1
|
Tariq A, Sardans J, Zeng F, Graciano C, Hughes AC, Farré-Armengol G, Peñuelas J. Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services. GLOBAL CHANGE BIOLOGY 2024; 30:e17292. [PMID: 38634556 DOI: 10.1111/gcb.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Drylands, comprising semi-arid, arid, and hyperarid regions, cover approximately 41% of the Earth's land surface and have expanded considerably in recent decades. Even under more optimistic scenarios, such as limiting global temperature rise to 1.5°C by 2100, semi-arid lands may increase by up to 38%. This study provides an overview of the state-of-the-art regarding changing aridity in arid regions, with a specific focus on its effects on the accumulation and availability of carbon (C), nitrogen (N), and phosphorus (P) in plant-soil systems. Additionally, we summarized the impacts of rising aridity on biodiversity, service provisioning, and feedback effects on climate change across scales. The expansion of arid ecosystems is linked to a decline in C and nutrient stocks, plant community biomass and diversity, thereby diminishing the capacity for recovery and maintaining adequate water-use efficiency by plants and microbes. Prolonged drought led to a -3.3% reduction in soil organic carbon (SOC) content (based on 148 drought-manipulation studies), a -8.7% decrease in plant litter input, a -13.0% decline in absolute litter decomposition, and a -5.7% decrease in litter decomposition rate. Moreover, a substantial positive feedback loop with global warming exists, primarily due to increased albedo. The loss of critical ecosystem services, including food production capacity and water resources, poses a severe challenge to the inhabitants of these regions. Increased aridity reduces SOC, nutrient, and water content. Aridity expansion and intensification exacerbate socio-economic disparities between economically rich and least developed countries, with significant opportunities for improvement through substantial investments in infrastructure and technology. By 2100, half the world's landmass may become dryland, characterized by severe conditions marked by limited C, N, and P resources, water scarcity, and substantial loss of native species biodiversity. These conditions pose formidable challenges for maintaining essential services, impacting human well-being and raising complex global and regional socio-political challenges.
Collapse
Affiliation(s)
- Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Gerard Farré-Armengol
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
2
|
Duell EB, Baum KA, Wilson GWT. Drought reduces productivity and anti-herbivore defences, but not mycorrhizal associations, of perennial prairie forbs. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:204-213. [PMID: 38168486 DOI: 10.1111/plb.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
During drought, plants allocate resources to aboveground biomass production and belowground carbohydrate reserves, often at the expense of production of defence traits. Additionally, drought has been shown to alter floral resources, with potential implications for plant-pollinator interactions. Although soil symbionts, such as arbuscular mycorrhizal (AM) fungi, can alleviate drought stress in plants, certain levels of drought may negatively impact this relationship, with potential cascading effects. Because of their importance to plant and animal community diversity, we examined effects of drought on biomass production, physical defence properties, nectar production, and associated AM fungal abundance of five common prairie forb species in a greenhouse study. Reduced soil moisture decreased vegetative biomass production. Production of trichomes and latex decreased under drought, relative to well-watered conditions. Ruellia humilis flowers produced less nectar under drought, relative to well-watered conditions. Intra-radical AM fungal colonization was not significantly affected by drought, although extra-radical AM fungal biomass associated with S. azurea decreased following drought. Overall, grassland forb productivity, defence, and nectar production were negatively impacted by moderate drought, with possible negative implications for biotic interactions. Reduced flower and nectar production may lead to fewer pollinator visitors, which may contribute to seed limitation in forb species. Reduced physical defences increase the likelihood of herbivory, further decreasing the ability to store energy for essential functions, such as reproduction. Together, these results suggest drought can potentially impact biotic interactions between plants and herbivores, pollinators, and soil symbionts, and highlights the need for direct assessments of these relationships under climate change scenarios.
Collapse
Affiliation(s)
- E B Duell
- Kansas Biological Survey & Center for Ecological Research, Lawrence, KS, USA
| | - K A Baum
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - G W T Wilson
- Department of Natural Resource Ecology & Management, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
3
|
Li J, Deng L, Peñuelas J, Wu J, Shangguan Z, Sardans J, Peng C, Kuzyakov Y. C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation. GLOBAL CHANGE BIOLOGY 2023; 29:7051-7071. [PMID: 37787740 DOI: 10.1111/gcb.16959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.
Collapse
Affiliation(s)
- Jiwei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Jianzhao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
4
|
Bai L, Wang J, Wang Z, Li Z, Ren H, Wang H, Zhang G, Han G. Effects of simulated precipitation gradients on nutrient resorption in the desert steppe of northern China. FRONTIERS IN PLANT SCIENCE 2023; 14:1211182. [PMID: 37711301 PMCID: PMC10499040 DOI: 10.3389/fpls.2023.1211182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Background Changes in rainfall induced by climate change will likely influence the utilization of water resources and affect the nutrient cycle in plants in the water-limited desert steppe. In order to understand the response of nitrogen and phosphorus resorption characteristics of plant leaves to precipitation changes, this study compared the nitrogen (N) resorption efficiency, phosphorus (P) resorption efficiency and influencing factors of plants in a desert steppe through water treatment experiments. Methods A 4-year field experiment was performed to examine the response and influencing factors of nitrogen (N) and phosphorus resorption efficiency of five dominant plants in Stipa breviflora desert steppe to simulated precipitation change in Inner Mongolia, with four simulated precipitation gradients including reducing water by 50%, natural precipitation, increasing water by 50%, increasing water by 100%. Results Compared with natural precipitation, increasing water by 100% significantly increased soil moisture, and significantly increased the aboveground biomass of S. breviflora, C. songorica, A. frigida, decreased the N concentrations in green leaves of S. breviflora, Cleistogenes songorica, Artemisia frigida, Kochia prostrata, decreased the N concentrations in senesced leaves of C. songorica, decreased the P concentrations in green leaves of K. prostrata and Convolvulus ammannii, decreased the NRE of S. breviflora. NRE was significantly negatively correlated with N concentration in senesced leaves, and PRE was significantly negatively correlated with P concentration in senesced leaves. Conclusions Increasing water indirectly reduces NRE by reducing plant leaf green leaves nitrogen concentration, and decreasing water indirectly reduces PRE by reducing soil moisture.
Collapse
Affiliation(s)
- Liu Bai
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhongwu Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiguo Li
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan Ren
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiming Wang
- Center for Comprehensive Test and Demonstration, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Guogang Zhang
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and Higher Efficient Utilization of the Ministry of Agriculture and Rural Affairs, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Saad AM, Elhabbak AK, Abbas MH, Mohamed I, AbdelRahman MA, Scopa A, Bassouny MA. Can deficit irrigations be an optimum solution for increasing water productivity under arid conditions? A case study on wheat plants. Saudi J Biol Sci 2023; 30:103537. [PMID: 36590750 PMCID: PMC9800629 DOI: 10.1016/j.sjbs.2022.103537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Water scarcity is of growing concern in many countries around the world, especially within the arid and semi-arid zones. Accordingly, rationalizing irrigation water has become an obligation to achieve the sustainable developmental goals of these countries. This may take place via using deficit irrigation which is long thought to be an effective strategy to save and improve water productivity. The current study is a trial to evaluate the pros and cons of using 50 and 75 % of the irrigation requirements (IR) of wheat (deficit irrigations) versus 100 %IR, while precisely charting changes in wheat growth parameters, antioxidant enzymes in plant shoots and the overall nutritional status of plants (NPK contents). Accordingly, a field experiment was conducted for two successive seasons, followed a split-plot design in which deficit irrigations (two irrigations to achieve 50 % of the irrigations requirements (IR), three irrigations to attain 75 % IR, and four irrigations to fulfill 100 % IR) were placed in main plots while four different studied wheat cultivars were in subplots. Results obtained herein indicate that deficit irrigations led to significant reductions in growth parameters and productivity of all wheat cultivars, especially when using 50 % IR. It also decreased NPK contents within plant shoots while elevated their contents of proline, peroxidase, and catalase enzymes. On the other hand, this type of irrigation decreased virtual water content (VWC, the amount of water used in production on ton of wheat grains). Stress tolerance index (STI), and financial revenues per unit area were also assessed. The obtained values of grain productivity, STI, VWC and financial revenues were weighted via PCA analyses, and then introduced in a novel model to estimate the efficiency of deficit irrigations (ODEI) whose results specified that the overall efficiency decreased as follows: 50 %IR < 75 %IR < 100 %IR. In conclusion, deficit irrigation is not deemed appropriate for rationalizing irrigation water while growing wheat on arid soils.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Agronomy Department, Faculty of Agriculture, Benha University, Egypt
| | - Amany K. Elhabbak
- Agronomy Department, Faculty of Agriculture, Benha University, Egypt
| | - Mohamed H.H. Abbas
- Soil and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Ibrahim Mohamed
- Soil and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Mohamed A.E. AbdelRahman
- Division of Environmental Studies and Land Use, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11769, Egypt
| | - Antonio Scopa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy,Corresponding authors.
| | - Mohamed A. Bassouny
- Soil and Water Department, Faculty of Agriculture, Benha University, Egypt,Corresponding authors.
| |
Collapse
|
6
|
Qian J, Guo Z, Muraina TO, Te N, Griffin-Nolan RJ, Song L, Xu C, Yu Q, Zhang Z, Luo W. Legacy effects of a multi-year extreme drought on belowground bud banks in rhizomatous vs bunchgrass-dominated grasslands. Oecologia 2022; 198:763-771. [PMID: 35230515 DOI: 10.1007/s00442-022-05133-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Belowground bud banks play a crucial role in plant population regeneration, community dynamics, and functional responses of ecosystems to environmental change and disturbance. In mesic grasslands, belowground bud banks are largely resistant to short-term drought. However, the sensitivity of belowground bud banks to long-term extreme drought in semi-arid grasslands is less understood. We investigated the legacy effects of a four-year experimental drought (i.e., 66% reduction in growing season precipitation) on belowground bud density, aboveground shoot density, and the meristem limitation index (MLI; the ratio of bud to shoot density) in two semi-arid grasslands that differ in dominant grass species growth forms (i.e., rhizomatous vs. bunchgrasses). Measurements were made during the first recovery year following drought; thus, we report the legacy effects of drought on belowground bud banks. At the community level, drought reduced belowground bud density and aboveground shoot density with no change in MLI. However, drought had no significant influences on belowground buds, aboveground shoots and MLI of the dominant plant growth form in each community. The legacy effects of drought were largely dependent on plant community type and growth form. Specifically, bunchgrasses and bunchgrass-dominated communities were characterized by greater meristem limitation than rhizomatous grasses, likely due to their cluster/phalanx clonal growth. Overall, our study suggests bud banks may indeed be sensitive to long-term drought, although this depends on plant growth forms and community characteristics.
Collapse
Affiliation(s)
- Jianqiang Qian
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyue Guo
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Taofeek O Muraina
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, P.M.B. 10, Igbo-Ora, Oyo State, Nigeria
| | - Niwu Te
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Lin Song
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiming Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
7
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|
8
|
Querejeta JI, Ren W, Prieto I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. THE NEW PHYTOLOGIST 2021; 230:1378-1393. [PMID: 33550582 DOI: 10.1111/nph.17258] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 05/21/2023]
Abstract
Warming-induced desiccation of the fertile topsoil layer could lead to decreased nutrient diffusion, mobility, mineralization and uptake by roots. Increased vertical decoupling between nutrients in topsoil and water availability in subsoil/bedrock layers under warming could thereby reduce cumulative nutrient uptake over the growing season. We used a Mediterranean semiarid shrubland as model system to assess the impacts of warming-induced topsoil desiccation on plant water- and nutrient-use patterns. A 6 yr manipulative field experiment examined the effects of warming (2.5°C), rainfall reduction (30%) and their combination on soil resource utilization by Helianthemum squamatum shrubs. A drier fertile topsoil ('growth pool') under warming led to greater proportional utilization of water from deeper, wetter, but less fertile subsoil/bedrock layers ('maintenance pool') by plants. This was linked to decreased cumulative nutrient uptake, increased nonstomatal (nutritional) limitation of photosynthesis and reduced water-use efficiency, above-ground biomass growth and drought survival. Whereas a shift to greater utilization of water stored in deep subsoil/bedrock may buffer the negative impact of warming-induced topsoil desiccation on transpiration, this plastic response cannot compensate for the associated reduction in cumulative nutrient uptake and carbon assimilation, which may compromise the capacity of plants to adjust to a warmer and drier climate.
Collapse
Affiliation(s)
- José Ignacio Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
| | - Wei Ren
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing, 400715, China
| | - Iván Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
| |
Collapse
|
9
|
Ozment KA, Welti EAR, Shaffer M, Kaspari M. Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers. Ecol Evol 2021; 11:5413-5423. [PMID: 34026017 PMCID: PMC8131794 DOI: 10.1002/ece3.7435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non-drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short-statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above-ground plant biomass while increasing plant foliar percentage nitrogen.We sampled arthropods and nutrient availability on and nearby ("off") 10 bison-grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed-feeding grasshopper abundances were consistently higher on grazing lawns while grass-feeder and forb-feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.
Collapse
Affiliation(s)
- Katerina A. Ozment
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
| | - Ellen A. R. Welti
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
- Senckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | | | - Michael Kaspari
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
10
|
Frameworks on Patterns of Grasslands’ Sensitivity to Forecast Extreme Drought. SUSTAINABILITY 2020. [DOI: 10.3390/su12197837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Climate models have predicted the future occurrence of extreme drought (ED). The management, conservation, or restoration of grasslands following ED requires a robust prior knowledge of the patterns and mechanisms of sensitivity—declining rate of ecosystem functions due to ED. Yet, the global-scale pattern of grasslands’ sensitivity to any ED event remains unresolved. Here, frameworks were built to predict the sensitivity patterns of above-ground net primary productivity (ANPP) spanning the global precipitation gradient under ED. The frameworks particularly present three sensitivity patterns that could manipulate (weaken, strengthen, or erode) the orthodox positive precipitation–productivity relationship which exists under non-drought (ambient) condition. First, the slope of the relationship could become steeper via higher sensitivity at xeric sites than mesic and hydric ones. Second, if the sensitivity emerges highest in hydric, followed by mesic, then xeric, a weakened slope, flat line, or negative slope would emerge. Lastly, if the sensitivity emerges unexpectedly similar across the precipitation gradient, the slope of the relationship would remain similar to that of the ambient condition. Overall, the frameworks provide background knowledge on possible differences or similarities in responses of grasslands to forecast ED, and could stimulate increase in conduct of experiments to unravel the impacts of ED on grasslands. More importantly, the frameworks indicate the need for reconciliation of conflicting hypotheses of grasslands’ sensitivity to ED through global-scale experiments.
Collapse
|
11
|
Zhao Q, Guo J, Shu M, Wang P, Hu S. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138106. [PMID: 32222509 DOI: 10.1016/j.scitotenv.2020.138106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 05/18/2023]
Abstract
Plant nutrient resorption, a process by which plant withdraws nutrients from senescing structures to developing tissues, can significantly affect plant growth, litter decomposition and nutrient cycling. Global change factors, such as nitrogen (N) deposition and altered precipitation, may mediate plant nutrient resorption and allocation. The ongoing global change is accompanied with increased N inputs and drought frequency in many regions. However, the interactive effects of increased N availability and drought on plant nutrient-responses remain largely unclear. In a pot experiment, we examined the impacts of N enrichment and drought on leaf N and phosphorous (P) resorption and root nutrient allocation in four species from the Qinghai-Tibet Plateau, including two graminoid species (Kobresia capillifolia and Elymus nutans) and two forb species (Delphinium kamaonense and Aster diplostephioides). Our results showed divergent resorption patterns within the two functional groups. E. nutans and D. kamaonense showed stronger N resorption than K. capillifolia and A. diplostephioides. N addition did not alter their N resorption efficiencies, but decreased the N resorption proficiencies of the former two species. In contrast, drought did not affect N or P resorption proficiencies, but decreased N resorption efficiency of K. capillifolia. Besides, N addition facilitated P resorption in K. capillifolia and D. kamaonense, and drought did the same in A. diplostephioides, suggesting that P resorption plays an important role in nutrient conservation in these species. Moreover, species with stronger N resorption allocated more biomass C or N to aboveground and enhanced their litter quality under N enrichment, while species with weaker resorption allocated more biomass C and/or N to belowground part under drought. Together, these results show that the responses of nutrient resorption and allocation to N enrichment and drought are highly species-specific. Future studies should take these differential responses into consideration to better predict litter decomposition and ecosystem nutrient cycling.
Collapse
Affiliation(s)
- Qingzhou Zhao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jin Guo
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng Shu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Peng Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
12
|
Penuelas J, Janssens IA, Ciais P, Obersteiner M, Sardans J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. GLOBAL CHANGE BIOLOGY 2020; 26:1962-1985. [PMID: 31912629 DOI: 10.1111/gcb.14981] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The availability of carbon (C) from high levels of atmospheric carbon dioxide (CO2 ) and anthropogenic release of nitrogen (N) is increasing, but these increases are not paralleled by increases in levels of phosphorus (P). The current unstoppable changes in the stoichiometries of C and N relative to P have no historical precedent. We describe changes in P and N fluxes over the last five decades that have led to asymmetrical increases in P and N inputs to the biosphere. We identified widespread and rapid changes in N:P ratios in air, soil, water, and organisms and important consequences to the structure, function, and biodiversity of ecosystems. A mass-balance approach found that the combined limited availability of P and N was likely to reduce C storage by natural ecosystems during the remainder of the 21st Century, and projected crop yields of the Millennium Ecosystem Assessment indicated an increase in nutrient deficiency in developing regions if access to P fertilizer is limited. Imbalances of the N:P ratio would likely negatively affect human health, food security, and global economic and geopolitical stability, with feedbacks and synergistic effects on drivers of global environmental change, such as increasing levels of CO2 , climatic warming, and increasing pollution. We summarize potential solutions for avoiding the negative impacts of global imbalances of N:P ratios on the environment, biodiversity, climate change, food security, and human health.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Valles, Spain
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Ivan A Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL CEA CNRS UVSQ UPSACLAY, Gif-sur-Yvette, France
| | - Michael Obersteiner
- Ecosystems Services and Management, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Valles, Spain
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
13
|
Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Praspaliauskas M, Pedišius N. Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110333. [PMID: 31928679 DOI: 10.1016/j.plantsci.2019.110333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Extreme climatic conditions with extended drought periods and heatwaves are predicted to increase in frequency and severity in many regions of the world. Aside from this, other abiotic stress factors such as nutrient deficiency could pose a serious problem to plants when combined with other stressors resulting in more complex underpinning mechanisms. In the present study, we evaluated the response of Brassica napus to single and combined impacts of drought and heatwave (HW) under adequate or deprived (N-A and N-D) soil nutrient conditions. In addition, to get better insights in the plant response to combined stress, a post-stress period, pointing out a degree of the recovery after the cessation of stress, was also included. The results showed a different manner of single drought and heatwave action. The adverse effect of drought on leaf gas exchange was lagged on the growth and became more apparent only after recovery period with no obvious difference between different nutrient levels. Contrary, the growth response of nutrient-deprived plants to single HW was weak and in most cases, insignificant. Heatwave applied simultaneously with drought highly exacerbated the adverse effect of drought both under N-A and N-D conditions. Combined drought and heatwave stress resulted in the sharper decline of Asat and it was attributed to both stomatal and non-stomatal limitations. Interestingly, plants underwent combined drought and HW treatment under N-D conditions showed better aboveground growth recovery, compared to those grown under N-A conditions, while displayed far more diminished photochemistry of photosystem II and badly disturbed the C/N balance. This discrepancy came from the fact that soil nutrient deficiency, by itself, evoked strong stress under control climate conditions resulting in a dramatically slower aboveground growth of nutrient-deprived plant. In turn, although combined drought and HW stress had similar effect on the aboveground growth either under N-A or N-D conditions, the recovery of later one was better. These results highlight the necessity to look at plants' performance under unfavorable environmental conditions beyond the actual event, since it can be depended not only on the duration of exposure but also on the legacy effect after treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, LT-54333, Babtai, Kaunas Distr., Lithuania; Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania.
| | - Akvilė Viršilė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, LT-54333, Babtai, Kaunas Distr., Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania
| | - Irena Januškaitienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404, Kaunas, Lithuania
| | - Marius Praspaliauskas
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos St. 3, LT-44403, Kaunas, Lithuania
| | - Nerijus Pedišius
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos St. 3, LT-44403, Kaunas, Lithuania
| |
Collapse
|