway
| | | | | | | | - Piotr Tryjanowski
- Institute of Zoology Poznan University of Life Sciences Poznań Poland
| | | | - Wieslaw Walankiewicz
- Department of Zoology Faculty of Natural Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| | - Anders Pape Møller
- Ecologie Systématique Evolution Université Paris-Sud, CNRS, Agro Paris Tech, Université Paris-Saclay Orsay France
| |
Collapse
|
19
|
Longmoor GK, Lange CH, Darvell H, Walker L, Rytkönen S, Vatka E, Hohtola E, Orell M, Smulders TV. Different Seasonal Patterns in Song System Volume in Willow Tits and Great Tits. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:265-74. [PMID: 27442125 DOI: 10.1159/000447114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
In most species of seasonally breeding songbirds studied to date, the brain areas that control singing (i.e. the song control system, SCS) are larger during the breeding season than at other times of the year. In the family of titmice and chickadees (Paridae), one species, the blue tit (Cyanistes caeruleus), shows the typical pattern of seasonal changes, while another species, the black-capped chickadee (Poecile atricapillus), shows, at best, very reduced seasonal changes in the SCS. To test whether this pattern holds up in the two Parid lineages to which these two species belong, and to rule out that the differences in seasonal patterns observed were due to differences in geography or laboratory, we compared the seasonal patterns in two song system nuclei volumes (HVC and Area X) in willow tits (Poecile montanus), closely related to black-capped chickadees, and in great tits (Parus major), more closely related to blue tits, from the same area around Oulu, Finland. Both species had larger gonads in spring than during the rest of the year. Great tit males had a larger HVC in spring than at other times of the year, but their Area X did not change in size. Willow tits showed no seasonal change in HVC or Area X size, despite having much larger gonads in spring than the great tits. Our findings suggest that the song system of willow tits and their relatives may be involved in learning and producing nonsong social vocalizations. Since these vocalizations are used year-round, there may be a year-round demand on the song system. The great tit and blue tit HVC may change seasonally because the demand is only placed on the song system during the breeding season, since they only produce learned vocalizations during this time. We suggest that changes were not observed in Area X because its main role is in song learning, and there is evidence that great tits do not learn new songs after their first year of life. Further study is required to determine whether our hypothesis about the role of the song system in the learned, nonsong vocalizations of the willow tit and chickadee is correct, and to test our hypothesis about the role of Area X in the great tit song system.
Collapse
Affiliation(s)
- Georgia K Longmoor
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vatka E, Orell M, Rytkönen S. The relevance of food peak architecture in trophic interactions. GLOBAL CHANGE BIOLOGY 2016; 22:1585-1594. [PMID: 26527602 DOI: 10.1111/gcb.13144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/21/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions.
Collapse
Affiliation(s)
- Emma Vatka
- Department of Ecology, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Markku Orell
- Department of Ecology, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Seppo Rytkönen
- Department of Ecology, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| |
Collapse
|
21
|
Sinclair FH, Stone GN, Nicholls JA, Cavers S, Gibbs M, Butterill P, Wagner S, Ducousso A, Gerber S, Petit RJ, Kremer A, Schönrogge K. Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management. Evol Appl 2015; 8:972-87. [PMID: 26640522 PMCID: PMC4662346 DOI: 10.1111/eva.12329] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/20/2015] [Indexed: 01/18/2023] Open
Abstract
Disruption of species interactions is a key issue in climate change biology. Interactions involving forest trees may be particularly vulnerable due to evolutionary rate limitations imposed by long generation times. One mitigation strategy for such impacts is Climate matching - the augmentation of local native tree populations by input from nonlocal populations currently experiencing predicted future climates. This strategy is controversial because of potential cascading impacts on locally adapted animal communities. We explored these impacts using abundance data for local native gallwasp herbivores sampled from 20 provenances of sessile oak (Quercus petraea) planted in a common garden trial. We hypothesized that non-native provenances would show (i) declining growth performance with increasing distance between provenance origin and trial site, and (ii) phenological differences to local oaks that increased with latitudinal differences between origin and trial site. Under a local adaptation hypothesis, we predicted declining gallwasp abundance with increasing phenological mismatch between native and climate-matched trees. Both hypotheses for oaks were supported. Provenance explained significant variation in gallwasp abundance, but no gall type showed the relationship between abundance and phenological mismatch predicted by a local adaptation hypothesis. Our results show that climate matching would have complex and variable impacts on oak gall communities.
Collapse
Affiliation(s)
- Frazer H Sinclair
- Institute of Evolutionary Biology, University of EdinburghEdinburgh, UK
- Centre for Ecology and HydrologyWallingford, UK
| | - Graham N Stone
- Institute of Evolutionary Biology, University of EdinburghEdinburgh, UK
| | - James A Nicholls
- Institute of Evolutionary Biology, University of EdinburghEdinburgh, UK
| | | | | | - Philip Butterill
- Centre for Ecology and HydrologyWallingford, UK
- Faculty of Science, Biology Center, The Czech Academy of Sciences, University of South BohemiaČeské Budějovice, Czech Republic
| | - Stefanie Wagner
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Alexis Ducousso
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Sophie Gerber
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Rémy J Petit
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Antoine Kremer
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | | |
Collapse
|
22
|
Visser ME, Gienapp P, Husby A, Morrisey M, de la Hera I, Pulido F, Both C. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biol 2015; 13:e1002120. [PMID: 25848856 PMCID: PMC4388467 DOI: 10.1371/journal.pbio.1002120] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/03/2015] [Indexed: 11/21/2022] Open
Abstract
Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.
Collapse
Affiliation(s)
- Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Arild Husby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Michael Morrisey
- Dyers Brae House, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Iván de la Hera
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Zoology and Animal Cell Biology, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Pulido
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, Madrid, Spain
| | - Christiaan Both
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Ecology Group, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| |
Collapse
|