1
|
Ruiz-Sagalés M, García-Vernet R, Sanchez-Espigares J, Halldórsson SD, Chosson V, Sigurðsson GM, Vighi M, Lloret-Cabot R, Borrell A, Aguilar A. Baleen stable isotopes reveal climate-driven behavioural shifts in North Atlantic fin whales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177164. [PMID: 39447890 DOI: 10.1016/j.scitotenv.2024.177164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Climate variability impacts the structure and functioning of marine ecosystems and can trigger behavioural responses in organisms. We investigated whether such variability modulates diet and migration in the North Atlantic fin whale (Balaenoptera physalus). To reconstruct the dietary and migratory behaviours over time, we conducted stable isotope analysis of nitrogen (δ15N) and carbon (δ13C) along baleen plates from 29 fin whales sampled off southwestern (SW) Iceland in summer. We estimated a baleen growth rate of 16.1 ± 2.5 cm per year from the stable isotope oscillations observed along the baleens. We also assigned a deposition date for each baleen segment, thus obtaining isotopic sequential time series. We then assessed the potential association of these time series with the main climate patterns of the North Atlantic basin. Baleen δ15N and δ13C values are associated with the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO). During high AMO and low NAO periods, which tend to decrease krill abundance, there is an increase in both the mean and standard deviation of baleen δ15N values, suggesting that fin whales shift to higher trophic resources and expand their dietary niche. Additionally, high AMO periods, which relate to positive temperature anomalies, lead to a decrease in baleen δ13C values, suggesting that fin whales adjust their migratory routes and destinations towards higher latitudes. Significant variation in isotopic niche width between years also reflected these dietary and migratory behavioural shifts. This highlights the plasticity of the North Atlantic fin whale behaviour, a trait likely to strengthen the resilience of the species within the current context of rapid and intense climate variability.
Collapse
Affiliation(s)
- Marc Ruiz-Sagalés
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Raquel García-Vernet
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josep Sanchez-Espigares
- Department of Statistics and Operations Research, UPC-BarcelonaTECH, Avda. Diagonal, 647, Planta 6, 6-67, 08028 Barcelona, Spain
| | - Sverrir D Halldórsson
- Marine and Freshwater Research Institute, PO Box 1390, Fornubúðum 5, 220 Hafnarfjörður, Iceland
| | - Valerie Chosson
- Marine and Freshwater Research Institute, PO Box 1390, Fornubúðum 5, 220 Hafnarfjörður, Iceland
| | - Guðjón M Sigurðsson
- Marine and Freshwater Research Institute, PO Box 1390, Fornubúðum 5, 220 Hafnarfjörður, Iceland
| | - Morgana Vighi
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roger Lloret-Cabot
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Asunción Borrell
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alex Aguilar
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Reial Acadèmia de Ciències i Arts de Barcelona (RACAB), la Rambla 115, 08002 Barcelona, Spain
| |
Collapse
|
2
|
Harris AJT, Santos GM, Malone KO, Van Der Meer MTJ, Riekenberg P, Fernandes R. A long-term study of stable isotope ratios of fingernail keratin and amino acids in a mother-infant dyad. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25021. [PMID: 39192684 DOI: 10.1002/ajpa.25021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To evaluate the potential of compound-specific isotope analysis of amino acids (CSIA-AA) for investigating infant feeding practices, we conducted a long-term study that compared infant and maternal amino acid (AA) nitrogen isotope ratios. MATERIALS AND METHODS Fingernail samples were collected from a single mother-infant dyad over 19 months postpartum. Carbon and nitrogen stable isotope ratios were measured in the bulk keratin of the fingernail samples. Selected samples were then hydrolyzed and derivatized for compound-specific nitrogen isotope analysis of keratin AAs. RESULTS As in previous studies, infant bulk keratin nitrogen isotope values increased during exclusive breastfeeding and fell with the introduction of complementary foods and eventual cessation of breastfeeding. Infant trophic AAs had elevated nitrogen isotope values relative to the mother, while the source AAs were similar between the mother and infant. Proline and threonine appeared to track the presence of human milk in the infant's diet as the isotopic composition of these AAs remained offset from maternal isotope values until the cessation of breastfeeding. DISCUSSION Although CSIA-AA is costly and labor intensive, it appears to hold potential for estimating the duration of breastfeeding, even after the introduction of complementary foods. Through the analysis of a full suite of AAs, it may also yield insights into infant physiology and AA synthesis.
Collapse
Affiliation(s)
- Alison J T Harris
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Memorial University of Newfoundland and Labrador, St. John's, Canada
| | - Guaciara M Santos
- Keck Carbon Cycle AMS Facility, University of California Irvine, Irvine, California, USA
| | - Kaelyn O Malone
- Keck Carbon Cycle AMS Facility, University of California Irvine, Irvine, California, USA
| | - Marcel T J Van Der Meer
- Marine Microbiology and Biogeochemistry Department, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Philip Riekenberg
- Marine Microbiology and Biogeochemistry Department, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Warsaw, Poland
- Arne Faculty of Arts, Masaryk University, Brno, Czechia
- Climate Change and History Research Initiative, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
3
|
MacPherson J, Shipley ON, Weinrauch AM, Busquets-Vass G, Newsome SD, Anderson WG. Absence of a functional gut microbiome impairs host amino acid metabolism in the Pacific spiny dogfish (Squalus suckleyi). J Exp Biol 2024; 227:jeb247751. [PMID: 39091254 DOI: 10.1242/jeb.247751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Nitrogen recycling and amino acid synthesis are two notable ways in which the gut microbiome can contribute to host metabolism, and these processes are especially important in nitrogen-limited animals. Marine elasmobranchs are nitrogen limited as they require substantial amounts of this element to support urea-based osmoregulation. However, following antibiotic-induced depletion of the gut microbiome, elasmobranchs are known to experience a significant decline in circulating urea and employ compensatory nitrogen conservation strategies such as reduced urea and ammonia excretion. We hypothesized that the elasmobranch gut microbiome transforms dietary and recycled nutrients into amino acids, supporting host carbon and nitrogen balance. Here, using stable isotope analyses, we found that depleting the gut microbiome of Pacific spiny dogfish (Squalus suckleyi) resulted in a significant reduction to the incorporation of supplemented dietary 15N into plasma amino acids, notably those linked to nitrogen handling and energy metabolism, but had no effect on gut amino acid transport. These results demonstrate the importance of gut microbes to host amino acid pools and the unique nitrogen handling strategy of marine elasmobranchs. More broadly, these results elucidate how the gut microbiome contributes to organismal homeostasis, which is likely a ubiquitous phenomenon across animal populations.
Collapse
Affiliation(s)
- Jess MacPherson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Geraldine Busquets-Vass
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Laboratorio de Macroecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada - Unidad La Paz, La Paz, Baja California Sur 23050, Mexico
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| |
Collapse
|
4
|
Gutierrez E, Mitchell S, Hambly C, Sayle KL, von Kriegsheim A, Speakman JR, Britton K. Carbon, nitrogen, and sulfur elemental and isotopic variations in mouse hair and bone collagen during short-term graded calorie restriction. iScience 2024; 27:110059. [PMID: 38947513 PMCID: PMC11214416 DOI: 10.1016/j.isci.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
This study characterized the effect of calorie restriction (CR) on elemental content and stable isotope ratio measurements of bone "collagen" and hair keratin. Adult mice on graded CR (10-40%; 84 days) showed decreased hair δ 15N, δ 13C, and δ 34S values (significantly for δ 15N) with increasing CR, alongside a significant increase in bone "collagen" δ 15N values and a decrease in "collagen" δ 13C values. We propose this was likely due to the intensified mobilization of endogenous proteins, as well as lipids in newly synthesized "collagen". Elemental analysis of bone "collagen" revealed decreased carbon, nitrogen, and sulfur % content with increasing CR which is attributed to a change in the in vivo bone "collagen" structure with extent of CR. This complexity challenges the use of elemental indicators in the assessment of collagen quality in archaeological studies where nutritional stress may be a factor.
Collapse
Affiliation(s)
- Eléa Gutierrez
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland AB39 2PN, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
- AASPE “Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements”, Muséum national d’Histoire naturelle, 75005 Paris, France
| | - Sharon Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
| | - Kerry L. Sayle
- Scottish Universities Environmental Research Centre, University of Glasgow, Scotland G75 0QF, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh Scotland EH4 2XR, UK
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK
- Shenzhen Key Laboratory of Metabolic Health, Centre for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PRC
- Centre of Excellence in Animal Evolution and Genetics, Kunming, PRC
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland AB39 2PN, UK
| |
Collapse
|
5
|
Matthews CJD, Smith EAE, Ferguson SH. Comparison of δ 13C and δ 15N of ecologically relevant amino acids among beluga whale tissues. Sci Rep 2024; 14:11146. [PMID: 38750037 PMCID: PMC11096183 DOI: 10.1038/s41598-024-59307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Ecological applications of compound-specific stable isotope analysis (CSIA) of amino acids (AAs) include 1) tracking carbon pathways in food webs using essential AA (AAESS) δ13C values, and 2) estimating consumer trophic position (TP) by comparing relative differences of 'trophic' and 'source' AA δ15N values. Despite the significance of these applications, few studies have examined AA-specific SI patterns among tissues with different AA compositions and metabolism/turnover rates, which could cause differential drawdown of body AA pools and impart tissue-specific isotopic fractionation. To address this knowledge gap, especially in the absence of controlled diet studies examining this issue in captive marine mammals, we used a paired-sample design to compare δ13C and δ15N values of 11 AAs in commonly sampled tissues (skin, muscle, and dentine) from wild beluga whales (Delphinapterus leucas). δ13C of two AAs, glutamic acid/glutamine (Glx, a non-essential AA) and, notably, threonine (an essential AA), differed between skin and muscle. Furthermore, δ15N of three AAs (alanine, glycine, and proline) differed significantly among the three tissues, with glycine δ15N differences of approximately 10 ‰ among tissues supporting recent findings it is unsuitable as a source AA. Significant δ15N differences in AAs such as proline, a trophic AA used as an alternative to Glx in TP estimation, highlight tissue selection as a potential source of error in ecological applications of CSIA-AA. Amino acids that differed among tissues play key roles in metabolic pathways (e.g., ketogenic and gluconeogenic AAs), pointing to potential physiological applications of CSIA-AA in studies of free-ranging animals. These findings underscore the complexity of isotopic dynamics within tissues and emphasize the need for a nuanced approach when applying CSIA-AA in ecological research.
Collapse
Affiliation(s)
- Cory J D Matthews
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, Canada.
| | - Emma A Elliott Smith
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Steven H Ferguson
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Robinson AL, Elliott Smith EA, Besser AC, Newsome SD. Tissue-specific carbon isotope patterns of amino acids in southern sea otters. Oecologia 2024; 204:13-24. [PMID: 38227253 DOI: 10.1007/s00442-023-05505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
The measurement of stable isotope values of individual compounds, such as amino acids (AAs), has become a powerful tool in animal ecology and ecophysiology. As with any emerging technique, questions remain regarding the capabilities and limitations of this approach, including how metabolism and tissue synthesis impact the isotopic values of individual AAs and subsequent multivariate patterns. We measured carbon isotope (δ13C) values of essential (AAESS) and nonessential (AANESS) AAs in bone collagen, whisker, muscle, and liver from ten southern sea otters (Enhydra lutris nereis) that stranded in Monterey Bay, California. Sea otters in this population exhibit high degrees of individual dietary specialization, making this an excellent dataset to explore differences in AA δ13C values among tissues in a wild population. We found the δ13C values of the AANESS glutamic acid, proline, serine, and glycine and the AAESS threonine differed significantly among tissues, indicating possible isotopic discrimination during tissue synthesis. Threonine δ13C values were higher in liver relative to bone collagen and muscle, which may indicate catabolism of threonine for gluconeogenesis, an interpretation further supported by correlations between the δ13C values of threonine and its gluconeogenic products glycine and serine in liver. This intraindividual isotopic variation yielded different ecological interpretations among tissues; for 6/10 of the sea otter individuals analyzed, at least one tissue indicated reliance on a different primary producer source than the other tissues. Our results highlight the importance of gluconeogenesis in a carnivorous marine mammal and indicate that metabolic processes influence AAESS and AANESS δ13C values and multivariate AA δ13C patterns.
Collapse
Affiliation(s)
- Alana L Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Emma A Elliott Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Alexi C Besser
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
7
|
Vedel G, de la Peña E, Moreno-Rojas JM, Carranza J. Is the Intrasexual Competition in Male Red Deer Reflected in the Ratio of Stable Isotopes of Carbon and Nitrogen in Faeces? Animals (Basel) 2023; 13:2397. [PMID: 37508173 PMCID: PMC10375991 DOI: 10.3390/ani13142397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Isotopic analysis of carbon and nitrogen in faeces is a reliable methodology for studying ecology in wildlife. Here, we tested this technique to detect variations in carbon and nitrogen isotopic ratios (δ13C and δ15N) in two different intrasexual competition scenarios of male Iberian red deer (Cervus elaphus hispanicus) using faeces of individuals collected during hunting actions in South-eastern Spain. The carbon isotopic ratio (δ13C) was not found to be significant, likely due to similar diet composition in all individuals. However, the nitrogen isotopic ratio (δ15N) was found to be lower in populations where sexual competition between males during the rut was higher compared to low-competition populations. Therefore, this study suggests a different use of proteins by an individual male red deer depending on the sexually competitive context in which he lives. Although further research is needed, these results show the potential of isotopic analysis as a tool for studying individual and populational variations in the level of intrasexual competition, with implications in evolutionary ecology and population management.
Collapse
Affiliation(s)
- Giovanni Vedel
- Wildlife Research Unit (UiRCP), University of Córdoba, 14071 Córdoba, Spain
| | - Eva de la Peña
- Wildlife Research Unit (UiRCP), University of Córdoba, 14071 Córdoba, Spain
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Jose Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo. Avda. Menéndez Pidal, s/n., 14071 Córdoba, Spain
| | - Juan Carranza
- Wildlife Research Unit (UiRCP), University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
8
|
Shipley ON, Matich P, Hussey NE, Brooks AML, Chapman D, Frisk MG, Guttridge AE, Guttridge TL, Howey LA, Kattan S, Madigan DJ, O'Shea O, Polunin NV, Power M, Smukall MJ, Schneider EVC, Shea BD, Talwar BS, Winchester M, Brooks EJ, Gallagher AJ. Energetic connectivity of diverse elasmobranch populations - implications for ecological resilience. Proc Biol Sci 2023; 290:20230262. [PMID: 37040803 PMCID: PMC10089721 DOI: 10.1098/rspb.2023.0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.
Collapse
Affiliation(s)
| | | | - Nigel E. Hussey
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Annabelle M. L. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Michael G. Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Lucy A. Howey
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sami Kattan
- Beneath The Waves, PO Box 126, Herndon, VA, USA
| | - Daniel J. Madigan
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Owen O'Shea
- The Center for Ocean Research and Education (CORE), Gregory Town, Eleuthera, The Bahamas
| | - Nicholas V. Polunin
- Department of Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Power
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | - Brendan D. Shea
- Beneath The Waves, PO Box 126, Herndon, VA, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Brendan S. Talwar
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | | | - Edward J. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
| | | |
Collapse
|
9
|
Chen MHY, Kendall IP, Evershed RP, Bogaard A, Styring AK. Reconstructing herbivore diets: a multivariate statistical approach to interpreting amino acid nitrogen isotope values. Oecologia 2023; 201:599-608. [PMID: 36786885 DOI: 10.1007/s00442-023-05320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
Recent studies have demonstrated that there exists significant variability in amino acid (AA) δ15N values of terrestrial plants, discriminating among plant types (i.e., legume seeds, grasses, tree leaves) as well as tissues of the same plant. For the first time, we investigate the potential of the spacing between the δ15N values of different AAs to differentiate between plant types and thus elucidate their relative importance in herbivore diet. Using principal component analysis, we show that it is possible to distinguish among five plant categories-cereal grains, rachis, legume seeds, herbaceous plants, and woody plants-whose consumption has different implications for understanding herbivore ecology and management practices. Furthermore, we were able to correctly classify the herbaceous plant diet of modern cattle using AA δ15N values of their tooth dentine adjusted for trophic enrichment. The AA δ15N patterns of wild and domestic herbivores from archaeological sites seem to be consistent with diets comprised predominantly of herbaceous plants, but there is variation in AA δ15N values among individuals that may reflect differing inputs of other plant types. The variation in AA δ15N values does not necessarily reflect the variation in herbivore bulk collagen δ13C and δ15N values, indicating that AA δ15N values have the potential to provide additional insights into plant dietary sources compared to bulk tissue isotope values alone. Future work should focus on defining trophic enrichment factors for a wider range of terrestrial herbivores and expanding libraries of primary producer AA δ15N values.
Collapse
Affiliation(s)
- Mickey H Y Chen
- School of Archaeology, University of Oxford, 34-36 Beaumont Street, Oxford, OX1 2PG, UK.
| | - Iain P Kendall
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Richard P Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Amy Bogaard
- School of Archaeology, University of Oxford, 34-36 Beaumont Street, Oxford, OX1 2PG, UK
| | - Amy K Styring
- School of Archaeology, University of Oxford, 34-36 Beaumont Street, Oxford, OX1 2PG, UK.
| |
Collapse
|
10
|
Cheung C, Herrscher E, Thomas A. Compound specific isotope evidence points to use of freshwater resources as weaning food in Middle Neolithic Paris Basin. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9543897 DOI: 10.1002/ajpa.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objectives Methods Results Conclusions
Collapse
Affiliation(s)
- Christina Cheung
- Eco‐anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS Université de Paris Paris France
- CNRS, Minist Culture, LAMPEA Aix Marseille Univ Aix‐en‐Provence France
- Research Unit: Analytical, Environmental & Geo‐Chemistry, Department of Chemistry Vrije Universiteit Brussel Brussels Belgium
| | - Estelle Herrscher
- CNRS, Minist Culture, LAMPEA Aix Marseille Univ Aix‐en‐Provence France
| | - Aline Thomas
- Eco‐anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS Université de Paris Paris France
| |
Collapse
|
11
|
Keogh MJ, Nicholson KL, Skinner JP. Relationships between age, diet, and stress-related hormones and reproduction in American marten ( Martes americana). J Mammal 2022. [DOI: 10.1093/jmammal/gyac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
American marten (Martes americana) in Interior Alaska are at the northwestern limit of their North American range. To investigate factors that may be associated with reproduction we determined the cementum age and the presence or absence of blastocysts in 118 female martens for 3 years (2012, 2014, and 2016) in two regions. For each marten we collected fur samples and measured steroid hormone concentrations (cortisol, testosterone, and progesterone) and stable isotopes (δ15N and δ13C values, a proxy for diet). These parameters reflect the diet and endocrine activity between June and October when fur is grown. We also collected two claws from a subset of 39 female marten from one region in 2012 and 2014. Progesterone concentrations were measured in one whole claw and from a second claw divided into proximal (recent growth) and distal sections. Differences in the probability of blastocysts being present were associated with geographic region and sample year suggesting that reproduction in female marten varies on a fine scale. We found the that presence of blastocysts was positively associated with marten age and δ15N values in fur but negatively associated with fur cortisol concentrations. These findings suggest that the likelihood a female marten will reproduce in a given year is influenced, in part, by the proportion of protein in their diet and stressors encountered during late summer and fall, months before active gestation begins.
Collapse
Affiliation(s)
- Mandy J Keogh
- Division of Wildlife Conservation, Alaska Department of Fish and Game , Douglas, Alaska , USA
| | - Kerry L Nicholson
- Division of Wildlife Conservation, Alaska Department of Fish and Game , Fairbanks, Alaska , USA
| | - John P Skinner
- Division of Wildlife Conservation, Alaska Department of Fish and Game , Anchorage, Alaska , USA
| |
Collapse
|
12
|
Yun HY, Larsen T, Choi B, Won E, Shin K. Amino acid nitrogen and carbon isotope data: Potential and implications for ecological studies. Ecol Evol 2022; 12:e8929. [PMID: 35784034 PMCID: PMC9163675 DOI: 10.1002/ece3.8929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Explaining food web dynamics, stability, and functioning depend substantially on understanding of feeding relations within a community. Bulk stable isotope ratios (SIRs) in natural abundance are well-established tools to express direct and indirect feeding relations as continuous variables across time and space. Along with bulk SIRs, the SIRs of individual amino acids (AAs) are now emerging as a promising and complementary method to characterize the flow and transformation of resources across a diversity of organisms, from microbial domains to macroscopic consumers. This significant AA-SIR capacity is based on empirical evidence that a consumer's SIR, specific to an individual AA, reflects its diet SIR coupled with a certain degree of isotopic differences between the consumer and its diet. However, many empirical ecologists are still unfamiliar with the scope of applicability and the interpretative power of AA-SIR. To fill these knowledge gaps, we here describe a comprehensive approach to both carbon and nitrogen AA-SIR assessment focusing on two key topics: pattern in AA-isotope composition across spatial and temporal scales, and a certain variability of AA-specific isotope differences between the diet and the consumer. On this basis we review the versatile applicability of AA-SIR to improve our understanding of physiological processes as well as food web functioning, allowing us to reconstruct dominant basal dietary sources and trace their trophic transfers at the specimen and community levels. Given the insightful and opportunities of AA-SIR, we suggest future applications for the dual use of carbon and nitrogen AA-SIR to study more realistic food web structures and robust consumer niches, which are often very difficult to explain in nature.
Collapse
Affiliation(s)
- Hee Young Yun
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Thomas Larsen
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| | - Bohyung Choi
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
- Inland Fisheries Research InstituteNational Institute of Fisheries ScienceGeumsan‐gunKorea
| | - Eun‐Ji Won
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Kyung‐Hoon Shin
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| |
Collapse
|
13
|
Karpovich S, Skinner JP, Miller CN, Polasek LK, Pendleton G. Growth and Shedding of Harbor Seal (Phoca vitulina) Whiskers. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accurate and precise estimates of the timing of whisker growth and shedding are necessary to interpret biochemical information stored in whiskers. This fine-scale examination of harbor seal (Phoca vitulina Linnaeus, 1758) whisker growth and shedding identified an asymptotic growth pattern with initial rapid growth that decays over time that can be defined with the von Bertalanffy curve. Initial growth rates were similar among whiskers, but estimated growth coefficients (K) and asymptotic lengths (L<sub>∞</sub> ) differed by follicle positions suggesting that differences in total whisker lengths result from dissimilarly shaped growth curves. In other words, longer whisker length is attained by delaying the growth rate decay. There was substantial intra- and inter-seal variation in shedding dates; whisker shedding began at the caudal margin of the whisker bed and progressed toward the nose. Shedding of marked whiskers from the three study seals took from 78 to 133 d, however, selecting whiskers only from the most caudal follicle of the bottom three rows constrained the period of whisker shedding to 7 to 43 d. These differences in growth and shedding of harbor seal whiskers emphasize the importance of considering follicle position to select whiskers that are the most similar for analyses of information stored in whiskers.
Collapse
Affiliation(s)
- Shawna Karpovich
- State of Alaska Department of Fish and Game, 10936, Marine Mammal Program, Fairbanks, Alaska, United States
| | - John P. Skinner
- State of Alaska Department of Fish and Game, 10936, Alaska Department of Fish and Game, Anchorage, Alaska, United States
| | - Carlene N. Miller
- State of Alaska Department of Fish and Game, 10936, Marine Mammal Program, Fairbanks, Alaska, United States
- Alaska SeaLife Center, Seward, Alaska, United States
| | - Lori K. Polasek
- Alaska SeaLife Center, Seward, Alaska, United States
- University of Alaska Fairbanks, 11414, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, United States
- State of Alaska Department of Fish and Game, 10936, Marine Mammal Program, Juneau, Alaska, United States
| | - Grey Pendleton
- State of Alaska Department of Fish and Game, 10936, Wildlife Conservation, Juneau, Alaska, United States,
| |
Collapse
|
14
|
Shipley ON, Olin JA, Whiteman JP, Bethea DM, Newsome SD. Bulk and amino acid nitrogen isotopes suggest shifting nitrogen balance of pregnant sharks across gestation. Oecologia 2022; 199:313-328. [PMID: 35718810 DOI: 10.1007/s00442-022-05197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Nitrogen isotope (δ15N) analysis of bulk tissues and individual amino acids (AA) can be used to assess how consumers maintain nitrogen balance with broad implications for predicting individual fitness. For elasmobranchs, a ureotelic taxa thought to be constantly nitrogen limited, the isotopic effects associated with nitrogen-demanding events such as prolonged gestation remain unknown. Given the linkages between nitrogen isotope variation and consumer nitrogen balance, we used AA δ15N analysis of muscle and liver tissue collected from female bonnethead sharks (Sphyrna tiburo, n = 16) and their embryos (n = 14) to explore how nitrogen balance may vary across gestation. Gestational stage was a strong predictor of bulk tissue and AA δ15N values in pregnant shark tissues, decreasing as individuals neared parturition. This trend was observed in trophic (e.g., Glx, Ala, Val), source (e.g., Lys), and physiological (e.g., Gly) AAs. Several potential mechanisms may explain these results including nitrogen conservation, scavenging, and bacterially mediated breakdown of urea to free ammonia that is used to synthesize AAs. We observed contrasting patterns of isotopic discrimination in embryo tissues, which generally became enriched in 15N throughout development. This was attributed to greater excretion of nitrogenous waste in more developed embryos, and the role of physiologically sensitive AAs (i.e., Gly and Ser) to molecular processes such as nucleotide synthesis. These findings underscore how AA isotopes can quantify shifts in nitrogen balance, providing unequivocal evidence for the role of physiological condition in driving δ15N variation in both bulk tissues and individual AAs.
Collapse
Affiliation(s)
- Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Beneath the Waves, PO Box 126, Herndon, VA, 20172, USA.
| | - Jill A Olin
- Biological Sciences, Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - John P Whiteman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Dana M Bethea
- NOAA Fisheries Southeast Regional Office, Saint Petersburg, FL, 33701, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
15
|
Chibowski P, Brzeziński M, Suska-Malawska M, Zub K. Diet/Hair and Diet/Faeces Trophic Discrimination Factors for Stable Carbon and Nitrogen Isotopes, and Hair Regrowth in the Yellow-Necked Mouse and Bank Vole. ANN ZOOL FENN 2022. [DOI: 10.5735/086.059.0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Piotr Chibowski
- Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, PL-02-089 Warsaw, Poland
| | - Marcin Brzeziński
- Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, PL-02-089 Warsaw, Poland
| | - Małgorzata Suska-Malawska
- Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, PL-02-089 Warsaw, Poland
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, PL-17-230 Białowieża, Poland
| |
Collapse
|
16
|
Ogloff WR, Anderson RA, Yurkowski DJ, Debets CD, Anderson WG, Ferguson SH. OUP accepted manuscript. J Mammal 2022; 103:1208-1220. [PMID: 36262800 PMCID: PMC9562108 DOI: 10.1093/jmammal/gyac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - David J Yurkowski
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
- Department of Biological Sciences, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| | - Cassandra D Debets
- Department of Biological Sciences, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| | - Steven H Ferguson
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
- Department of Biological Sciences, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Riekenberg PM, Camalich J, Svensson E, IJsseldijk LL, Brasseur SMJM, Witbaard R, Leopold MF, Rebolledo EB, Middelburg JJ, van der Meer MTJ, Sinninghe Damsté JS, Schouten S. Reconstructing the diet, trophic level and migration pattern of mysticete whales based on baleen isotopic composition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210949. [PMID: 34909214 PMCID: PMC8652277 DOI: 10.1098/rsos.210949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Baleen from mysticete whales is a well-preserved proteinaceous material that can be used to identify migrations and feeding habits for species whose migration pathways are unknown. Analysis of δ13C and δ15N values from bulk baleen have been used to infer migration patterns for individuals. However, this approach has fallen short of identifying migrations between regions as it is difficult to determine variations in isotopic shifts without temporal sampling of prey items. Here, we apply analysis of δ15N values of amino acids to five baleen plates belonging to three species, revealing novel insights on trophic position, metabolic state and migration between regions. Humpback and minke whales had higher reconstructed trophic levels than fin whales (3.7-3.8 versus 3-3.2, respectively) as expected due to different feeding specialization. Isotopic niche areas between baleen minima and maxima were well separated, indicating regional resource use for individuals during migration that aligned with isotopic gradients in Atlantic Ocean particulate organic matter. Phenylanine δ15N values confirmed regional separation between the niche areas for two fin whales as migrations occurred and elevated glycine and threonine δ15N values suggested physiological changes due to fasting. Simultaneous resolution of trophic level and physiological changes allow for identification of regional migrations in mysticetes.
Collapse
Affiliation(s)
- Philip M. Riekenberg
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn 1790AB, The Netherlands
| | - Jaime Camalich
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn 1790AB, The Netherlands
| | - Elisabeth Svensson
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn 1790AB, The Netherlands
| | - Lonneke L. IJsseldijk
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3854 CL Utrecht, The Netherlands
| | - Sophie M. J. M. Brasseur
- Wageningen Marine Research, Wageningen University and Research, PO Box 57, 1780 AB Den Helder, The Netherlands
| | - Rob Witbaard
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Mardik F. Leopold
- Wageningen Marine Research, Wageningen University and Research, PO Box 57, 1780 AB Den Helder, The Netherlands
| | - Elisa Bravo Rebolledo
- Wageningen Marine Research, Wageningen University and Research, PO Box 57, 1780 AB Den Helder, The Netherlands
| | - Jack J. Middelburg
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Marcel T. J. van der Meer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn 1790AB, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn 1790AB, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Stefan Schouten
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn 1790AB, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
18
|
Troina GC, Riekenberg P, van der Meer MTJ, Botta S, Dehairs F, Secchi ER. Combining isotopic analysis of bulk-skin and individual amino acids to investigate the trophic position and foraging areas of multiple cetacean species in the western South Atlantic. ENVIRONMENTAL RESEARCH 2021; 201:111610. [PMID: 34224712 DOI: 10.1016/j.envres.2021.111610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
We investigated the trophic structure and habitat use of ten cetacean species occurring in the oceanic waters of the western South Atlantic using naturally-occurring stable isotopes. We analysed δ15N in individual amino acids (AA) to estimate cetacean trophic position (TP) and to evaluate the spatial differences in baseline δ15N (source AAs). We adjusted cetacean bulk-skin δ13C and δ15N for the effect of trophic level using their estimated TPs, obtaining δ13CAdjusted and δ15NAdjusted, respectively. These values were applied to estimate the overlap in the niche areas of cetacean baseline sources. Our analyses showed spatial segregation between Steno bredanensis and the remaining odontocetes, and the high δ15N in this species reflects its occurrence in neritic waters of the southern region. The highest TPs were observed in Physeter macrocephalus, Stenella attenuata and Globicephala melas, while the lowest TPs were reported for S. longirostris, S. clymene and Orcinus orca. Overall, source AA-δ15N showed similar patterns as those of baseline-δ15N (zooplankton) and were higher in species sampled in the southernmost region of the study area (e.g., Delphinus delphis). Isotopic niche areas estimated using δ13CAdjusted and δ15NAdjusted suggested high overlap in foraging area between S. frontalis and Tursiops truncatus, with the latter occupying a higher TP. Our analyses of δ15N in AAs provide a unique insight into the trophic ecology, forage areas and spatial segregation in resource use among these cetacean populations. Additionally, our work provides AA-δ15N baseline for future studies on the trophic ecology and habitat use of marine organisms in the western South Atlantic.
Collapse
Affiliation(s)
- Genyffer C Troina
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Rio Grande, RS, Brazil.
| | - Philip Riekenberg
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn, 1790AB, the Netherlands
| | - Marcel T J van der Meer
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn, 1790AB, the Netherlands
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Rio Grande, RS, Brazil
| | - Frank Dehairs
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Rio Grande, RS, Brazil
| |
Collapse
|
19
|
Matich P, Bizzarro JJ, Shipley ON. Are stable isotope ratios suitable for describing niche partitioning and individual specialization? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02392. [PMID: 34164866 DOI: 10.1002/eap.2392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
As concerns about anthropogenic and natural disturbance grow, understanding animal resource use patterns has been increasingly prioritized to predict how changes in environmental conditions, food web structure, and population dynamics will affect biological resilience. Among the tools used to assess resource use, stable isotope analysis has proliferated in ecological studies, particularly in relation to describing intra- and interspecific variation in trophic interactions. Despite a growing need to disseminate scientific information, the inherent limitations of stable isotope ratios and inappropriate synonymizing of distinct evolutionary and ecological processes may mislead ecological inferences in natural systems. This situation necessitates a re-evaluation of the utility of stable isotope ratios to address certain ecological questions. Here, we assess the efficacy of stable isotope ratios to describe two fundamental ecological processes, niche partitioning and individual specialization. Investigation of these processes has increased substantially in accordance with increased access to stable isotope data. This article discusses the circumstances and approaches that are necessary to evaluate niche partitioning and individual specialization, and outlines key considerations for the associated application of stable isotope ratios.
Collapse
Affiliation(s)
- Philip Matich
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, 77553, USA
| | - Joseph J Bizzarro
- Moss Landing Marine Laboratories, California State University, 8272 Moss Landing Road, Moss Landing, California, 95039, USA
- Cooperative Institute for Marine Ecosystems and Climate, University of California, Santa Cruz, 110 McAllister Way, Santa Cruz, California, 95060, USA
| | - Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
20
|
Whiteman JP, Rodriguez Curras M, Feeser KL, Newsome SD. Dietary protein content and digestibility influences discrimination of amino acid nitrogen isotope values in a terrestrial omnivorous mammal. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9073. [PMID: 33634533 DOI: 10.1002/rcm.9073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Ecologists increasingly determine the δ15 N values of amino acids (AA) in animal tissue; "source" AA typically exhibit minor variation between diet and consumer, while "trophic" AA have increased δ15 N values in consumers. Thus, trophic-source δ15 N offsets (i.e., Δ15 NT-S ) reflect trophic position in a food web. However, even minor variations in δ15 Nsource AA values may influence the magnitude of offset that represents a trophic step, known as the trophic discrimination factor (i.e., TDFT-S ). Diet digestibility and protein content can influence the δ15 N values of bulk animal tissue, but the effects of these factors on AA Δ15 NT-S and TDFT-S in mammals are unknown. METHODS We fed captive mice (Mus musculus) either (A) a low-fat, high-fiber diet with low, intermediate, or high protein; or (B) a high-fat, low-fiber diet with low or intermediate protein. Mouse muscle and dietary protein were analyzed for bulk tissue δ15 N using elemental analyzer-isotope ratio mass spectrometry (EA-IRMS), and were also hydrolyzed into free AA that were analyzed for δ15 N using gas chromatography-combustion-IRMS. RESULTS As dietary protein increased, Δ15 NConsumer-Diet slightly declined for bulk muscle tissue in both experiments; increased for AA in the low-fat, high-fiber diet (A); and remained the same or decreased for AA in the high-fat, low-fiber diet (B). The effects of dietary protein on Δ15 NT-S and on TDFT-S varied by AA but were consistent between variables. CONCLUSIONS Diets were less digestible and included more protein in Experiment A than in Experiment B. As a result, the mice in Experiment A probably oxidized more AA, resulting in greater Δ15 NConsumer-Diet values. However, the similar responses of Δ15 NT-S and of TDFT-S to diet variation suggest that if diet samples are available, Δ15 NT-S accurately tracks trophic position. If diet samples are not available, the patterns presented here provide a basis to interpret Δ15 NT-S values. The trophic-source offset of Pro-Lys did not vary across diets, and therefore may be more reliable for omnivores than other offsets (e.g., Glu-Phe).
Collapse
Affiliation(s)
- John P Whiteman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mauriel Rodriguez Curras
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
| | - Kelli L Feeser
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
21
|
Whiteman JP, Newsome SD, Bustamante P, Cherel Y, Hobson KA. Quantifying capital versus income breeding: New promise with stable isotope measurements of individual amino acids. J Anim Ecol 2020; 90:1408-1418. [PMID: 33300602 DOI: 10.1111/1365-2656.13402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022]
Abstract
Capital breeders accumulate nutrients prior to egg development, then use these stores to support offspring development. In contrast, income breeders rely on local nutrients consumed contemporaneously with offspring development. Understanding such nutrient allocations is critical to assessing life-history strategies and habitat use. Despite the contrast between these strategies, it remains challenging to trace nutrients from endogenous stores or exogenous food intake into offspring. Here, we tested a new solution to this problem. Using tissue samples collected opportunistically from wild emperor penguins Aptenodytes forsteri, which exemplify capital breeding, we hypothesized that the stable carbon (δ13 C) and nitrogen (δ15 N) isotope values of individual amino acids (AAs) in endogenous stores (e.g. muscle) and in egg yolk and albumen reflect the nutrient sourcing that distinguishes capital versus income breeding. Unlike other methods, this approach does not require untested assumptions or diet sampling. We found that over half of essential AAs had δ13 C values that did not differ between muscle and yolk or albumen, suggesting that most of these AAs were directly routed from muscle into eggs. In contrast, almost all non-essential AAs differed in δ13 C values between muscle and yolk or between muscle and albumen, suggesting de novo synthesis. Over half of AAs that have labile nitrogen atoms (i.e. 'trophic' AA) had higher δ15 N values in yolk and albumen than in muscle, suggesting that they were transaminated during their routing into egg tissue. This effect was smaller for AAs with less labile nitrogen atoms (i.e. 'source' AA). Our results indicate that the δ15 N offset between trophic-source AAs (Δ15 Ntrophic-source ) may provide an index of the extent of capital breeding. The value of emperor penguin Δ15 NPro-Phe was higher in yolk and albumen than in muscle, reflecting the mobilization of endogenous stores; in comparison, the value of Δ15 NPro-Phe was similar across muscle and egg tissue in previously published data for income-breeding herring gulls Larus argentatus smithsonianus. Our results provide a quantitative basis for using AA δ13 C and δ15 N, and isotopic offsets among AAs (e.g. Δ15 NPro-Phe ), to explore the allocation of endogenous versus exogenous nutrients across the capital versus income spectrum of avian reproduction.
Collapse
Affiliation(s)
- John P Whiteman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 du CNRS-La Rochelle Université, La Rochelle, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, London, Ontario, Canada.,Environment and Climate Change Canada, Saskatoon, SK, Canada
| |
Collapse
|
22
|
Ledesma M, Gorokhova E, Holmstrand H, Garbaras A, Karlson AML. Nitrogen isotope composition of amino acids reveals trophic partitioning in two sympatric amphipods. Ecol Evol 2020; 10:10773-10784. [PMID: 33072295 PMCID: PMC7548185 DOI: 10.1002/ece3.6734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
According to ecological theory, two species cannot occupy the same niche. Using nitrogen isotope analyses (δ15N) of amino acids, we tested the extent to which two sympatric deposit‐feeding amphipods, Monoporeia affinis and Pontoporeia femorata, partition their trophic resources. We found that trophic position (TP) and resynthesis index (∑V; a proxy for degradation status of ingested material prior to assimilation by the consumer) differ between species. The surface‐feeding M. affinis had higher TP and intermediate ∑V, both pointing to a large contribution of metazoans in its diet. P. femorata, which feeds in the subsurface layers, had lower TP and a bimodal distribution of the ∑V values, supporting previous experimental evidence of a larger feeding niche. We also evaluated whether TP and ∑V values have consequences for amphipod fecundity and embryo viability and found that embryo viability in M. affinis was negatively linked to TP. Our results indicate that the amino acid‐δ15N data paired with information about reproductive status are useful for detecting differences in the trophic ecology of sympatric amphipods.
Collapse
Affiliation(s)
- Matias Ledesma
- Department of EcologyEnvironment and Plant Science (DEEP)Stockholm UniversityStockholmSweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry (ACES)Stockholm UniversityStockholmSweden
| | - Henry Holmstrand
- Department of Environmental Science and Analytical Chemistry (ACES)Stockholm UniversityStockholmSweden
| | - Andrius Garbaras
- Mass Spectrometry LaboratoryCentre for Physical Science and TechnologyLithuania
| | - Agnes M. L. Karlson
- Department of EcologyEnvironment and Plant Science (DEEP)Stockholm UniversityStockholmSweden
- Stockholm University Baltic Sea CentreStockholmSweden
| |
Collapse
|
23
|
Lübcker N, Whiteman JP, Newsome SD, Millar RP, de Bruyn PJN. Can the carbon and nitrogen isotope values of offspring be used as a proxy for their mother's diet? Using foetal physiology to interpret bulk tissue and amino acid δ 15N values. CONSERVATION PHYSIOLOGY 2020; 8:coaa060. [PMID: 32765882 PMCID: PMC7397484 DOI: 10.1093/conphys/coaa060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The measurement of bulk tissue nitrogen (δ15N) and carbon isotope values (δ13C) chronologically along biologically inert tissues sampled from offspring can provide a longitudinal record of their mothers' foraging habits. This study tested the important assumption that mother-offspring stable isotope values are positively and linearly correlated. In addition, any change in the mother-offspring bulk tissues and individual amino acids that occurred during gestation was investigated. Whiskers sampled from southern elephant seal pups (Mirounga leonina) and temporally overlapping whiskers from their mothers were analyzed. This included n = 1895 chronologically subsampled whisker segments for bulk tissue δ15N and δ13C in total and n = 20 whisker segments for amino acid δ15N values, sampled from recently weaned pups (n = 17), juvenile southern elephant seals (SES) < 2 years old (n = 23) and adult female SES (n = 17), which included nine mother-offspring pairs. In contrast to previous studies, the mother-offspring pairs were not in isotopic equilibrium or linearly correlated during gestation: the Δ15N and Δ13C mother-offspring offsets increased by 0.8 and 1.2‰, respectively, during gestation. The foetal bulk δ15N values were 1.7 ± 0.5‰ (0.9-2.7‰) higher than mothers' δ15N values before birth, while the foetal δ13C increased by ~1.7‰ during gestation and were 1.0 ± 0.5‰ (0.0-1.9‰) higher than their mothers' δ13C at the end of pregnancy. The mother-offspring serine and glycine Δ15N differed by ~4.3‰, while the foetal alanine δ15N values were 1.4‰ lower than that of their mothers during the third trimester of pregnancy. The observed mother-offspring δ15N differences are likely explained by shuttling of glutamate-glutamine and glycine-serine amongst skeletal muscle, liver, placenta and foetal tissue. Foetal development relies primarily on remobilized endogenous maternal proteinaceous sources. Researchers should consider foetal physiology when using offspring bulk tissue isotope values as biomarkers for the mother's isotopic composition as part of monitoring programmes.
Collapse
Affiliation(s)
- Nico Lübcker
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - John P Whiteman
- Department of Biological Sciences, Old Dominion University, 5115 Hampton Boulevard, Norfolk, VA, 23529, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert P Millar
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
- Department of Integrative Biomedical Sciences, Neurosciences Institute and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - P J Nico de Bruyn
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|