1
|
John C, Avgar T, Rittger K, Smith JA, Stephenson LW, Stephenson TR, Post E. Pursuit and escape drive fine-scale movement variation during migration in a temperate alpine ungulate. Sci Rep 2024; 14:15068. [PMID: 38956435 PMCID: PMC11219842 DOI: 10.1038/s41598-024-65948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Climate change reduces snowpack, advances snowmelt phenology, drives summer warming, alters growing season precipitation regimes, and consequently modifies vegetation phenology in mountain systems. Elevational migrants track spatial variation in seasonal plant growth by moving between ranges at different elevations during spring, so climate-driven vegetation change may disrupt historic benefits of migration. Elevational migrants can furthermore cope with short-term environmental variability by undertaking brief vertical movements to refugia when sudden adverse conditions arise. We uncover drivers of fine-scale vertical movement variation during upland migration in an endangered alpine specialist, Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using a 20-year study of GPS collar data collected from 311 unique individuals. We used integrated step-selection analysis to determine factors that promote vertical movements and drive selection of destinations following vertical movements. Our results reveal that relatively high temperatures consistently drive uphill movements, while precipitation likely drives downhill movements. Furthermore, bighorn select destinations at their peak annual biomass and maximal time since snowmelt. These results indicate that although Sierra Nevada bighorn sheep seek out foraging opportunities related to landscape phenology, they compensate for short-term environmental stressors by undertaking brief up- and downslope vertical movements. Migrants may therefore be impacted by future warming and increased storm frequency or intensity, with shifts in annual migration timing, and fine-scale vertical movement responses to environmental variability.
Collapse
Affiliation(s)
- Christian John
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA.
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Tal Avgar
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
- Department of Biology, University of British Columbia - Okanagan, Kelowna, BC, Canada
- Wildlife Science Centre, Biodiversity Pathways Ltd., Kelowna, BC, Canada
| | - Karl Rittger
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Boulder, CO, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Logan W Stephenson
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Thomas R Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, Bishop, CA, USA
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Lefeuvre M, Lu C, Botero CA, Rutkowska J. Variable ambient temperature promotes song learning and production in zebra finches. Behav Ecol 2023; 34:408-417. [PMID: 37192924 PMCID: PMC10183203 DOI: 10.1093/beheco/arad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Current climate change is leading to increasingly unpredictable environmental conditions and is imposing new challenges to wildlife. For example, ambient conditions fluctuating during critical developmental periods could potentially impair the development of cognitive systems and may therefore have a long-term influence on an individual's life. We studied the impact of temperature variability on zebra finch cognition, focusing on song learning and song quality (N = 76 males). We used a 2 × 2 factorial experiment with two temperature conditions (stable and variable). Half of the juveniles were cross-fostered at hatching to create a mismatch between pre- and posthatching conditions, the latter matching this species' critical period for song learning. We found that temperature variability did not affect repertoire size, syllable consistency, or the proportion of syllables copied from a tutor. However, birds that experienced variable temperatures in their posthatching environment were more likely to sing during recordings. In addition, birds that experienced variable prenatal conditions had higher learning accuracy than birds in stable prenatal environments. These findings are the first documented evidence that variable ambient temperatures can influence song learning in zebra finches. Moreover, they indicate that temperature variability can act as a form of environmental enrichment with net positive effects on cognition.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - ChuChu Lu
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - Carlos A Botero
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA
| | - Joanna Rutkowska
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
| |
Collapse
|
3
|
Berg JE, Eacker DR, Hebblewhite M, Merrill EH. Summer elk calf survival in a partially migratory population. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jodi E. Berg
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| | | | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation University of Montana Missoula MT 59812 USA
| | - Evelyn H. Merrill
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| |
Collapse
|
4
|
Theoret J, Cavedon M, Hegel T, Hervieux D, Schwantje H, Steenweg R, Watters M, Musiani M. Seasonal movements in caribou ecotypes of Western Canada. MOVEMENT ECOLOGY 2022; 10:12. [PMID: 35272704 PMCID: PMC8908644 DOI: 10.1186/s40462-022-00312-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/27/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Several migratory ungulates, including caribou, are dramatically declining. Caribou of the Barren-ground ecotype, which forms its own subspecies, are known to be mainly migratory. By contrast, within the Woodland subspecies, animals of the Boreal ecotype are known to be mainly sedentary, while those within the Northern and Central Mountain ecotypes to be partially migratory, with only some individuals migrating. Promotion of conservation actions (e.g., habitat protection) that are specific to both residents and migrants, as well as to the areas they frequent seasonally (which may be separate for migrants), requires distinguishing migration from other movement behaviours, which might be a challenge. METHODS We aimed at assessing seasonal movement behaviours, including migratory, resident, dispersing, and nomadic, for caribou belonging to the Barren-ground and Woodland subspecies and ecotypes. We examined seasonal displacement, both planar and altitudinal, and seasonal ranges overlap for 366 individuals that were GPS-collared in Northern and Western Canada. Lastly, we assessed the ability of caribou individuals to switch between migratory and non-migratory movement behaviours between years. RESULTS We detected migratory behaviour within each of the studied subspecies and ecotypes. However, seasonal ranges overlap (an index of sedentary behaviour) varied, with proportions of clear migrants (0 overlap) of 40.94% for Barren-ground caribou and 23.34% for Woodland caribou, and of 32.95%, 54.87%, and 8.86% for its Northern Mountain, Central Mountain, and Boreal ecotype, respectively. Plastic switches of individuals were also detected between migratory, resident, dispersing, and nomadic seasonal movements performed across years. CONCLUSIONS Our unexpected findings of marked seasonal movement plasticity in caribou indicate that this phenomenon should be better studied to understand the resilience of this endangered species to habitat and climatic changes. Our results that a substantial proportion of individuals engaged in seasonal migration in all studied ecotypes indicate that caribou conservation plans should account for critical habitat in both summer and winter ranges. Accordingly, conservation strategies are being devised for the Woodland subspecies and its ecotypes, which were found to be at least partially migratory in this study. Our findings that migration is detectable with both planar and altitudinal analyses of seasonal displacement provide a tool to better define seasonal ranges, also in mountainous and hilly environments, and protect habitat there.
Collapse
Affiliation(s)
- Jessica Theoret
- Faculty of Environmental Design, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, YT, Y1A 2C6, Canada
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, 4999 98 Ave., Edmonton, AB, T6B 2X3, Canada
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, AB, T8V 6J4, Canada
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, 2080 Labieux Road, Nanaimo, BC, V9T 6J9, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Megan Watters
- Land and Resource Specialist, 300 - 10003 110th Avenue, Fort St. John, BC, V1J 6M7, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Urbano F, Cagnacci F. Data Management and Sharing for Collaborative Science: Lessons Learnt From the Euromammals Initiative. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current and future consequences of anthropogenic impacts such as climate change and habitat loss on ecosystems will be better understood and therefore addressed if diverse ecological data from multiple environmental contexts are more effectively shared. Re-use requires that data are readily available to the scientific scrutiny of the research community. A number of repositories to store shared data have emerged in different ecological domains and developments are underway to define common data and metadata standards. Nevertheless, the goal is far from being achieved and many challenges still need to be addressed. The definition of best practices for data sharing and re-use can benefit from the experience accumulated by pilot collaborative projects. The Euromammals bottom-up initiative has pioneered collaborative science in spatial animal ecology since 2007. It involves more than 150 institutes to address scientific, management and conservation questions regarding terrestrial mammal species in Europe using data stored in a shared database. In this manuscript we present some key lessons that we have learnt from the process of making shared data and knowledge accessible to researchers and we stress the importance of data management for data quality assurance. We suggest putting in place a pro-active data review before data are made available in shared repositories via robust technical support and users’ training in data management and standards. We recommend pursuing the definition of common data collection protocols, data and metadata standards, and shared vocabularies with direct involvement of the community to boost their implementation. We stress the importance of knowledge sharing, in addition to data sharing. We show the crucial relevance of collaborative networking with pro-active involvement of data providers in all stages of the scientific process. Our main message is that for data-sharing collaborative efforts to obtain substantial and durable scientific returns, the goals should not only consist in the creation of e-infrastructures and software tools but primarily in the establishment of a network and community trust. This requires moderate investment, but over long-term horizons.
Collapse
|
6
|
Borowik T, Kowalczyk R, Maślanko W, Duda N, Ratkiewicz M. Annual movement strategy predicts within-season space use by moose. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03059-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The heterogeneity of resource availability shapes animal movements at different spatio-temporal scales. Given that movements at various scales are assumed to be linked, the space use of temperate ungulates within seasonal ranges (winter, summer) should be related to their movement patterns at the annual scale. In this study, we aimed to evaluate the level of stationarity of moose (Alces alces) within their seasonal ranges and to link annual movement patterns to within-season space use. We analysed the ranging behaviour of 32 moose fitted with GPS collars from two study areas in Eastern Poland, where at the annual scale a fraction of individuals migrate between summer and winter ranges (partial migration). Our results revealed that moose stationarity within seasonal home ranges expressed remarkable variation. The probability of moose stationarity within seasonal ranges was significantly higher (by 23%), and the mean home range size tended to be lower (9.7 km2) among individuals that seasonally migrated than among non-migratory moose (14.3 km2). In addition, we found that (i) in summer, moose were significantly more stationary (by 19%) and exhibited a smaller mean home range size than in winter (9.0 and 15.9 km2, respectively) and (ii) the mean seasonal home range size of males (19.6 km2) was remarkably greater than that of females (9.6 km2). Given the significant link between annual and seasonal scales of animal movements, any environmental change (e.g. climate warming) affecting an animal’s annual movement strategy could alter within-season animal space use and presumably individual fitness.
Significance statement
To maximize their fitness, animals adjust their movements to deal with variations in resource distribution in the landscape. The scale of spatio-temporal variation causes different types of migratory behaviours, ranging from year-round stationarity to migration, when individuals establish spatially separated seasonal ranges. Studies on ungulates suggest that the stability and the size of seasonal home ranges can be linked to annual movement behaviour. Using the locations of GPS-tracked moose, we demonstrate in this study that migratory individuals were more prone to establishing stable seasonal home ranges (especially in summer) than moose that occupied the same area throughout the year. Moreover, stable seasonal home ranges were remarkably smaller in summer than in winter, which may suggest a season-specific spatial distribution and a renewability of moose forage. Our results show a clear link between different temporal scales of animal movements.
Collapse
|
7
|
Building a shared vision of the future for multifunctional agricultural landscapes. Lessons from a long term socio-ecological research site in south-western France. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Sci Rep 2020; 10:11946. [PMID: 32686691 PMCID: PMC7371708 DOI: 10.1038/s41598-020-68046-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
The link between spatio-temporal resource patterns and animal movement behaviour is a key ecological process, however, limited experimental support for this connection has been produced at the home range scale. In this study, we analysed the spatial responses of a resident large herbivore (roe deer Capreolus capreolus) using an in situ manipulation of a concentrated food resource. Specifically, we experimentally altered feeding site accessibility to roe deer and recorded (for 25 animal-years) individual responses by GPS tracking. We found that, following the loss of their preferred resource, roe deer actively tracked resource dynamics leading to more exploratory movements, and larger, spatially-shifted home ranges. Then, we showed, for the first time experimentally, the importance of site fidelity in the maintenance of large mammal home ranges by demonstrating the return of individuals to their familiar, preferred resource despite the presence of alternate, equally-valuable food resources. This behaviour was modulated at the individual level, where roe deer characterised by a high preference for feeding sites exhibited more pronounced behavioural adjustments during the manipulation. Together, our results establish the connections between herbivore movements, space-use, individual preference, and the spatio-temporal pattern of resources in home ranging behaviour.
Collapse
|
9
|
Rehnus M, Peláez M, Bollmann K. Advancing plant phenology causes an increasing trophic mismatch in an income breeder across a wide elevational range. Ecosphere 2020. [DOI: 10.1002/ecs2.3144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Maik Rehnus
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Zürcherstrasse 111 Birmensdorf8903Switzerland
| | - Marta Peláez
- Departamento de Sistemas y Recursos Naturales Universidad Politécnica de Madrid Ciudad Universitaria s/n Madrid28040Spain
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Zürcherstrasse 111 Birmensdorf8903Switzerland
| |
Collapse
|
10
|
Peláez M, Gaillard JM, Bollmann K, Heurich M, Rehnus M. Large-scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. J Anim Ecol 2020; 89:1906-1917. [PMID: 32379900 DOI: 10.1111/1365-2656.13251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
Hopkins' Bioclimatic Law predicts geographical patterns in phenological timing by establishing a correspondence between latitudinal and altitudinal gradients. First proposed for key phenological events of plants, such as leaf sprouting or flowering dates, this law has rarely been used to assess the geographical equivalence of key life-history traits of mammals. We hypothesize that (H1) parturition dates of European roe deer Capreolus capreolus are delayed and more synchronized at higher latitudes and altitudes, (H2) parturition timing varies along latitudinal and altitudinal gradients in a way that matches the Hopkins' Bioclimatic Law and (H3) females adjust parturition timing to match the period of high energy demand with peak resource availability. We used parturition dates of 7,444 European roe deer from Switzerland to assess altitudinal variation in birth timing and synchrony from 288 to 2,366 m a.s.l. We then performed a literature survey to compare altitudinal results with those from different populations along the species' latitudinal range of distribution. Finally, we performed spatial analysis combining our highly resolved altitudinal data on parturition dates with plant phenology data. As expected, parturition dates were delayed with increasing latitude and altitude. This delay matched the Bioclimatic Law, as the effect of 1º increase in latitude was similar to 120 m increase in altitude. However, while parturitions were more synchronized with increasing altitude, we did not detect any trend along the latitudinal gradient. Finally, plant phenology explained altitudinal variation in parturition timing better than a linear effect of altitude. Our findings clearly demonstrate the ability of a large herbivore to match parturition timing with phenological conditions across the altitudinal gradient, even at the smallest spatial scales.
Collapse
Affiliation(s)
- Marta Peláez
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain.,Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco Heurich
- Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Germany.,Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany
| | - Maik Rehnus
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
11
|
Gehr B, Bonnot NC, Heurich M, Cagnacci F, Ciuti S, Hewison AJM, Gaillard J, Ranc N, Premier J, Vogt K, Hofer E, Ryser A, Vimercati E, Keller L. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J Anim Ecol 2020; 89:1329-1339. [DOI: 10.1111/1365-2656.13202] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/22/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175 CNRS ‐ Université de Montpellier ‐ Université Paul‐Valéry Montpellier ‐ EPHE Montpellier Cedex 5 France
| | | | - Marco Heurich
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Wildlife Ecology and Wildlife Management Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre Fondazione Edmund Mach Trentino Italy
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Simone Ciuti
- School of Biology and Environmental Science University College Dublin Science Centre ‐ West Dublin Ireland
| | | | - Jean‐Michel Gaillard
- Unité Mixte de Recherche CNRS‐Université Lyon 1 N85558 ‘Biométrie et Biologie Evolutive’ Villeurbanne Cedex France
| | - Nathan Ranc
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre Fondazione Edmund Mach Trentino Italy
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Joe Premier
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Wildlife Ecology and Wildlife Management Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Kristina Vogt
- KORACarnivore Ecology and Wildlife Management Muri Switzerland
| | - Elizabeth Hofer
- KORACarnivore Ecology and Wildlife Management Muri Switzerland
| | - Andreas Ryser
- KORACarnivore Ecology and Wildlife Management Muri Switzerland
| | - Eric Vimercati
- KORACarnivore Ecology and Wildlife Management Muri Switzerland
| | - Lukas Keller
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
12
|
Gervais L, Hewison AJM, Morellet N, Bernard M, Merlet J, Cargnelutti B, Chaval Y, Pujol B, Quéméré E. Pedigree-free quantitative genetic approach provides evidence for heritability of movement tactics in wild roe deer. J Evol Biol 2020; 33:595-607. [PMID: 31985133 DOI: 10.1111/jeb.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
Assessing the evolutionary potential of animal populations in the wild is crucial to understanding how they may respond to selection mediated by rapid environmental change (e.g. habitat loss and fragmentation). A growing number of studies have investigated the adaptive role of behaviour, but assessments of its genetic basis in a natural setting remain scarce. We combined intensive biologging technology with genome-wide data and a pedigree-free quantitative genetic approach to quantify repeatability, heritability and evolvability for a suite of behaviours related to the risk avoidance-resource acquisition trade-off in a wild roe deer (Capreolus capreolus) population inhabiting a heterogeneous, human-dominated landscape. These traits, linked to the stress response, movement and space-use behaviour, were all moderately to highly repeatable. Furthermore, the repeatable among-individual component of variation in these traits was partly due to additive genetic variance, with heritability estimates ranging from 0.21 ± 0.08 to 0.70 ± 0.11 and evolvability ranging from 1.1% to 4.3%. Changes in the trait mean can therefore occur under hypothetical directional selection over just a few generations. To the best of our knowledge, this is the first empirical demonstration of additive genetic variation in space-use behaviour in a free-ranging population based on genomic relatedness data. We conclude that wild animal populations may have the potential to adjust their spatial behaviour to human-driven environmental modifications through microevolutionary change.
Collapse
Affiliation(s)
- Laura Gervais
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Aidan J M Hewison
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Nicolas Morellet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Maria Bernard
- INRAE, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, SIGENAE, Jouy-en-Josas, France
| | - Joël Merlet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Bruno Cargnelutti
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Yannick Chaval
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France.,USR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, Perpignan Cedex, France
| | - Erwan Quéméré
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,ESE, Ecology and Ecosystems Health, Ouest, INRAE, Rennes, France
| |
Collapse
|
13
|
Environmental Predictability as a Cause and Consequence of Animal Movement. Trends Ecol Evol 2019; 35:163-174. [PMID: 31699411 DOI: 10.1016/j.tree.2019.09.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
The impacts of environmental predictability on the ecology and evolution of animal movement have been the subject of vigorous speculation for several decades. Recently, the swell of new biologging technologies has further stimulated their investigation. This advancing research frontier, however, still lacks conceptual unification and has so far focused little on converse effects. Populations of moving animals have ubiquitous effects on processes such as nutrient cycling and seed dispersal and may therefore shape patterns of environmental predictability. Here, we synthesise the main strands of the literature on the feedbacks between environmental predictability and animal movement and discuss how they may react to anthropogenic disruption, leading to unexpected threats for wildlife and the environment.
Collapse
|
14
|
Patin R, Etienne M, Lebarbier E, Chamaillé‐Jammes S, Benhamou S. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements. J Anim Ecol 2019; 89:44-56. [DOI: 10.1111/1365-2656.13105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Rémi Patin
- Centre d'Écologie Fonctionnelle et Évolutive CNRS et Université de Montpellier Montpellier France
| | - Marie‐Pierre Etienne
- Institut de recherche mathématique de RennesUniversité de Rennes, AgroCampusOuest Rennes France
| | - Emilie Lebarbier
- Mathématiques et Informatique Appliquées Agroparistech Paris France
| | - Simon Chamaillé‐Jammes
- Centre d'Écologie Fonctionnelle et Évolutive CNRS et Université de Montpellier Montpellier France
- LTSER France Zone Atelier ‘Hwange’ Hwange National Park Dete Zimbabwe
- Department of Zoology & Entomology Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Simon Benhamou
- Centre d'Écologie Fonctionnelle et Évolutive CNRS et Université de Montpellier Montpellier France
| |
Collapse
|
15
|
Ducros D, Morellet N, Patin R, Atmeh K, Debeffe L, Cargnelutti B, Chaval Y, Lourtet B, Coulon A, Hewison AJM. Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape. OIKOS 2019. [DOI: 10.1111/oik.06793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Delphine Ducros
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Univ CP 135, 57 rue Cuvier FR‐75005 Paris France
- CEFS, Univ. de Toulouse, INRA Castanet‐Tolosan France
| | | | - Rémi Patin
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD Montpellier France
| | - Kamal Atmeh
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), Univ. Lyon, CNRS Villeurbanne France
| | - Lucie Debeffe
- CEFS, Univ. de Toulouse, INRA Castanet‐Tolosan France
| | | | | | - Bruno Lourtet
- CEFS, Univ. de Toulouse, INRA Castanet‐Tolosan France
| | - Aurélie Coulon
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Univ CP 135, 57 rue Cuvier FR‐75005 Paris France
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD Montpellier France
| | | |
Collapse
|
16
|
Benoit L, Hewison AJM, Coulon A, Debeffe L, Grémillet D, Ducros D, Cargnelutti B, Chaval Y, Morellet N. Accelerating across the landscape: The energetic costs of natal dispersal in a large herbivore. J Anim Ecol 2019; 89:173-185. [DOI: 10.1111/1365-2656.13098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Benoit
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | | | - Aurélie Coulon
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
- CEFE, CNRS Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Lucie Debeffe
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | - David Grémillet
- CEFE, CNRS Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
- FitzPatrick Institute DST‐NRF Centre of Excellence at the University of Cape Town Rondebosch South Africa
| | - Delphine Ducros
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
| | | | - Yannick Chaval
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | | |
Collapse
|
17
|
Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLoS One 2019; 14:e0216223. [PMID: 31071155 PMCID: PMC6508664 DOI: 10.1371/journal.pone.0216223] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.
Collapse
|