1
|
Flury P, Stade S, De Moraes CM, Mescher MC. Leaf-damaging behavior by queens is widespread among bumblebee species. Commun Biol 2025; 8:435. [PMID: 40082690 PMCID: PMC11906820 DOI: 10.1038/s42003-025-07670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025] Open
Abstract
Phenological mismatches and resource limitations resulting from ongoing environmental change can have severe impacts on pollinator fitness. Recent findings show that bumblebee workers respond to pollen scarcity by damaging plant leaves in ways that can accelerate flowering, suggesting a mechanism by which direct information transfer from bees to plants might influence the timing of flower production. However, the ecological and adaptive significance of this interaction remains uncertain. Here we report that mated and unmated queens of Bombus terrestris also damage leaves, with similar effects on flowering. Furthermore, we document leaf damage by wild-caught queens from 12 species, spanning seven subgenera, indicating damaging behavior is widespread among Bombus species. Leaf damage by bumblebee queens may have particular relevance in the context of colony founding and early development, where the timely availability of local floral resources can be critical for colony success and fitness.
Collapse
Affiliation(s)
- Priska Flury
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| | - Sofie Stade
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Mark C Mescher
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Ellis KS, Otto CRV, Bailey LL, Smith TA, Choy S, Hatch L. Integrating data to assess occupancy patterns of an endangered bumble bee. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14458. [PMID: 39996525 DOI: 10.1111/cobi.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 02/26/2025]
Abstract
There is growing interest in integrating community science data with structured monitoring data to estimate changes in distribution patterns of imperiled species, including pollinators. However, significant challenges remain in determining how unstructured community science data should be incorporated into formal analyses of species distributions. We developed a dynamic framework for combining community science and structured monitoring data of bumble bees to estimate changes in occupancy of rusty-patched bumble bees (Bombus affinis), a federally endangered species in the United States. We applied traditional metapopulation theory and accounted for imperfect detection to estimate site-specific extirpation risk and colonization rates across the known distribution of B. affinis in the Upper Midwest (USA). Despite a 144% increase in presence-only detections from 2017 to 2022, occupancy probabilities and the estimated number of occupied sites remained static or declined slightly across a 4-state region during this period. Our results provide preliminary evidence that the probability of local extirpation risk of B. affinis increased in response to drought, but that effect was tempered with a high number of neighboring patches occupied by B. affinis (i.e., rescue effect). Our framework can be used by managers to track population recovery goals for B. affinis and other bumble bees of conservation concern. In addition, our study highlights the importance of accounting for imperfect detection and addressing spatial sampling biases in bumble bee monitoring efforts, particularly those for which a portion of the monitoring data are generated from community science projects.
Collapse
Affiliation(s)
- Kristen S Ellis
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, North Dakota, USA
| | - Clint R V Otto
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, North Dakota, USA
| | - Larissa L Bailey
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Tamara A Smith
- Minnesota-Wisconsin Ecological Services Field Office, U.S. Fish and Wildlife Service, Bloomington, Minnesota, USA
| | - Steven Choy
- Minnesota-Wisconsin Ecological Services Field Office, U.S. Fish and Wildlife Service, Bloomington, Minnesota, USA
| | - Lauren Hatch
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Gustilo ES, Grover WH, Woodard SH. Wild Foundress Queen Bumble Bees Make Numerous, Short Foraging Trips and Exhibit Frequent Nest Failure: Insights From Trap-Nesting and RFID Tracking. Ecol Evol 2025; 15:e71016. [PMID: 39991447 PMCID: PMC11843468 DOI: 10.1002/ece3.71016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
The overwhelming majority of research on wild bumble bees has focused on the social colony stage. Nest-founding queens in the early season are difficult to study because incipient nests are challenging to find in the wild and the foundress queen flight period is very short relative to the entire nesting period. As a result, natural history information on foundress queens is exceedingly rare. New methodological approaches are needed to adequately study this elusive life stage. We trap-nested wild queen bumble bees in artificial nest boxes in Gothic, Colorado and used a custom-built radio frequency identification (RFID) system to continuously record queen foraging activity (inferred from entering and exiting the nest) for the majority of their spring flight periods. Foundress queens made frequent, short foraging trips, which tended to increase in duration over the course of the flight period. All queens who produced adult workers ceased foraging within approximately 1 week after workers emerged in the nest. We observed frequent nest failure among foundress queens: Fewer than one quarter of queens who laid eggs in nest boxes went on to produce reproductive gynes at the end of the season. We also report nest characteristics and curious phenomena we observed, including conspecific nest invasion and queens remaining outside the nest overnight. We present this trap-nesting and subsequent RFID tracking method as a valuable, albeit resource-intensive, path forward for uncovering new information about the elusive, incipient life stage of wild bumble bees.
Collapse
|
4
|
Lanterman Novotny J, Lybbert A, Reeher P, Mitchell RJ, Goodell K. Bumble bee banquet: Genus‐ and species‐level floral selection by Midwestern
Bombus
. Ecosphere 2023. [DOI: 10.1002/ecs2.4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Jessie Lanterman Novotny
- Evolution, Ecology, and Organismal Biology The Ohio State University Columbus Ohio USA
- Biology Hiram College Hiram Ohio USA
| | - Andrew Lybbert
- Evolution, Ecology, and Organismal Biology The Ohio State University Columbus Ohio USA
- Biology Methodist University Fayetteville North Carolina USA
| | - Paige Reeher
- Biology The University of Akron Akron Ohio USA
- Environmental Solutions & Innovations, Inc. Ravenna Ohio USA
| | | | - Karen Goodell
- Evolution, Ecology, and Organismal Biology The Ohio State University Columbus Ohio USA
| |
Collapse
|
5
|
Johnson SA, Jackson HM, Noth H, M'Gonigle LK. Positive impact of postfire environment on bumble bees not explained by habitat variables in a remote forested ecosystem. Ecol Evol 2023; 13:e9743. [PMID: 36713490 PMCID: PMC9873587 DOI: 10.1002/ece3.9743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Bumble bees are important pollinators in temperate forested regions where fire is a driving force for habitat change, and thus understanding how these insects respond to fire is critical. Previous work has shown bees are often positively affected by the postfire environment, with burned sites supporting greater bee abundance and diversity, and increased floral resources. The extent to which fire impacts variation in bumblebee site occupancy is not well-understood, especially in higher latitude regions with dense, primarily coniferous forests. Occupancy models are powerful tools for biodiversity analyses, as they separately estimate occupancy probability (likelihood that a species is present at a particular location) and detection probability (likelihood of observing a species when it is present). Using these models, we tested whether bumblebee site occupancy is higher in burned locations as a result of the increase in canopy openness, floral species richness, and floral abundance. We quantified the impact of fire, and associated habitat changes, on bumblebee species' occupancy in an area with high wildfire frequency in British Columbia, Canada. The burn status of a site was the only significant predictor for determining bumblebee occurrence (with burned sites having higher occupancy); floral resource availability and canopy openness only impacted detection probability (roughly, sample bias). These findings highlight the importance of controlling for the influence of habitat on species detection in pollinator studies and suggest that fire in this system changes the habitat for bumble bees in positive ways that extend beyond our measurements of differences in floral resources and canopy cover.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Hanna M. Jackson
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | | | - Leithen K. M'Gonigle
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| |
Collapse
|
6
|
Kardum Hjort C, Smith HG, Allen AP, Dudaniec RY. Morphological Variation in Bumblebees (Bombus terrestris) (Hymenoptera: Apidae) After Three Decades of an Island Invasion. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:10. [PMID: 36856678 PMCID: PMC9972831 DOI: 10.1093/jisesa/iead006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 06/18/2023]
Abstract
Introduced social insects can be highly invasive outside of their native range. Around the world, the introduction and establishment of the eusocial bumblebee Bombus terrestris (L. 1758) (Hymenoptera: Apidae) has negatively impacted native pollinators and ecosystems. Understanding how morphological variation is linked to environmental variation across invasive ranges can indicate how rapidly species may be diverging or adapting across novel ranges and may assist with predicting future establishment and spread. Here we investigate whether B. terrestris shows morphological variation related to environmental variation across the island of Tasmania (Australia) where it was introduced three decades ago. We collected 169 workers from 16 sites across Tasmania and related relative abundance and morphology to landscape-wide climate, land use, and vegetation structure. We found weak morphological divergence related to environmental conditions across Tasmania. Body size of B. terrestris was positively associated with the percentage of urban land cover, a relationship largely driven by a single site, possibly reflecting high resource availability in urban areas. Proboscis length showed a significant negative relationship with the percentage of pasture. Wing loading and local abundance were not related to the environmental conditions within sites. Our results reflect the highly adaptable nature of B. terrestris and its ability to thrive in different environments, which may have facilitated the bumblebee's successful invasion across Tasmania.
Collapse
Affiliation(s)
| | - Henrik G Smith
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
- Centre for Environmental and Climate Science, Lund University, Lund, SE-223 62, Sweden
| | - Andrew P Allen
- School of Natural Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| |
Collapse
|
7
|
Fitzgerald JL, Ogilvie JE, CaraDonna PJ. Ecological Drivers and Consequences of Bumble Bee Body Size Variation. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1055-1068. [PMID: 36373400 DOI: 10.1093/ee/nvac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Body size is arguably one of the most important traits influencing the physiology and ecology of animals. Shifts in animal body size have been observed in response to climate change, including in bumble bees (Bombus spp. [Hymenoptera: Apidae]). Bumble bee size shifts have occurred concurrently with the precipitous population declines of several species, which appear to be related, in part, to their size. Body size variation is central to the ecology of bumble bees, from their social organization to the pollination services they provide to plants. If bumble bee size is shifted or constrained, there may be consequences for the pollination services they provide and for our ability to predict their responses to global change. Yet, there are still many aspects of the breadth and role of bumble bee body size variation that require more study. To this end, we review the current evidence of the ecological drivers of size variation in bumble bees and the consequences of that variation on bumble bee fitness, foraging, and species interactions. In total we review: (1) the proximate determinants and physiological consequences of size variation in bumble bees; (2) the environmental drivers and ecological consequences of size variation; and (3) synthesize our understanding of size variation in predicting how bumble bees will respond to future changes in climate and land use. As global change intensifies, a better understanding of the factors influencing the size distributions of bumble bees, and the consequences of those distributions, will allow us to better predict future responses of these pollinators.
Collapse
Affiliation(s)
- Jacquelyn L Fitzgerald
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Paul J CaraDonna
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
8
|
Rundlöf M, Stuligross C, Lindh A, Malfi RL, Burns K, Mola JM, Cibotti S, Williams NM. Flower plantings support wild bee reproduction and may also mitigate pesticide exposure effects. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maj Rundlöf
- Department of Biology, Landscape Ecotoxicology Lund University Lund Sweden
- Department of Entomology and Nematology University of California Davis CA USA
| | - Clara Stuligross
- Department of Entomology and Nematology University of California Davis CA USA
- Graduate Group in Ecology University of California Davis CA USA
| | - Arvid Lindh
- Department of Biology, Landscape Ecotoxicology Lund University Lund Sweden
- Department of Entomology and Nematology University of California Davis CA USA
| | - Rosemary L. Malfi
- Department of Entomology and Nematology University of California Davis CA USA
| | - Katherine Burns
- Department of Entomology and Nematology University of California Davis CA USA
| | - John M. Mola
- Department of Entomology and Nematology University of California Davis CA USA
- Graduate Group in Ecology University of California Davis CA USA
- U.S. Geological Survey, Fort Collins Science Center Fort Collins CO USA
| | - Staci Cibotti
- Department of Entomology and Nematology University of California Davis CA USA
| | - Neal M. Williams
- Department of Entomology and Nematology University of California Davis CA USA
| |
Collapse
|
9
|
Sarro E, Tripodi A, Woodard SH. Bumble Bee ( Bombus vosnesenskii) Queen Nest Searching Occurs Independent of Ovary Developmental Status. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac007. [PMID: 35274079 PMCID: PMC8902787 DOI: 10.1093/iob/obac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies on the physiological states of wild-caught organisms are essential to uncovering the links between ecological and physiological processes. Bumble bee queens emerge from overwintering in the spring. At this time, queens develop their ovaries and search for a nest site in which to start a colony. Whether these two processes, ovary development and nest-searching, interact with or influence one another remains an unresolved question in behavioral physiology. We explored the hypothesis that ovary development and nest-searching might be mechanistically connected, by testing whether (1) ovary development precedes nest-searching behavior; (2) nest occupation precedes ovary development; or (3) ovary development and nest-searching occur independently, in bumble bee (Bombus vosnesenskii) queens. We collected queens either nest-searching (and thus prior to occupying a nest) or pollen-collecting (and thus provisioning an occupied nest) and measured their degree of ovary activation. We further screened these queens for parasites or other symbionts, to identify additional factors that may impact their reproductive success at this time. We found that queens searched for and occupied nests at all stages of ovary development, indicating that these processes occur independently in this system. Nest-searching queens were more likely to have substantial mite loads than pollen-collecting queens, who had already located and occupied a nest. However, mite loads did not significantly predict ovary developmental status. Collectively, our work shows that nesting status and symbionts alone are insufficient to explain the variation in spring bumble bee queen ovary development. We propose that ovary development and nest-searching occur opportunistically, which may enable queens to begin laying eggs earlier in the season than if these processes occurred in discrete succession.
Collapse
Affiliation(s)
- Erica Sarro
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Amber Tripodi
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | | |
Collapse
|
10
|
Mace K, Rudder J, Goodhue R, Tolhurst T, Tregeagle D, Wei H, Grafton-Cardwell B, Grettenberger I, Wilson H, Van Steenwyk R, Zalom F, Steggall J. Balancing Bees and Pest Management: Projected Costs of Proposed Bee-Protective Neonicotinoid Regulation in California. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:10-25. [PMID: 34893844 DOI: 10.1093/jee/toab231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoid insecticides are widely used in agriculture, including in many California specialty crops. With mounting evidence that these insecticides are harmful to bees, state and national governments have increasingly regulated their use. The European Union, Canada, and United States have imposed use restrictions on several neonicotinoids, such as on the timing of applications. In 2020, California proposed a draft regulation to mitigate harm to managed pollinators from four nitroguanidine-substituted neonicotinoids (NGNs): clothianidin, dinotefuran, imidacloprid, and thiamethoxam. We use data on California pesticide use from 2015 to 2017 to analyze the economic and pest management implications of the 2020 draft proposed regulation for seven crops: almond, cherry, citrus, cotton, grape, strawberry, and tomato. From 2015 to 2017, these crops accounted for approximately 85% of total hectares treated with NGNs and 87% of NGN use by kilograms of active ingredient applied in treatments that would have been affected by the proposed regulation. These insecticides often primarily target Hemipteran insect pests. In most cases there are alternatives; however, these are often more expensive per hectare and do not have the same residual effectiveness as the NGNs, which are systemic insecticides. Overall, we estimate that pest management costs for these crops would have increased an estimated $13.6 million in 2015, $12.8 million in 2016, and $11.1 million in 2017 if the 2020 draft proposed regulation had been in effect, representing a 61% to 72% increase in the cost of managing the target pests.
Collapse
Affiliation(s)
- Kevi Mace
- Agricultural and Resource Economics, University of California, Davis, CA, USA
- California Department of Food and Agriculture, Sacramento, CA, USA
| | - Jessica Rudder
- Agricultural and Resource Economics, University of California, Davis, CA, USA
| | - Rachael Goodhue
- Agricultural and Resource Economics, University of California, Davis, CA, USA
| | - Tor Tolhurst
- Agricultural Economics, Purdue University, West Lafayette, IN, USA
| | - Daniel Tregeagle
- Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA
| | - Hanlin Wei
- Agricultural and Resource Economics, University of California, Davis, CA, USA
| | | | - Ian Grettenberger
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Houston Wilson
- Department of Entomology, University of California, Riverside, CA, USA
| | - Robert Van Steenwyk
- Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Frank Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - John Steggall
- Agricultural and Resource Economics, University of California, Davis, CA, USA
- California Department of Food and Agriculture, Sacramento, CA, USA
| |
Collapse
|
11
|
Fisher K, Sarro E, Miranda CK, Guillen BM, Woodard SH. Worker task organization in incipient bumble bee nests. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Mola JM, Hemberger J, Kochanski J, Richardson LL, Pearse IS. The Importance of Forests in Bumble Bee Biology and Conservation. Bioscience 2021. [DOI: 10.1093/biosci/biab121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Declines of many bumble bee species have raised concerns because of their importance as pollinators and potential harbingers of declines among other insect taxa. At present, bumble bee conservation is predominantly focused on midsummer flower restoration in open habitats. However, a growing body of evidence suggests that forests may play an important role in bumble bee life history. Compared with open habitats, forests and woody edges provide food resources during phenologically distinct periods, are often preferred nesting and overwintering habitats, and can offer favorable abiotic conditions in a changing climate. Future research efforts are needed in order to anticipate how ongoing changes in forests, such as overbrowsing by deer, plant invasions, and shifting canopy demographics, affect the suitability of these habitats for bumble bees. Forested habitats are increasingly appreciated in the life cycles of many bumble bees, and they deserve greater attention from those who wish to understand bumble bee populations and aid in their conservation.
Collapse
Affiliation(s)
- John M Mola
- Fort Collins Science Center, Fort Collins, Colorado, United States
| | - Jeremy Hemberger
- University of California Davis, Davis, California, United States
| | - Jade Kochanski
- University of Wisconsin Madison, Madison, Wisconsin, United States
| | - Leif L Richardson
- Xerces Society for Invertebrate Conservation, Portland, Oregon, United States
| | - Ian S Pearse
- Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
13
|
Malfi RL, Crone E, Rundlöf M, Williams NM. Early resources lead to persistent benefits for bumble bee colony dynamics. Ecology 2021; 103:e03560. [PMID: 34657285 DOI: 10.1002/ecy.3560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022]
Abstract
Conditions experienced early in development can affect the future performance of individuals and populations. Demographic theories predict persistent population impacts of past resources, but few studies have experimentally tested such carry-over effects across generations or cohorts. We used bumble bees to test whether resource timing had persistent effects on within-colony dynamics over sequential cohorts of workers. We simulated a resource pulse for field colonies either early or late in their development and estimated colony growth rates during pulse- and non-pulse periods. During periods when resources were not supplemented, early-pulse colonies grew faster than late-pulse colonies; early-pulse colonies grew larger as a result. These results revealed persistent effects of past resources on current growth and support the importance of transient dynamics in natural ecological systems. Early-pulse colonies also produced more queen offspring, highlighting the critical nature of resource timing for the population, as well as colony, dynamics of a key pollinator.
Collapse
Affiliation(s)
- Rosemary L Malfi
- Department of Entomology, University of California, Davis, California, 95616, USA
| | - Elizabeth Crone
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, USA
| | - Maj Rundlöf
- Department of Entomology, University of California, Davis, California, 95616, USA.,Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Neal M Williams
- Department of Entomology, University of California, Davis, California, 95616, USA
| |
Collapse
|
14
|
Mitchell SR, DeBano SJ, Rowland MM, Burrows S. Feed the bees and shade the streams: riparian shrubs planted for restoration provide forage for native bees. Restor Ecol 2021. [DOI: 10.1111/rec.13525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott R. Mitchell
- Department of Fisheries and Wildlife Oregon State University Corvallis OR 97330 U.S.A
- Hermiston Agricultural Research and Extension Center Oregon State University Hermiston OR 97838 U.S.A
| | - Sandra J. DeBano
- Department of Fisheries and Wildlife Oregon State University Corvallis OR 97330 U.S.A
- Hermiston Agricultural Research and Extension Center Oregon State University Hermiston OR 97838 U.S.A
| | - Mary M. Rowland
- United States Forest Service Pacific Northwest Research Station La Grande OR 97850‐3368 U.S.A
| | - Skyler Burrows
- Bee Biology and Systematics Laboratory Utah State University Logan UT 84322 U.S.A
| |
Collapse
|
15
|
Sarro E, Sun P, Mauck K, Rodriguez-Arellano D, Yamanaka N, Woodard SH. An organizing feature of bumble bee life history: worker emergence promotes queen reproduction and survival in young nests. CONSERVATION PHYSIOLOGY 2021; 9:coab047. [PMID: 34221405 PMCID: PMC8242224 DOI: 10.1093/conphys/coab047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests.
Collapse
Affiliation(s)
- Erica Sarro
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Penglin Sun
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Kerry Mauck
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Damaris Rodriguez-Arellano
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
16
|
Mola JM, Richardson LL, Spyreas G, Zaya DN, Pearse IS. Long‐term surveys support declines in early season forest plants used by bumblebees. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John M. Mola
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| | | | - Greg Spyreas
- Illinois Natural History SurveyUniversity of Illinois Champaign IL USA
| | - David N. Zaya
- Illinois Natural History SurveyUniversity of Illinois Champaign IL USA
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| |
Collapse
|
17
|
Nicholson CC, J-M Hayes J, Connolly S, Ricketts TH. Corridors through time: Does resource continuity impact pollinator communities, populations, and individuals? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02260. [PMID: 33185959 DOI: 10.1002/eap.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Spatial aspects of connectivity have received considerable attention from ecologists and conservationists, yet temporal connectivity, the periodic linking of habitats, plays an equally important, but largely overlooked role. Different biological and biophysical attributes of ecosystems underpin temporal connectivity, but here we focus on resource continuity, the uninterrupted availability of foraging sites. We test the response of pollinators to resource continuity at community, population, and individual levels using a novel natural experiment consisting of farms with either single or sequential cropping systems. We found significant effects at the population level; colony density of an important crop pollinator (Bombus impatiens L.) was greater when crop floral resources were continuously available. However, we did not find significant effects at the community or individual level; wild bee abundance, diversity and body size did not respond to resource continuity. Raspberry farms with greater early season resources provided by blueberry had greater bumble bee populations, suggesting beneficial effects on resource availability due to crop diversity. Better understanding the impact of resource continuity via crop diversity on broader patterns of biodiversity is essential for the co-management of biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Charlie C Nicholson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Jen J-M Hayes
- Department of Horticulture, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Samantha Connolly
- Department of Computer Science, University of Vermont, Burlington, Vermont, 05405, USA
| | - Taylor H Ricketts
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
18
|
Kerr NZ, Malfi RL, Williams NM, Crone EE. Larger workers outperform smaller workers across resource environments: An evaluation of demographic data using functional linear models. Ecol Evol 2021; 11:2814-2827. [PMID: 33767838 PMCID: PMC7981203 DOI: 10.1002/ece3.7239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 11/18/2022] Open
Abstract
Behavior and organization of social groups is thought to be vital to the functioning of societies, yet the contributions of various roles within social groups toward population growth and dynamics have been difficult to quantify. A common approach to quantifying these role-based contributions is evaluating the number of individuals conducting certain roles, which ignores how behavior might scale up to effects at the population-level. Manipulative experiments are another common approach to determine population-level effects, but they often ignore potential feedbacks associated with these various roles.Here, we evaluate the effects of worker size distribution in bumblebee colonies on worker production in 24 observational colonies across three environments, using functional linear models. Functional linear models are an underused correlative technique that has been used to assess lag effects of environmental drivers on plant performance. We demonstrate potential applications of this technique for exploring high-dimensional ecological systems, such as the contributions of individuals with different traits to colony dynamics.We found that more larger workers had mostly positive effects and more smaller workers had negative effects on worker production. Most of these effects were only detected under low or fluctuating resource environments suggesting that the advantage of colonies with larger-bodied workers becomes more apparent under stressful conditions.We also demonstrate the wider ecological application of functional linear models. We highlight the advantages and limitations when considering these models, and how they are a valuable complement to many of these performance-based and manipulative experiments.
Collapse
Affiliation(s)
- Natalie Z. Kerr
- Department of BiologyTufts UniversityMedfordMAUSA
- Department of BiologyDuke UniversityDurhamNCUSA
| | - Rosemary L. Malfi
- Department of BiologyUniversity of Massachusetts‐AmherstAmherstMAUSA
| | - Neal M. Williams
- Department of Entomology and NematologyUniversity of CaliforniaDavisCAUSA
| | | |
Collapse
|
19
|
Costa CP, Fisher K, Guillén BM, Yamanaka N, Bloch G, Woodard SH. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol Evol 2021; 21:20. [PMID: 33563224 PMCID: PMC7871553 DOI: 10.1186/s12862-021-01756-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The developmental fates of offspring have the potential to be influenced by the identity of their care-givers and by the nature of the care that they receive. In animals that exhibit both parental and alloparental care, such as the annually eusocial insects, the influence of care-giver identity can be directly assessed to yield mechanistic and evolutionary insights into the origins and elaboration of brood care. Here, we performed a comparative investigation of maternal and worker brood care in bumble bees, a pollinator group where mothers (queens) rear the first offspring in the nest, and then daughters (workers) assume this role upon their emergence. Specifically, we compared the effects of queen and worker brood care on offspring development and also offspring performance, for a set of traits related to sensory biology, learning, and stress resistance. RESULTS We found that queen-reared workers were smaller-bodied than worker-reared offspring, suggesting that bumble bee queens influence body size determination in their offspring. We also found that queen-reared workers were more resistant to starvation, which might be beneficial for early nesting success. These maternal influences could not be explained by feeding rate, given that we detected a similar offspring feeding frequency in both queens and workers. CONCLUSION Bumble bee queens have a unique influence on the development of the first offspring in the nest, which they rear, relative to worker-reared workers. We propose that bumble bee brood care has been shaped by a suite of evolutionary and ecological factors, which might include a maternal influence on traits that promote survival of incipient colonies.
Collapse
Affiliation(s)
| | - Kaleigh Fisher
- Department of Entomology, University of California, Riverside, CA, USA
| | - Blanca M Guillén
- Department of Entomology, University of California, Riverside, CA, USA
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, CA, USA.
| |
Collapse
|
20
|
Timberlake TP, Vaughan IP, Baude M, Memmott J. Bumblebee colony density on farmland is influenced by late‐summer nectar supply and garden cover. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas P. Timberlake
- School of Biological Sciences University of Bristol Bristol UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Ian P. Vaughan
- Cardiff School of BiosciencesCardiff University Cardiff UK
| | | | - Jane Memmott
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
21
|
Reap what you sow: local plant composition mediates bumblebee foraging patterns within urban garden landscapes. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01043-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Mola JM, Miller MR, O'Rourke SM, Williams NM. Wildfire reveals transient changes to individual traits and population responses of a native bumble bee Bombus vosnesenskii. J Anim Ecol 2020; 89:1799-1810. [PMID: 32358976 DOI: 10.1111/1365-2656.13244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Fire-induced changes in the abundance and distribution of organisms, especially plants, can alter resource landscapes for mobile consumers driving bottom-up effects on their population sizes, morphologies and reproductive potential. We expect these impacts to be most striking for obligate visitors of plants, like bees and other pollinators, but these impacts can be difficult to interpret due to the limited information provided by forager counts in the absence of survival or fitness proxies. Increased bumble bee worker abundance is often coincident with the pulses of flowers that follow recent fire. However, it is unknown if observed postfire activity is due to underlying population growth or a stable pool of colonies recruiting more foragers to abundant resource patches. This distinction is necessary for determining the net impact of disturbance on bumble bees: are there population-wide responses or do just a few colonies reap the rewards? We estimated colony abundance before and after fire in burned and unburned areas using a genetic mark-recapture framework. We paired colony abundance estimates with measures of body size, counts of queens, and estimates of foraging and dispersal to assess changes in worker size, reproductive output, and landscape-scale movements. Higher floral abundance following fire not only increased forager abundance but also the number of colonies from which those foragers came. Importantly, despite a larger population size, we also observed increased mean worker size. Two years following fire, queen abundance was higher in both burned and unburned sites, potentially due to the dispersal of queens from burned into unburned areas. The effects of fire were transient; within two growing seasons, worker abundance was substantially reduced across the entire sampling area and body sizes were similar between burned and unburned sites. Our results reveal how disturbance can temporarily release populations from resource limitation, boosting the genetic diversity, body size, and reproductive output of populations. Given that the effects of fire on bumble bees acted indirectly through pulsed resource availability, it is likely our results are generalizable to other situations, such as habitat restorations, where resource density is enhanced within the landscape.
Collapse
Affiliation(s)
- John M Mola
- Fort Collins Science Center, U.S. Geological Survey, Ft Collins, CO, USA.,Graduate Group in Ecology, University of California, Davis, CA, USA
| | - Michael R Miller
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Animal Science, University of California, Davis, CA, USA
| | - Sean M O'Rourke
- Department of Animal Science, University of California, Davis, CA, USA
| | - Neal M Williams
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Entomology, University of California, Davis, CA, USA
| |
Collapse
|
23
|
MacLeod M, Reilly J, Cariveau DP, Genung MA, Roswell M, Gibbs J, Winfree R. How much do rare and crop‐pollinating bees overlap in identity and flower preferences? J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Molly MacLeod
- Graduate Program in Ecology & Evolution Rutgers University New Brunswick NJ USA
- Pfizer Worldwide Research and Development Communications New York NY USA
| | - James Reilly
- Department of Ecology, Evolution, and Natural Resources Rutgers University New Brunswick NJ USA
| | | | - Mark A. Genung
- Department of Ecology, Evolution, and Natural Resources Rutgers University New Brunswick NJ USA
- Department of Biology Unversity of Louisiana at Lafayette Lafayette LA USA
| | - Michael Roswell
- Graduate Program in Ecology & Evolution Rutgers University New Brunswick NJ USA
- Department of Ecology, Evolution, and Natural Resources Rutgers University New Brunswick NJ USA
| | - Jason Gibbs
- Department of Entomology University of Manitoba Winnipeg MB Canada
| | - Rachael Winfree
- Department of Ecology, Evolution, and Natural Resources Rutgers University New Brunswick NJ USA
| |
Collapse
|