1
|
Câmara T, Cavalcante NT, Falcão HM, Santana E, Dos Santos Silva Teixeira G, Arnan X. Increased temperatures could heighten vulnerability of an ant-plant mutualism. Oecologia 2024; 207:8. [PMID: 39653799 DOI: 10.1007/s00442-024-05646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/30/2024] [Indexed: 02/12/2025]
Abstract
Mutualisms may be more or less sensitive to environmental conditions depending on the diversity and responses of the species involved. Ants frequently form mutualistic associations with plants bearing extrafloral nectaries (EFNs): the ants protect the plants from herbivores and receive food resources (i.e., nectar) in return. As ectotherms, ants are strongly influenced by temperature, and temperature shifts can affect ant-plant interactions in ways that often depend on species functional traits. In this study, we explored the influence of EFN size and leaf surface temperature on ant-plant interactions in a Caatinga dry forest in Brazil. We observed the ants visiting 14 EFN-bearing plant species at different times of day over 12 sampling months; we also measured leaf surface temperatures during these periods. We next quantified EFN size for 68 individuals from the 14 plant species. The observational data were used to characterize the heat tolerance of the attendant ant species (i.e., based on levels of foraging activity). We then evaluated the mutualism's degree of functional resilience using two indices: functional redundancy (i.e., the number of ant species interacting with a given plant species) and thermal response diversity (i.e., variability in the heat tolerance of the ant species interacting with a given plant species). We found that leaf surface temperature, but not EFN size, had an influence on mutualism functional resilience. As temperatures increased, both functional redundancy and thermal response diversity decreased. This result implies that warmer global temperatures could heighten the vulnerability of facultative ant-plant mutualisms, regardless of plant traits.
Collapse
Affiliation(s)
- Talita Câmara
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil.
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil.
| | - Nathália Thais Cavalcante
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil
| | - Hiram Marinho Falcão
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil
| | - Esther Santana
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
| | | | - Xavier Arnan
- Universidade de Pernambuco-Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns, 55294-902, Brazil
- Programa de Pós-Graduação Em Ciência E Tecnologia Ambiental, Universidade de Pernambuco-Campus Petrolina, BR 203, KM 2-Vila Eduardo, Petrolina, 56328-900, Brazil
- CREAF, Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Fernandes TV, Parr CL, Campos RI, Neves FDS, Solar R. Scavenging in two mountain ecosystems: Distinctive contribution of ants in grassland and non-ant invertebrates in forest. Ecology 2024; 105:e4365. [PMID: 38895926 DOI: 10.1002/ecy.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Scavenging is a key process for the cycling of nutrients in ecosystems, yet it is still neglected in the ecological literature. Apart from the importance of specific groups of animals in scavenging, there have been few ecological studies that compare them. Furthermore, the ecological studies on scavenging have mainly focused on vertebrates despite the crucial importance of invertebrates in this process. Here, we performed a large-scale ant suppression and vertebrate exclusion experiment to quantify the relative contribution of ants, non-ant invertebrates and vertebrates in scavenging nitrogen-rich (insect carcasses) and carbon-rich (seeds) baits in two contrasting mountainous habitats in Brazil (grasslands and forests). Overall, bait removal was 23.2% higher in forests than in grasslands. Ants were the primary scavengers in grasslands, responsible for more than 57% of dead insect larvae and seed removal, while, in forests, non-ant invertebrates dominated, removing nearly 65% of all baits. Vertebrates had a minor role in scavenging dead insect larvae and seeds in both habitats, with <4% of removals. Furthermore, our results show that animal-based baits were more consumed in forests than seeds, and both resources were equally consumed in grasslands. Therefore, we demonstrate the superiority of invertebrates in this process, with a particular emphasis on the irreplaceable role of ants, especially in this grassland ecosystem. As such, we further advance our knowledge of a key ecosystem process, showing the relative importance of three major groups in scavenging and the differences in ecosystems functioning between two contrasting tropical habitats.
Collapse
Affiliation(s)
- Tiago Vinícius Fernandes
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Vale do Jequitinhonha e Mucuri, Diamantina, Brazil
- Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Catherine L Parr
- School of Environmental Sciences, The University of Liverpool, Liverpool, UK
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | | | - Ricardo Solar
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Alencar CLDS, Nogueira A, Vicente RE, Coutinho ÍAC. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4613-4627. [PMID: 37115640 DOI: 10.1093/jxb/erad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Few studies have explored the phenotypic plasticity of nectar production on plant attractiveness to ants. Here, we investigate the role of extrafloral nectary (EFN) size on the productivity of extrafloral nectar in three sympatric legume species. We hypothesized that plant species with larger EFNs (i) have higher induced nectar secretion after herbivory events, and (ii) are more likely to interact with more protective (i.e. dominant) ant partners. We target 90 plants of three Chamaecrista species in the field. We estimated EFN size and conducted field experiments to evaluate any differences in nectar traits before and after leaf damage to investigate the phenotypic plasticity of nectar production across species. We conducted multiple censuses of ant species feeding on EFNs over time. Plant species increased nectar descriptors after leaf damage, but in different ways. Supporting our hypothesis, C. duckeana, with the largest EFN size, increased all nectar descriptors, with most intense post-herbivory-induced response, taking its place as the most attractive to ants, including dominant species. EFN size variation was an excellent indicator of nectar productivity across species. The higher control over reward production in plants with larger sized EFNs reflects an induction mechanism under damage that reduces costs and increases the potential benefits of indirect biotic defences.
Collapse
Affiliation(s)
- Cícero Luanderson da Silva Alencar
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Ricardo Eduardo Vicente
- Instituto Nacional da Mata Atlântica, Ministério da Ciência, Tecnologia e Inovações, Santa Teresa, ES, Brazil
| | - Ítalo Antônio Cotta Coutinho
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| |
Collapse
|
4
|
Experimental manipulation of biotic and abiotic parameters changes the outcome of insect-plant interactions. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Arnan X, Silva CHF, Reis DQA, Oliveira FMP, Câmara T, Ribeiro EMS, Andersen AN, Leal IR. Individual and interactive effects of chronic anthropogenic disturbance and rainfall on taxonomic, functional and phylogenetic composition and diversity of extrafloral nectary-bearing plants in Brazilian Caatinga. Oecologia 2021; 198:267-277. [PMID: 34767071 DOI: 10.1007/s00442-021-05074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Chronic anthropogenic disturbance (CAD) and climate change represent two of the major threats to biodiversity globally, but their combined effects are not well understood. Here we investigate the individual and interactive effects of increasing CAD and decreasing rainfall on the composition and taxonomic (TD), functional (FD) and phylogenetic diversity (PD) of plants possessing extrafloral nectaries (EFNs) in semi-arid Brazilian Caatinga. EFNs attract ants that protect plants against insect herbivore attack and are extremely prevalent in the Caatinga flora. EFN-bearing plants were censused along gradients of disturbance and rainfall in Catimbau National Park in north-eastern Brazil. We recorded a total of 2243 individuals belonging to 21 species. Taxonomic and functional composition varied along the rainfall gradient, but not along the disturbance gradient. There was a significant interaction between increasing disturbance and decreasing rainfall, with CAD leading to decreased TD, FD and PD in the most arid areas, and to increased TD, FD and PD in the wettest areas. We found a strong phylogenetic signal in the EFN traits we analysed, which explains the strong matching between patterns of FD and PD along the environmental gradients. The interactive effects of disturbance and rainfall revealed by our study indicate that the decreased rainfall forecast for Caatinga under climate change will increase the sensitivity of EFN-bearing plants to anthropogenic disturbance. This has important implications for the availability of a key food resource, which would likely have cascading effects on higher trophic levels.
Collapse
Affiliation(s)
- Xavier Arnan
- Universidade de Pernambuco - Campus Garanhuns, Rua Capitão Pedro Rodrigues 105, Garanhuns, PE, 55290-000, Brazil.
| | - Carlos H F Silva
- Programa de Pós-Graduação Em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Daniela Q A Reis
- Programa de Pós-Graduação Em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Fernanda M P Oliveira
- Programa de Pós-Graduação Em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Talita Câmara
- Universidade de Pernambuco - Campus Garanhuns, Rua Capitão Pedro Rodrigues 105, Garanhuns, PE, 55290-000, Brazil.,Programa de Pós-Graduação Em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Elâine M S Ribeiro
- Programa de Pós-Graduação Em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil.,Colegiado de Ciências Biológicas, Universidade de Pernambuco-Campus Petrolina, BR 203, km 2, s/n, Vila Eduardo, Petrolina, PE, 56328-903, Brazil
| | - Alan N Andersen
- Charles Darwin University, Ellengowan Dr, Casuarina, Northern Territory, 0810, Australia
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| |
Collapse
|
6
|
Calixto ES, Lange D, Del‐Claro K. Net benefits of a mutualism: Influence of the quality of extrafloral nectar on the colony fitness of a mutualistic ant. Biotropica 2021. [DOI: 10.1111/btp.12925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo Soares Calixto
- Programa de Pós‐Graduação em Entomologia Faculdade de Filosofia, Ciências e Letras Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Denise Lange
- Universidade Tecnológica Federal do Paraná Santa Helena PR Brazil
| | - Kleber Del‐Claro
- Laboratório de Ecologia Comportamental e de Interações Instituto de Biologia Universidade Federal de Uberlândia Uberlândia MG Brazil
| |
Collapse
|
7
|
Ribeiro LF, Solar RRC, Sobrinho TG, Muscardi DC, Schoereder JH, Andersen AN. Different trophic groups of arboreal ants show differential responses to resource supplementation in a neotropical savanna. Oecologia 2019; 190:433-443. [PMID: 31069514 DOI: 10.1007/s00442-019-04414-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/30/2019] [Indexed: 11/30/2022]
Abstract
Resource-ratio theory predicts that consumers should achieve optimal ratios of complementary nutrients. Accordingly, different trophic groups are expected to vary in their N-limitation depending on the extent to which they feed primarily on carbohydrate (CHO) or protein. Among arboreal ants, N-limitation ranges from high (for trophobiont tenders), intermediate (leaf foragers) and low (predators). We report results from a manipulative field experiment in a Brazilian savanna that tests the differential attractiveness of nitrogen and CHO to arboreal ants, as well as experimentally examines changes in broader ant foraging patterns in response to protein and CHO supplementation. Every tree within 32 20 × 20 m plots were supplemented with either protein, CHO; protein + CHO or a water control (n = 8 in each case) for a 7-day period in each of the wet and dry seasons. As predicted, different trophic groups responded differentially to supplementation treatment according to the extent of their N-limitation. The richness and abundance of the most N-limited group (trophobiont tenders) was highest at protein supplements, whereas less N-limited trophic groups showed highest species richness (leaf foragers) or abundance (predators) at CHO supplements. Protein supplementation markedly increased the general foraging abundance of trophobiont tenders, but decreased the abundance of leaf foragers. We attribute the latter to increased competition from behaviorally dominant trophobiont tenders. Our study provides experimental evidence that nutrient availability is a major factor influencing arboreal ant communities, both directly through the provision of different resources, and indirectly through increased competitive pressure.
Collapse
Affiliation(s)
- Laila F Ribeiro
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/n, Campus Universitário, Viçosa, MG, CEP 36570-000, Brazil.
| | - Ricardo R C Solar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Tathiana G Sobrinho
- Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101 Norte, Km 60, São Mateus, ES, CEP 29932-540, Brazil
| | - Dalana C Muscardi
- Departamento de Educação e Ciências Humanas, Universidade Federal do Espírito Santo, BR 101 Norte, Km 60, São Mateus, ES, CEP 29932-540, Brazil
| | - José H Schoereder
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/n, Campus Universitário, Viçosa, MG, CEP 36570-000, Brazil
| | - Alan N Andersen
- Research School for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, 0909, Australia
| |
Collapse
|