1
|
Hawkshaw DM, Wijmenga JJ, Mathot KJ. Individual variation in diurnal body temperature and foraging activity in overwintering black-capped chickadees (Poecile atricapillus). J Therm Biol 2025; 127:104059. [PMID: 39892080 DOI: 10.1016/j.jtherbio.2025.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Small birds in winter can mitigate energetic shortfalls via increases in foraging and/or via controlled reductions in metabolic rate and body temperature (torpor). The ability to both increase foraging and use torpor during the day could have profound implications for an individual's daily energy budget and overwinter survival. Trade-offs between foraging efficiency and daytime torpor use may exist but have not been explicitly investigated. Here, we investigated the presence of within- and among-individual correlations between daytime body temperature (Tb, a proxy for torpor use) and foraging in overwintering black-capped chickadees (Poecile atricapillus). Using temperature-sensing passive integrated transponder tags, we measured daytime Tb and foraging in 20 free-living chickadees over 49 days in a single winter (January-February). Chickadees generally exhibited Tb around normothermic levels with an average Tb during visits to the feeder of 41.7 °C, though Tb ranged between 25.0 and 44.9 °C. Chickadees exhibited moderately lower daytime Tb, shorter time intervals between successive feeder visits (IVI), and increased feeder visits as ambient temperature decreased. However, within individuals there was only evidence of a weak positive correlation between visit Tb and IVI, and no correlation between daily feeder visits and daily mean visit Tb. We found that visit Tb, daily mean visit Tb, and daily feeder visits were repeatable, while IVI was not. Sex did not explain a significant amount of variation in total daily feeder visits or daytime Tb, nor was there evidence of among-individual correlations between daily mean visit Tb and daily feeder visits. Our results suggests that chickadees may independently regulate foraging and diurnal Tb. Overall, our study provides insights into how small birds in winter can use multiple strategies to overcome energetic challenges. Future studies investigating diurnal torpor and its integration with other strategies are needed to further elucidate how small birds survive harsh winter conditions.
Collapse
Affiliation(s)
- Deborah M Hawkshaw
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| | - Jan J Wijmenga
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada; Integrative Ecology, Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
2
|
Barratt A, Turbill C. Nightly reductions in body temperature and effect of transmitter attachment method in free-living welcome swallows (Hirundoneoxena). J Therm Biol 2024; 120:103792. [PMID: 38403496 DOI: 10.1016/j.jtherbio.2024.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Small birds and mammals face similar energetic challenges, yet use of torpor to conserve energy while resting is considered less common among birds, especially within the most specious order Passeriformes. We conducted the first study to record the natural thermoregulatory physiology of any species from the family Hirundinidae, which we predicted would use torpor because of their specialised foraging by aerial pursuit of flying insects, that are less active during cold or windy weather. We used temperature telemetry on wild-living welcome swallows (Hirundo neoxena, 13 to 17 g) and found that skin temperature declined during nightly resting by an average by 5 °C, from daytime minima of 41.0 ± 0.8 °C to nightly minima of 36.3 ± 0.8 °C, and by a maximum of 8 °C to a minimum recorded skin temperature of 32.0 °C. The extent of reduction in skin temperature was greater on cold nights and following windy daytime (foraging) periods. Further, we found that transmitters glued directly to the skin between feather tracts (i.e., an apterium) provided a less variable and probably also more accurate reflection of body temperature than transmitters applied over closely trimmed feathers. A moderate decrease in skin temperature, equivalent to shallow torpor, would provide energy savings during rest. Yet, deeper torpor was not observed, despite a period of extreme rainfall that presumedly decreased foraging success. Further studies are needed to understand the resting thermoregulatory energetics of swallows under different environmental conditions. We advocate the importance of measuring thermal biology in wild-living birds to increase our knowledge of the physiology and ecological importance of torpor among passerine birds.
Collapse
Affiliation(s)
- Alice Barratt
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW, 2753, Australia.
| | - Christopher Turbill
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW, 2753, Australia; School of Science, Western Sydney University, Hawkesbury campus, Richmond, NSW, 2753, Australia.
| |
Collapse
|
3
|
McKechnie AE, Freeman MT, Brigham RM. Avian Heterothermy: A Review of Patterns and Processes. Integr Comp Biol 2023; 63:1028-1038. [PMID: 37156524 DOI: 10.1093/icb/icad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Many birds reduce rest-phase energy demands through heterothermy, physiological responses involving facultative, reversible reductions in metabolic rate and body temperature (Tb). Here, we review the phylogenetic distribution and ecological contexts of avian heterothermy. Heterothermy has been reported in 140 species representing 15 orders and 39 families. Recent work supports the view that deep heterothermy is most pronounced in phylogenetically older taxa whereas heterothermy in passerines and other recently diverged taxa is shallower and confined to minimum Tb > 20°C. The reasons why deep heterothermy is absent in passerines remain unclear; we speculate an evolutionary trade-off may exist between the capacity to achieve low heterothermic Tb and the tolerance of hyperthermic Tb. Inter- and intraspecific variation in heterothermy is correlated with factors including foraging ecology (e.g., territoriality and defense of food resources among hummingbirds), food availability and foraging opportunities (e.g., lunar phase predicts torpor use in caprimulgids), and predation risk. Heterothermy also plays a major role before and during migration. Emerging questions include the magnitude of energy savings associated with heterothermy among free-ranging birds, the role phylogenetic variation in the capacity for heterothermy has played in evolutionary radiations into extreme habitats, and how the capacity for heterothermy affects avian vulnerability to rapid anthropogenic climate change.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - R Mark Brigham
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
4
|
Tabh JKR, Hartjes M, Burness G. Endotherms trade body temperature regulation for the stress response. Proc Biol Sci 2023; 290:20231251. [PMID: 37909077 PMCID: PMC10618863 DOI: 10.1098/rspb.2023.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Responding to perceived threats is energetically expensive and can require animals to curtail somatic repair, immunity, and even reproduction to balance energy ledgers. In birds and mammals, energetic demands of thermoregulation are often immense, yet whether homeostatic body temperatures are also compromised to aid the stress response is not known. Using data sourced from over 60 years of literature and 24 endotherm species, we show that exposure to non-thermal challenges (e.g. human interaction, social threats) caused body temperatures to decrease in the cold and increase in the warmth, but particularly when species-specific costs of thermoregulation were high and surplus energy low. Biophysical models revealed that allowing body temperature to change in this way liberated up to 24% (mean = 5%) of resting energy expenditure for use towards coping. While useful to avoid energetic overload, these responses nevertheless heighten risks of cold- or heat-induced damage, particularly when coincident with cold- or heatwaves.
Collapse
Affiliation(s)
- Joshua K. R. Tabh
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
- Department of Biology, Lund University, Lund, 223 62, Sweden
| | - Mariah Hartjes
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9L 0G2
| |
Collapse
|
5
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
6
|
Effects of exposure to predator models on fledging behaviour in blue tits. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Variation in reproductive investment increases body temperature amplitude in a temperate passerine. Oecologia 2021; 197:365-371. [PMID: 34494171 PMCID: PMC8505372 DOI: 10.1007/s00442-021-05026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/25/2021] [Indexed: 11/02/2022]
Abstract
Many birds and mammals show substantial circadian variation in body temperature, which has been attributed to fluctuations in ambient temperature and energy reserves. However, to fully understand the variation in body temperature over the course of the day, we also need to consider effects of variation in work rate. We made use of a dataset on body temperature during the resting and active periods in female marsh tits (Poecile palustris) that bred in a temperate area and were subjected to experimental changes in reproductive investment through brood size manipulations. Furthermore, the amplitude increased with daytime, but were unaffected by nighttime, ambient temperature. Amplitudes in females with manipulated broods were 44% above predictions based on inter-specific allometric relationships. In extreme cases, amplitudes were > 100% above predicted values. However, no individual female realised the maximum potential amplitude (8.5 °C, i.e. the difference between the highest and lowest body temperature within the population) but seemed to prioritise either a reduction in body temperature at night or an increase in body temperature in the day. This suggests that body temperature amplitude might be constrained by costs that preclude extensive use of both low nighttime and high daytime body temperatures within the same individual. Amplitudes in the range found here (0.5-6.7 °C) have previously mostly been reported from sub-tropical and/or arid habitats. We show that comparable values can also be found amongst birds in relatively cool, temperate regions, partly due to a pronounced increase in body temperature during periods with high work rate.
Collapse
|
8
|
|
9
|
Lowney AM, Thomson RL. Ecological engineering across a temporal gradient: Sociable weaver colonies create year-round animal biodiversity hotspots. J Anim Ecol 2021; 90:2362-2376. [PMID: 34036578 DOI: 10.1111/1365-2656.13544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 05/13/2021] [Indexed: 12/01/2022]
Abstract
Animal distribution in a landscape depends mostly on the availability of resources. This can be facilitated by other species that have positive effects on local species diversity and impact community structure. Species that significantly change resource availability are often termed ecosystem engineers. Identifying these species is key but predicting where they have large or small impacts is an even greater challenge. The stress-gradient hypothesis predicts that the importance of facilitative interactions that shape community structure and function will increase in stressful and harsh environments. In most environments, conditions will fluctuate between harsh and benign periods, yet how the impacts of ecosystem engineers will change in different conditions has received little attention. Monitoring for extended periods will increase the understanding of how engineers may mitigate the extreme differences between changing seasons. We investigated the role of sociable weavers Philetairus socius as ecosystem engineers and examined how the association of species to weaver colonies may vary across a seasonal (temporal) gradient. Sociable weavers build large colonies that are home to hundreds of weaver individuals but also host a wide range of other animal species. We investigated the use of weaver colonies by terrestrial and arboreal vertebrates and birds throughout a calendar year, encompassing harsh and benign periods. We demonstrate that the presence of sociable weaver colonies creates centres of animal activity. Colonies were used by the local Kalahari animal community for foraging, shade, territorial behaviours and roosting sites. Furthermore, animal activity increased with increased primary productivity, but this was not restricted to weaver colonies, suggesting that the importance of colonies does not directionally change across environmental conditions. Our results were not consistent with predictions of the stress-gradient hypothesis across a temporal gradient. We demonstrate the importance of sociable weavers as ecological engineers and the significance of their colonies in structuring the surrounding animal community. Colonies appear to provide a range of different resources for different species. Sociable weaver colonies have large ecological importance to local animal communities and, by mitigating environmental stress, may be increasingly important as human-driven climate change advances.
Collapse
Affiliation(s)
- Anthony M Lowney
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
10
|
Briga M, Verhulst S. Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Zagkle E, Grosiak M, Bauchinger U, Sadowska ET. Rest-Phase Hypothermia Reveals a Link Between Aging and Oxidative Stress: A Novel Hypothesis. Front Physiol 2020; 11:575060. [PMID: 33362574 PMCID: PMC7756103 DOI: 10.3389/fphys.2020.575060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/17/2020] [Indexed: 01/26/2023] Open
Abstract
In endotherms, growth, reproduction, and survival are highly depended on energy metabolism. Maintenance of constant body temperature can be challenging for endotherms under continuously changing environmental conditions, such as low or high ambient temperatures or limited food. Thus, many birds may drop body temperature below normothermic values during the night, known as rest-phase hypothermia, presumably to decrease energy metabolism. Under the assumption of the positive link between aerobic metabolism and reactive oxygen species, it is reasonable to suggest that low body temperature, a proxy of energy metabolism, will affect oxidative stress of the birds. Aging may considerably affect behavior, performance and physiology in birds and still requires further investigation to understand age-specific changes along the lifespan of the organism. Until today, age-specific rest-phase hypothermic responses and their effect on oxidant-antioxidant status have never been investigated. We exposed 25 zebra finches (Taeniopygia guttata) of three age classes, 12 young birds (1.1–1.3 years old), 8 middle-aged (2.4–2.8 years old), and 5 old birds (4.2–7.5 years old) to day-long food deprivation or provided them normal access to food under thermoneutral conditions. We compared night-time body temperature, measured through implanted data loggers, and quantified plasma oxidative status (uric acid, antioxidant capacity, and d-ROM assay) the following morning. We found age-related differences in night-time body temperature following a day-long food deprivation while all three age groups remained normothermic in the night following a day with access to food. The lowest minimum body temperature (LSM ± SE: 36.6 ± 0.2°C) was observed in old individuals during rest-phase hypothermia. Surprisingly, these old birds also revealed the highest levels of plasma oxidative damage, while young and middle-aged birds maintained higher night-time body temperature and showed lower values of oxidative damage. These results lead us to propose a novel hypothesis on how aging may lead to an accumulation of oxidative damage; the impaired physiological capacity to thermoregulate with advancing age does increase the risk of oxidative stress under challenging conditions. When energy is limited, the risk to encounter oxidative stress is increasing via a compensation to defend normothermic body temperatures.
Collapse
Affiliation(s)
- Elisavet Zagkle
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Aharon-Rotman Y, Körtner G, Wacker CB, Geiser F. Do small precocial birds enter torpor to conserve energy during development? J Exp Biol 2020; 223:jeb231761. [PMID: 32978318 DOI: 10.1242/jeb.231761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 01/24/2023]
Abstract
Precocial birds hatch feathered and mobile, but when they become fully endothermic soon after hatching, their heat loss is high and they may become energy depleted. These chicks could benefit from using energy-conserving torpor, which is characterised by controlled reductions of metabolism and body temperature (Tb). We investigated at what age the precocial king quail Coturnix chinensis can defend a high Tb under a mild thermal challenge and whether they can express torpor soon after achieving endothermy to overcome energetic and thermal challenges. Measurements of surface temperature (Ts) using an infrared thermometer showed that king quail chicks are partially endothermic at 2-10 days, but can defend high Tb at a body mass of ∼13 g. Two chicks expressed shallow nocturnal torpor at 14 and 17 days for 4-5 h with a reduction of metabolism by >40% and another approached the torpor threshold. Although chicks were able to rewarm endogenously from the first torpor bout, metabolism and Ts decreased again by the end of the night, but they rewarmed passively when removed from the chamber. The total metabolic rate increased with body mass. All chicks measured showed a greater reduction of nocturnal metabolism than previously reported in quails. Our data show that shallow torpor can be expressed during the early postnatal phase of quails, when thermoregulatory efficiency is still developing, but heat loss is high. We suggest that torpor may be a common strategy for overcoming challenging conditions during development in small precocial and not only altricial birds.
Collapse
Affiliation(s)
- Yaara Aharon-Rotman
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Chris B Wacker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
13
|
Nilsson JF, Nilsson JÅ, Broggi J, Watson H. Predictability of food supply modulates nocturnal hypothermia in a small passerine. Biol Lett 2020; 16:20200133. [PMID: 32486941 PMCID: PMC7336851 DOI: 10.1098/rsbl.2020.0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The combination of short days and long cold winter nights, in temperate regions, presents a major challenge for small diurnal birds. Small birds regularly employ heterothermy and enter rest-phase hypothermia during winter nights to conserve energy. However, we know little about how environmental conditions, such as food availability, shape these strategies. We experimentally manipulated food availability in winter to free-living great tits Parus major. A ‘predictable' and constant food supply was provided to birds in one area of a forest, while birds in another area did not have access to a reliable supplementary food source. We found that predictability of food affected the extent of nocturnal hypothermia, but the response differed between the sexes. Whereas male nocturnal body temperature was similar regardless of food availability, females exposed to a naturally ‘unpredictable' food supply entered deeper hypothermia at night, compared with females that had access to predictable food and compared with males in both treatment groups. We suggest that this response is likely a consequence of dominance, and subdominant females subject to unpredictable food resources cannot maintain sufficient energy intake, resulting in a higher demand for energy conservation at night.
Collapse
Affiliation(s)
| | | | - Juli Broggi
- Evolutionary Ecology, Lund University, SE-223 62, Sweden
| | - Hannah Watson
- Evolutionary Ecology, Lund University, SE-223 62, Sweden
| |
Collapse
|
14
|
Age differences in night-time metabolic rate and body temperature in a small passerine. J Comp Physiol B 2020; 190:349-359. [PMID: 32095837 DOI: 10.1007/s00360-020-01266-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
Spending the winter in northern climes with short days and cold ambient temperatures (Ta) can be energetically challenging for small birds that have high metabolic and heat loss rates. Hence, maintaining body temperature (Tb) in Ta below thermoneutrality can be energetically costly for a small bird. We still know little about how increased heat production below thermoneutrality affects the level at which Tb is maintained, and if these patterns are age specific. To test this, we measured subcutaneous body temperature (Ts) and resting metabolic rate (RMR) simultaneously in blue tits (Cyanistes caeruleus) during winter nights in Ta's ranging from 25 to - 15 °C. RMR increased below the lower critical temperature (LCT, estimated at 14 °C) and was 6% higher in young (birds in their first winter) compared to old birds (birds in their second winter or older). The higher RMR was also mirrored in higher Ts and thermal conductance (C) in young birds, which we suggest could be caused by age differences in plumage quality, likely driven by time constraints during moult. Reduction in nightly predicted Tb was modest and increased again at the coldest ambient temperatures, suggesting that either heat retention or heat production (or both) improved when Ta reached levels which are cold by the standards of birds in our population. Our results show that levels of heat production and Tb can be age specific. Further studies should address age-specific differences on quality, structure, and thermal conductivity of plumage more explicitly, to investigate the role of variation in insulation in age-linked metabolic phenotypes.
Collapse
|
15
|
Frequent nocturnal torpor in a free-ranging Australian honeyeater, the noisy miner. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2019; 106:28. [DOI: 10.1007/s00114-019-1626-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
|
16
|
Age-dependent effects of predation risk on night-time hypothermia in two wintering passerine species. Oecologia 2019; 189:329-337. [PMID: 30607504 PMCID: PMC6394671 DOI: 10.1007/s00442-018-04331-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
Abstract
Small animals that winter at northern latitudes need to maximize energy intake and minimize energy loss. Many passerine birds use night-time hypothermia to conserve energy. A potential cost of night-time hypothermia with much theoretical (but little empirical) support is increased risk of night-time predation, due to reduced vigilance and lower escape speed in hypothermic birds. This idea has never been tested in the wild. We, therefore, increased perceived predation risk in great tits (Parus major) and blue tits (Cyanistes caeruleus) roosting in nest boxes during cold winter nights to measure any resultant effect on their use of night-time hypothermia. Roosting birds of both species that experienced their first winter were less prone to use hypothermia as an energy-saving strategy at low ambient temperatures when exposed to increased perceived predation risk either via handling (great tits) or via predator scent manipulation (blue tits). However, we did not record such effects in birds that were in their second winter or beyond. Our results suggest that effects of increased predation risk are age- and temperature specific. This could be caused by age-related differences in experience and subsequent risk assessment, or by dominance-related variation in habitat quality between young and old birds. Predation risk could, through its effect on use and depth of night-time hypothermia, be important for total energy management and winter survival for resident birds at northern latitudes.
Collapse
|