1
|
Viswanathan A, Bagchi R, Ghazoul J, Honwad G, Lewis OT. Impacts of forest fragmentation on interactions between plants and their insect herbivores and fungal pathogens. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70025. [PMID: 40265734 DOI: 10.1002/eap.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/13/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025]
Abstract
Natural enemies of plants, including fungal pathogens and insect herbivores, can maintain plant diversity if their harmful effects on seeds and seedlings are density-dependent (the Janzen-Connell hypothesis). As insect and fungal communities can be modified by anthropogenic habitat fragmentation, we conducted a field experiment to understand how fragmentation might affect the ability of natural enemies to maintain diversity. In 21 rainforest fragments in the Western Ghats, India, we suppressed insects and fungi with biocides and examined consequent changes in the survival of naturally dispersed tree seedlings. Seedling survival decreased with the density of conspecific seedlings in the same plot. This effect was reduced by fungicide applications, especially in large forest fragments. Insecticide increased seedling survival, but its effects were independent of fragment area and conspecific density. The effects of conspecific density and fungicide were predominantly driven by the most abundant species, Syzygium rubicundum. Overall, these results indicate that forest fragmentation can alter biotic processes that regulate plant diversity. However, the overall impact of fragmentation through this pathway may be limited to relatively few species.
Collapse
Affiliation(s)
- Ashwin Viswanathan
- Chair of Ecosystem Management, ITES, ETH Zurich, Zurich, Switzerland
- Nature Conservation Foundation, Mysore, Karnataka, India
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jaboury Ghazoul
- Chair of Ecosystem Management, ITES, ETH Zurich, Zurich, Switzerland
| | - Ganesh Honwad
- Center for Innovation Research and Consultancy (CIRC), Pune, Maharashtra, India
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
2
|
Morante-Filho JC, Cruz CD, Benchimol M, Almeida FV, de Oliveira RA. Linking changes in landscape structure to insect herbivory in forest edges and interiors of Atlantic Forest remnants. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3026. [PMID: 39192366 DOI: 10.1002/eap.3026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024]
Abstract
Human activities have triggered profound changes in natural landscapes, resulting in species loss and disruption of pivotal ecological interactions such as insect herbivory. This antagonistic interaction is affected by complex pathways (e.g., abundance of herbivores and predators, plant chemical defenses, and resource availability), but the knowledge regarding how forest loss and fragmentation affect insect herbivory in human-modified tropical landscapes still remains poorly understood. In this context, we assessed multi-pathways by which changes in landscape structure likely influence insect herbivory in 20 Atlantic forest fragments in Brazil. Using path analysis, we estimated the direct effects of forest cover and forest edge density, and the indirect effect via canopy openness, number of understory plants and phenolic compounds, on leaf damage in understory plants located in the edge and interior of forest fragments. In particular, plants located in forest edges experienced greater leaf damage than interior ones. We observed that landscape edge density exerted a positive and direct effect on leaf damage in plants sampled at the edge of forest fragments. Our findings also indicated that forest loss and increase of edge density led to an increase in the canopy opening in the forest interior, which causes a reduction in the number of understory plants and, consequently, an increase in leaf damage. In addition, we detected that phenolic compounds negatively influence leaf damage in forest interior plants. Given the increasing forest loss in tropical regions, in which forest fragments become stranded in highly deforested, edge-dominated and degraded landscapes, our study highlights the pervasive enhancement in insect herbivory in remaining forest fragments-especially along forest edges and canopy gaps in the forest interior. As a result, increased herbivory is likely to affect forest regeneration and accelerate the ecological meltdown processes in these highly deforested and disturbed anthropogenic landscapes.
Collapse
Affiliation(s)
- José Carlos Morante-Filho
- Applied Ecology and Conservation Lab, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Clarisse Dias Cruz
- Applied Ecology and Conservation Lab, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Maíra Benchimol
- Applied Ecology and Conservation Lab, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Fabrine Vitória Almeida
- Applied Ecology and Conservation Lab, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | |
Collapse
|
3
|
Marick S, Takasu F, Bairagi N. How do productivity gradient and diffusion shape patterns in a plant-herbivore grazing system? J Theor Biol 2024; 590:111856. [PMID: 38777134 DOI: 10.1016/j.jtbi.2024.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Natural systems show heterogeneous patchy distributions of vegetation over large landscapes. Reaction-diffusion systems can demonstrate such heterogeneity of species distributions. Here, we analyse a reaction-diffusion model of plant-herbivore interactions in two-dimensional space to illustrate non-homogeneous distributions of plants and herbivores. The non-spatial system shows bottom-up control, where herbivore density is low under low and high primary productivity but increased at intermediate productivity. In addition, the non-spatial system provides bistability between a dense vegetation state devoid of herbivores and a coexisting state of plants and herbivores. In the spatiotemporal model, we give analytical conditions of occurring diffusion-driven (Turing) instability, where a novel point in our model is the relative dispersal of herbivores, which represents the movement of herbivores from a higher to a lower vegetation state in addition to the self-diffusion of both species. It is shown that heterogeneity in the population distribution does not occur if the relative dispersal of herbivores is low, but it appears in the opposite case. Due to bistability in the underlying non-spatial system, the spatiotemporal model produces initial value-dependent patterns. The two initial values make different patterns despite having the same primary productivity and relative dispersal rate. As productivity increases with a given relative herbivore dispersal, pattern transition occurs from a blend of stripes and spots of low vegetation state to a predominantly low-density vegetation state with smaller patches of densely vegetated states with one initial value. On the contrary, a discernible change in vegetation patterns from cold spots in the dense vegetation to hot stripes in the primarily low-vegetated state is noticed under the other initial population value. Furthermore, the population distributions of plants and herbivores in the entire domain after a long period are heterogeneous for both initial values, provided the relative herbivore dispersal is substantial. We estimated mean population densities to observe species fitness in the whole domain under variable productivity. When productivity is high, the mean population density of plants may go up or down, depending on the herbivore's relative dispersal rate. In contrast to the bottom-up control dynamics of the non-spatial system, the system exhibits a top-down control under high relative dispersal, where the herbivore regulates vegetation growth under high productivity. On the other hand, herbivores are extinct under high productivity if the relative dispersal is low.
Collapse
Affiliation(s)
- Sounov Marick
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Fugo Takasu
- Department of Environmental Science, Nara Women's University, Nara, Japan
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
4
|
Mas-Carrió E, Churski M, Kuijper D, Fumagalli L. Niche overlap across landscape variability in summer between two large herbivores using eDNA metabarcoding. PLoS One 2024; 19:e0279672. [PMID: 38349911 PMCID: PMC10863879 DOI: 10.1371/journal.pone.0279672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Understanding the relationship between a species feeding strategy and its environment (trophic ecology) is critical to assess environmental requirements and improve management policies. However, measuring trophic interactions remains challenging. Among the available methods, quantifying the plant composition of a species' diet indicates how species use their environment and their associated niche overlap. Nevertheless, most studies focusing on herbivore trophic ecology ignore the influence that landscape variability may have. Here, we explored how landscape variability influences diet composition through niche overlap. We used eDNA metabarcoding to quantify the diet composition of two large herbivores of the Bialowieza Forest, red deer (Cervus elaphus) and European bison (Bison bonasus) to investigate how increasing habitat quality (i.e. higher abundance of deciduous forage species) and predation risk (i.e. density of wolf in the area) influence their diet composition and niche partitioning. Our findings indicate diet composition is non-homogeneous across the landscape, both within and between species. Red deer showed greater diet variability and lower niche overlap within species compared to bison. We detected a reduction of niche overlap for red deer with increasing predation risk, leading to more dissimilar diets, suggesting their feeding behaviour is affected by wolf presence. This correlation was not found for bison, which are rarely predated by wolf. Higher habitat quality was associated with higher niche overlap only within bison, probably due to their suboptimal feeding strategy as browsers. These results show the importance of integrating environment-induced diet variation in studies aimed at determining the landscape usage or niche overlap of a species.
Collapse
Affiliation(s)
- Eduard Mas-Carrió
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Marcin Churski
- Mammal Research institute, Polish Academy of Sciences, Białowieża, Poland
| | - Dries Kuijper
- Mammal Research institute, Polish Academy of Sciences, Białowieża, Poland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Human Institute of Forensic Taphonomy, University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Pablo-Rodríguez JL, Bravo-Monzón ÁE, Montiel-González C, Benítez-Malvido J, Álvarez-Betancourt S, Ramírez-Sánchez O, Oyama K, Arena-Ortiz ML, Alvarez-Añorve MY, Avila-Cabadilla LD. Linking Anthropogenic Landscape Perturbation to Herbivory and Pathogen Leaf Damage in Tropical Tree Communities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3839. [PMID: 38005736 PMCID: PMC10675074 DOI: 10.3390/plants12223839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host-pathogen and vector-pathogen dynamics, is still not well understood in wild plants. This study aimed to provide insights into the main drivers for the incidence of herbivory and plant pathogen damage, specifically, into how vegetation traits at the local and landscape scale modulate such interactions. For this purpose, in the tropical forest of Calakmul (Campeche, Mexico), we characterised the foliar damage caused by herbivores and pathogens in woody vegetation of 13 sampling sites representing a gradient of forest disturbance and fragmentation in an anthropogenic landscape from well preserved to highly disturbed and fragmented areas. We also evaluated how the incidence of such damage was modulated by the vegetation and landscape attributes. We found that the incidence of damage caused by larger, mobile, generalist herbivores, was more sensitive to changes in landscape configuration, while the incidence of damage caused by small and specialised herbivores with low dispersal capacity was more influenced by vegetation and landscape composition. In relation to pathogen symptoms, the herbivore-induced foliar damage seems to be the main factor related to their incidence, indicating the enormous importance of herbivorous insects in the modulation of disease dynamics across tropical vegetation, as they could be acting as vectors and/or facilitating the entry of pathogens by breaking the foliar tissue and the plant defensive barriers. The incidence of pathogen damage also responded to vegetation structure and landscape configuration; the incidence of anthracnose, black spot, and chlorosis, for example, were favoured in sites surrounded by smaller patches and a higher edge density, as well as those with a greater aggregation of semi-evergreen forest patches. Fungal pathogens were shown to be an important cause of foliar damage for many woody species. Our results indicate that an increasing transformation and fragmentation of the tropical forest of southern Mexico could reduce the degree of specialisation in plant-herbivore interactions and enhance the proliferation of generalist herbivores (chewers and scrapers) and of mobile leaf suckers, and consequently, the proliferation of some symptoms associated with fungal pathogens such as fungus black spots and anthracnose. The symptoms associated with viral and bacterial diseases and to nutrient deficiency, such as chlorosis, could also increase in the vegetation in fragmented landscapes with important consequences in the health and productivity of wild and cultivated plant species. This is a pioneering study evaluating the effect of disturbances on multitrophic interactions, offering key insights on the main drivers of the changes in herbivory interactions and incidence of plant pathogens in tropical forests.
Collapse
Affiliation(s)
- José Luis Pablo-Rodríguez
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
| | - Ángel E. Bravo-Monzón
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
| | - Cristina Montiel-González
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, San Francisco de Campeche 24500, Mexico;
| | - Julieta Benítez-Malvido
- Laboratorio de Ecología de Hábitats Alterados, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Mexico;
| | - Sandra Álvarez-Betancourt
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
| | - Oriana Ramírez-Sánchez
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Mexico;
| | - María Leticia Arena-Ortiz
- Laboratorio de Ecogenómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico, Mérida 97302, Mexico;
| | - Mariana Yólotl Alvarez-Añorve
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Luis Daniel Avila-Cabadilla
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| |
Collapse
|
6
|
Carroll EW, Freestone AL. Habitat isolation interacts with top-down and bottom-up processes in a seagrass ecosystem. PLoS One 2023; 18:e0289174. [PMID: 37494351 PMCID: PMC10370773 DOI: 10.1371/journal.pone.0289174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Habitat loss is accelerating at unprecedented rates, leading to the emergence of smaller, more isolated habitat remnants. Habitat isolation adversely affects many ecological processes independently, but little is known about how habitat isolation may interact with ecosystem processes such as top-down (consumer-driven) and bottom-up (resource-driven) effects. To investigate the interactive influence of habitat isolation, resource availability and consumer distribution and impact on community structure, we tested two hypotheses using invertebrate and algal epibionts on temperate seagrasses, an ecosystem of ecological and conservation importance. First, we hypothesized that habitat isolation will change the structure of the seagrass epibiont community, and isolated patches of seagrass will have lower epibiont biomass and different epibiont community composition than contiguous meadows. Second, we hypothesized that habitat isolation would mediate top-down (i.e., herbivory) and bottom-up (i.e., nutrient enrichment) control for algal epibionts. We used observational studies in natural seagrass patches and experimental artificial seagrass to examine three levels of habitat isolation. We further manipulated top-down and bottom-up processes in artificial seagrass through consumer reductions and nutrient additions, respectively. We indeed found that habitat isolation of seagrass patches decreased epibiont biomass and modified epibiont community composition. This pattern was largely due to dispersal limitation of invertebrate epibionts that resulted in a decline in their abundance and richness in isolated patches. Further, habitat isolation reduced consumer abundances, weakening top-down control of algal epibionts in isolated seagrass patches. Nutrient additions, however, reversed this pattern, and allowed a top-down effect on algal richness to emerge in isolated habitats, demonstrating a complex interaction between patch isolation and top-down and bottom-up processes. Habitat isolation may therefore shape the relative importance of central processes in ecosystems, leading to changes in community composition and food web structure in marine habitats.
Collapse
Affiliation(s)
- Elizabeth W Carroll
- Department of Biology, Holy Family University, Philadelphia, Pennsylvania, United States of America
| | - Amy L Freestone
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Cooke SJ, Madliger CL, Lennox RJ, Olden JD, Eliason EJ, Cramp RL, Fuller A, Franklin CE, Seebacher F. Biological mechanisms matter in contemporary wildlife conservation. iScience 2023; 26:106192. [PMID: 36895647 PMCID: PMC9988666 DOI: 10.1016/j.isci.2023.106192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Given limited resources for wildlife conservation paired with an urgency to halt declines and rebuild populations, it is imperative that management actions are tactical and effective. Mechanisms are about how a system works and can inform threat identification and mitigation such that conservation actions that work can be identified. Here, we call for a more mechanistic approach to wildlife conservation and management where behavioral and physiological tools and knowledge are used to characterize drivers of decline, identify environmental thresholds, reveal strategies that would restore populations, and prioritize conservation actions. With a growing toolbox for doing mechanistic conservation research as well as a suite of decision-support tools (e.g., mechanistic models), the time is now to fully embrace the concept that mechanisms matter in conservation ensuring that management actions are tactical and focus on actions that have the potential to directly benefit and restore wildlife populations.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Corresponding author
| | - Christine L. Madliger
- Department of Biology, Algoma University, 1520 Queen St. East, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Robert J. Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca L. Cramp
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Craig E. Franklin
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Tate EG, Pitt AL, Little MD, Tavano JJ, Nickerson MA. Factors contributing to the range expansion and population increase of a native generalist species. AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Ecological communities are becoming more typified by generalist species in conjunction with anthropogenic activities. Using a long-term dataset (1968-2019), we documented the expansion of a native generalist species, the red-eared slider (Trachemys scripta elegans), into a river community, and studied the subsequent population changes that occurred in conjunction with short- and long-term changes within the ecosystem. Trachemys scripta elegans was able to expand into a new geographic area following a harvesting-induced population decline of a native competitor, the northern map turtle (Graptemys geographica). The population of T. s. elegans remained small for approximately 2.5 decades, then significantly increased in conjunction with habitat degradation in the form of increased silt/sediment deposits and nuisance aquatic vegetation growth. Our results demonstrate how a generalist species can expand and establish a population in an area impacted by multiple anthropogenic stressors. This research reveals how ecological communities become characterized by more generalist species following anthropogenically-induced competitive release caused by harvesting of native competitors, habitat degradation, and extreme flooding associated with land cover and climate change.
Collapse
Affiliation(s)
- Eleanor G. Tate
- Environmental Science Program, Trinity College, Hartford, CT 06106, USA
| | - Amber L. Pitt
- Environmental Science Program, Trinity College, Hartford, CT 06106, USA
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Myles D. Little
- Environmental Science Program, Trinity College, Hartford, CT 06106, USA
| | - Joseph J. Tavano
- Environmental Science Program, Trinity College, Hartford, CT 06106, USA
| | - Max A. Nickerson
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Bridle J, Hoffmann A. Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210027. [PMID: 35184590 PMCID: PMC8859517 DOI: 10.1098/rstb.2021.0027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Understanding processes that limit species' ranges has been a core issue in ecology and evolutionary biology for many decades, and has become increasingly important given the need to predict the responses of biological communities to rapid environmental change. However, we still have a poor understanding of evolution at range limits and its capacity to change the ecological 'rules of engagement' that define these communities, as well as the time frame over which this occurs. Here we link papers in the current volume to some key concepts involved in the interactions between evolutionary and ecological processes at species' margins. In particular, we separate hypotheses about species' margins that focus on hard evolutionary limits, which determine how genotypes interact with their environment, from those concerned with soft evolutionary limits, which determine where and when local adaptation can persist in space and time. We show how theoretical models and empirical studies highlight conditions under which gene flow can expand local limits as well as contain them. In doing so, we emphasize the complex interplay between selection, demography and population structure throughout a species' geographical and ecological range that determines its persistence in biological communities. However, despite some impressively detailed studies on range limits, particularly in invertebrates and plants, few generalizations have emerged that can predict evolutionary responses at ecological margins. We outline some directions for future work such as considering the impact of structural genetic variants and metapopulation structure on limits, and the interaction between range limits and the evolution of mating systems and non-random dispersal. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Reeves SE, Kriegisch N, Johnson CR, Ling SD. Kelp habitat fragmentation reduces resistance to overgrazing, invasion and collapse to turf dominance. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. E. Reeves
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - N. Kriegisch
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - C. R. Johnson
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - S. D. Ling
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| |
Collapse
|
11
|
Fragmentation of forest-steppe predicts functional community composition of wild bee and wasp communities. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Stevens RD. Dietary affinities, resource overlap and core structure in Atlantic Forest phyllostomid bat communities. Mamm Rev 2021. [DOI: 10.1111/mam.12271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Richard D. Stevens
- Department of Natural Resources Management and Natural Science Research Laboratory of the Museum Texas Tech University Lubbock Texas79409USA
| |
Collapse
|
13
|
Kulikowski AJ, Zahawi RA, Holl KD. Effects of insect herbivory on seedling mortality in restored and remnant tropical forest. Restor Ecol 2021. [DOI: 10.1111/rec.13467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Andy J. Kulikowski
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
| | - Rakan A. Zahawi
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
- Lyon Arboretum University of Hawai'i at Mānoa 3860 Mānoa Road Honolulu Hawaii 96822 U.S.A
| | - Karen D. Holl
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
| |
Collapse
|
14
|
Smaller and Isolated Grassland Fragments Are Exposed to Stronger Seed and Insect Predation in Habitat Edges. FORESTS 2021. [DOI: 10.3390/f12010054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Habitat fragmentation threatens terrestrial arthropod biodiversity, and thereby also leads to alterations of ecosystem functioning and stability. Predation on insects and seeds by arthropods are two very important ecological functions because of their community-structuring effects. We addressed the effect of fragment connectivity, fragment size, and edge effect on insect and seed predation of arthropods. We studied 60 natural fragments of two grassland ecosystems in the same region (Hungarian Great Plain), 30 forest-steppes, and 30 burial mounds (kurgans). The size of fragments were in the range of 0.16–6.88 ha for forest-steppe and 0.01–0.44 ha for kurgan. We used 2400 sentinel arthropod preys (dummy caterpillars) and 4800 seeds in trays for the measurements. Attack marks on dummy caterpillars were used for predator identification and calculation of insect predation rates. In the case of seeds, predation rates were calculated as the number of missing or damaged seeds per total number of exposed seeds. Increasing connectivity played a role only in generally small kurgans, with a negative effect on insect and seed predation rates in the edges. In contrast, fragment size moderated edge effects on insect and seed predation rates in generally large forest-steppes. The difference between edges and centres was more pronounced in small than in large fragments. Our study emphasizes the important role of landscape and fragment-scale factors interacting with edge effect in shaping ecosystem functions in natural grassland fragments of modified landscapes. Managing functional landscapes to optimize the assessment of ecosystem functions and services needs a multispatial scale approach.
Collapse
|
15
|
Batáry P, Rösch V, Dormann CF, Tscharntke T. Increasing connectivity enhances habitat specialists but simplifies plant-insect food webs. Oecologia 2020; 195:539-546. [PMID: 33367959 PMCID: PMC7882472 DOI: 10.1007/s00442-020-04830-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/09/2020] [Indexed: 11/02/2022]
Abstract
Strong declines of grassland species diversity in small and isolated grassland patches have been observed at local and landscape scales. Here, we study how plant-herbivore interaction webs and habitat specialisation of leafhopper communities change with the size of calcareous grassland fragments and landscape connectivity. We surveyed leafhoppers and plants on 14 small (0.1-0.6 ha) and 14 large (1.2-8.8 ha) semi-natural calcareous grassland fragments in Central Germany, differing in isolation from other calcareous grasslands and in the percentage of arable land in the surrounding landscape (from simple to complex landscapes). We quantified weighted trophic links between plants and their phytophagous leafhoppers for each grassland fragment. We found that large and well-connected grassland fragments harboured a high portion of specialist leafhopper species, which in turn yielded low interaction diversity and simple plant-leafhopper food webs. In contrast, small and well-connected fragments exhibited high levels of generalism, leading to higher interaction diversity. In conclusion, food web complexity appeared to be a poor indicator for the management of insect diversity, as it is driven by specialist species, which require high connectivity of large fragments in complex landscapes. We conclude that habitat specialists should be prioritized since generalist species associated with small fragments are also widespread in the surrounding landscape matrix.
Collapse
Affiliation(s)
- Péter Batáry
- "Lendület" Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, 2163, Vácrátót, Hungary.
| | - Verena Rösch
- Ecosystem Analysis, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstr. 7, 76829, Landau, Germany
| | - Carsten F Dormann
- Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
| | - Teja Tscharntke
- Agroecology, University of Goettingen, Grisebachstr. 6, 37077, Göttingen, Germany
| |
Collapse
|
16
|
Krishnadas M, Agarwal K, Comita LS. Edge effects alter the role of fungi and insects in mediating functional composition and diversity of seedling recruits in a fragmented tropical forest. ANNALS OF BOTANY 2020; 126:1181-1191. [PMID: 32710752 PMCID: PMC7684699 DOI: 10.1093/aob/mcaa138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS In fragmented forests, proximity to forest edges can favour the establishment of resource-acquisitive species over more resource-conservative species. During seedling recruitment, resource-acquisitive species may benefit from either higher light availability or weaker top-down effects of natural enemies. The relative importance of light and enemies for recruitment has seldom been examined with respect to edge effects. METHODS In a human-modified wet tropical forest in India, we first examined how functional traits indicative of resource-acquisitive vs. resource-conservative strategies, i.e. specific leaf area (SLA), leaf dry matter content, wood density and seed size, explained interspecific differences in densities of seedling recruits with distance to the forest edge. Then, we checked whether fungicide and insecticide treatments and canopy openness (proxy for light availability) explained edge effects on trait-mediated changes in seedling density. Finally, we examined whether light availability and natural enemy activity explained edge effects on functional diversity of seedling recruits. KEY RESULTS Up to 60 m from edges, recruit densities increased with decreasing seed size, but not at 90-100 m, where recruit densities increased with higher SLA. Trait-mediated variation in recruit densities changed with pesticides only at 90-100 m: compared with control plots, fungicide increased recruit densities for low SLA species and insecticide increased smaller seeded species. For SLA, wood density and seed size, functional diversity of recruits was higher at 90-100 m than at 0-5 m. At 90-100 m, fungicide decreased functional diversity for SLA and insecticide reduced seed size diversity compared with control plots. Canopy openness explained neither variation in recruit density in relation to traits nor functional diversity. CONCLUSIONS Altered biotic interactions can mediate local changes to trait composition and functional diversity during seedling recruitment in forest fragments, hinting at downstream effects on the structure and function of human-modified forests.
Collapse
Affiliation(s)
- Meghna Krishnadas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
- Centre for Cellular and Molecular Biology, Habshiguda, Hyderabad, Telangana, India
| | - Kavya Agarwal
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Liza S Comita
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
17
|
Wölfling M, Uhl B, Fiedler K. Ecological Drift and Directional Community Change in an Isolated Mediterranean Forest Reserve-Larger Moth Species Under Higher Threat. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5908288. [PMID: 32948873 PMCID: PMC7500980 DOI: 10.1093/jisesa/ieaa097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 04/29/2023]
Abstract
Long-term data are important to understand the changes in ecological communities over time but are quite rare for insects. We analyzed such changes using historic museum collections. For our study area, an isolated forest reserve in North-East Italy, data from the past 80 yr were available. We used records of 300 moth species to analyze whether extinction risk was linked to their body size or to their degree of ecological specialization. Specialization was scored 1) by classifying larval food affiliations, habitat preferences, and the northern distributional limit and 2) by analyzing functional dispersion (FDis) within species assemblages over time. Our results show that locally extinct species (mean wingspan: 37.0 mm) were larger than persistent (33.2 mm) or previously unrecorded ones (30.7 mm), leading to a smaller mean wingspan of the moth community over time. Some ecological filters appear to have selected against bigger species. By using coarse specialization categories, we did not observe any relationship with local extinction risk. However, FDis, calculated across 12 species traits, significantly decreased over time. We conclude that simple classification systems might fail in reflecting changes in community-wide specialization. Multivariate approaches such as FDis may provide deeper insight, as they reflect a variety of ecological niche dimensions. With the abandonment of extensive land use practices, natural succession seems to have shifted the moth community toward a preponderance of forest-affiliated species, leading to decreased FDis values. Multivariate analyses of species composition also confirmed that the moth community has significantly changed during the last 80 yr.
Collapse
Affiliation(s)
- Mirko Wölfling
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg, Vienna, Austria
| | - Britta Uhl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg, Vienna, Austria
| | - Konrad Fiedler
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg, Vienna, Austria
| |
Collapse
|
18
|
Anderson RM, Dallar NM, Pirtel NL, Connors CJ, Mickley J, Bagchi R, Singer MS. Bottom-Up and Top-Down Effects of Forest Fragmentation Differ Between Dietary Generalist and Specialist Caterpillars. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Spaniol RL, Duarte LDS, Mendonça MDS, Iserhard CA. Combining functional traits and phylogeny to disentangling Amazonian butterfly assemblages on anthropogenic gradients. Ecosphere 2019. [DOI: 10.1002/ecs2.2837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ricardo Luís Spaniol
- Programa de Pós‐graduação em Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brasil
| | - Leandro da Silva Duarte
- Programa de Pós‐graduação em Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brasil
| | - Milton de Souza Mendonça
- Programa de Pós‐graduação em Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brasil
| | - Cristiano Agra Iserhard
- Programa de Pós‐graduação em Biologia Animal Universidade Federal de Pelotas Capão do Leão Rio Grande do Sul Brasil
| |
Collapse
|
20
|
Guyot V, Jactel H, Imbaud B, Burnel L, Castagneyrol B, Heinz W, Deconchat M, Vialatte A. Tree diversity drives associational resistance to herbivory at both forest edge and interior. Ecol Evol 2019; 9:9040-9051. [PMID: 31463002 PMCID: PMC6706233 DOI: 10.1002/ece3.5450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/12/2022] Open
Abstract
Tree diversity is increasingly acknowledged as an important driver of insect herbivory. However, there is still a debate about the direction of associational effects that can range from associational resistance (i.e., less damage in mixed stands than in monocultures) to the opposite, associational susceptibility. Discrepancies among published studies may be due to the overlooked effect of spatially dependent processes such as tree location within forests. We addressed this issue by measuring crown defoliation and leaf damage made by different guilds of insect herbivores on oaks growing among conspecific versus heterospecific neighbors at forest edges versus interior, in two closed sites in SW France forests. Overall, oaks were significantly less defoliated among heterospecific neighbors (i.e., associational resistance), at both forest edge and interior. At the leaf level, guild diversity and leaf miner herbivory significantly increased with tree diversity regardless of oak location within stands. Other guilds showed no clear response to tree diversity or oak location. We showed that herbivore response to tree diversity varied among insect feeding guilds but not between forest edges and interior, with inconsistent patterns between sites. Importantly, we show that oaks were more defoliated in pure oak plots than in mixed plots at both edge and forest interior and that, on average, defoliation decreased with increasing tree diversity from one to seven species. We conclude that edge conditions could be interacting with tree diversity to regulate insect defoliation, but future investigations are needed to integrate them into the management of temperate forests, notably by better understanding the role of the landscape context.
Collapse
Affiliation(s)
- Virginie Guyot
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- BIOGECO, INRA, Univ. BordeauxCestasFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | | | | | - Laurent Burnel
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | | | - Wilfried Heinz
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | - Marc Deconchat
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | - Aude Vialatte
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| |
Collapse
|
21
|
Wang R, Shi YS, Zhang YX, Xu GF, Shen GC, Chen XY. Distance-dependent seed‒seedling transition in the tree Castanopsis sclerophylla is altered by fragment size. Commun Biol 2019; 2:277. [PMID: 31372516 PMCID: PMC6659698 DOI: 10.1038/s42003-019-0528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/04/2019] [Indexed: 11/24/2022] Open
Abstract
Negative distance-dependence of conspecific seedling mortality (NDisDM) is a crucial stabilizing force that regulates plant diversity, but it remains unclear whether and how fragment size shifts the strength of NDisDM. Here, we surveyed the seed‒seedling transition process for a total of 25,500 seeds of a local dominant tree species on islands of various sizes in a reservoir and on the nearby mainland. We found significant NDisDM on the mainland and large and medium islands, with significantly stronger NDisDM on medium islands. However, positive distance-dependent mortality was detected on small islands. Changes in distance-dependence were critically driven by both rodent attack and pathogen infestation, which were significantly affected by fragment size. Our results emphasize the necessity of incorporating the effects of fragment size on distance-dependent regeneration of dominant plant species into the existing frameworks for better predicting the consequences of habitat fragmentation.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yi-Su Shi
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yu-Xuan Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Gao-Fu Xu
- Xin’an River Development Corporation, 311700 Chun’an, China
| | - Guo-Chun Shen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, 200092 Shanghai, China
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, 200092 Shanghai, China
| |
Collapse
|
22
|
Wimp GM, Ries L, Lewis D, Murphy SM. Habitat edge responses of generalist predators are predicted by prey and structural resources. Ecology 2019; 100:e02662. [PMID: 31013545 DOI: 10.1002/ecy.2662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 11/09/2022]
Abstract
Generalist predators are thought to be less vulnerable to habitat fragmentation because they use diverse resources across larger spatial scales than specialist predators. Thus, it has been suggested that generalist predators may respond positively to habitat edges or demonstrate no edge response, because they can potentially use prey resources equally well on both sides of the habitat edge. However, most predictions about generalist predator responses to the habitat edge are based solely on prey resources, without consideration of other potential drivers. For instance, structural resources are essential for some species to build webs to capture prey or to avoid intraguild predation and cannibalism. In this study, we used both prey and structural resources to predict the response of four predator functional groups (hunting spiders, web-building spiders, aerial predators, and epigeic predators that feed on the detrital/algal food web) to a habitat edge between two salt-marsh grasses (Spartina alterniflora and Spartina patens). We found that generalist predators largely demonstrated negative responses to the habitat edge and had distinct habitat associations. Positive edge responses were only observed in one functional group (hunting spiders), and this pattern was driven by the two most abundant species. Negative responses to the habitat edge were more common among taxa and were better explained by structural resources rather than prey resources in the two habitats. Although it is generally acknowledged that specialists decline in fragmented habitats, generalists are thought to be more resilient. However, our research demonstrates that even generalists have habitat structural or food resource requirements that may limit their resilience to habitat loss and fragmentation.
Collapse
Affiliation(s)
- Gina M Wimp
- Biology Department, Georgetown University, Washington, D.C., 20057, USA
| | - Leslie Ries
- Biology Department, Georgetown University, Washington, D.C., 20057, USA
| | - Danny Lewis
- Biology Department, Georgetown University, Washington, D.C., 20057, USA
| | - Shannon M Murphy
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208, USA
| |
Collapse
|
23
|
Krishnadas M, Bagchi R, Sridhara S, Comita LS. Weaker plant-enemy interactions decrease tree seedling diversity with edge-effects in a fragmented tropical forest. Nat Commun 2018; 9:4523. [PMID: 30375390 PMCID: PMC6207651 DOI: 10.1038/s41467-018-06997-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
In fragmented forests, tree diversity declines near edges but the ecological processes underlying this loss of diversity remain poorly understood. Theory predicts that top-down regulation of seedling recruitment by insect herbivores and fungal pathogens contributes to maintaining tree diversity in forests, but it is unknown whether proximity to forest edges compromises these diversity-enhancing biotic interactions. Here we experimentally demonstrate that weakened activity of fungal pathogens and insect herbivores reduced seedling diversity, despite similar diversity of seed rain, during recruitment near forest edges in a human-modified tropical landscape. Only at sites farthest from forest edges (90-100 m) did the application of pesticides lower seedling diversity relative to control plots. Notably, lower seedling diversity corresponded with weaker density-dependent mortality attributable to insects and fungi during the seed-to-seedling transition. We provide mechanistic evidence that edge-effects can manifest as cryptic losses of crucial biotic interactions that maintain diversity.
Collapse
Affiliation(s)
- Meghna Krishnadas
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA.
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Storrs, CT, 06269, USA
| | - Sachin Sridhara
- National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, Karnataka, 560096, India
| | - Liza S Comita
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
- Smithsonian Tropical Research Institute, Box, 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
24
|
Stireman JO, Singer MS. Tritrophic niches of insect herbivores in an era of rapid environmental change. CURRENT OPINION IN INSECT SCIENCE 2018; 29:117-125. [PMID: 30551817 DOI: 10.1016/j.cois.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
A multi-trophic perspective improves understanding of the ecological and evolutionary consequences of rapid environmental change on insect herbivores. Loss of specialized enemies due to human impacts is predicted to dramatically reduce the number of tritrophic niches of herbivores compared to a bitrophic niche perspective. Habitat fragmentation and climate change promote the loss of both specialist enemies and herbivores, favoring ecological generalism across trophic levels. Species invasion can fundamentally alter trophic interactions toward various outcomes and contributes to ecological homogenization. Adaptive evolution on ecological timescales is expected to dampen tritrophic instabilities and diversify niches, yet its ability to compensate for tritrophic niche losses in the short term is unclear.
Collapse
Affiliation(s)
- John O Stireman
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
25
|
Müller C, Orians CM. From plants to herbivores: novel insights into the ecological and evolutionary consequences of plant variation. Oecologia 2018; 187:357-360. [DOI: 10.1007/s00442-018-4126-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
|