1
|
Remmers S, Dausmann K, Schoroth M, Rabarison H, Reher S. Intraspecific variation in metabolic responses to diverse environmental conditions in the Malagasy bat Triaenops menamena. J Comp Physiol B 2025:10.1007/s00360-025-01608-1. [PMID: 40111435 DOI: 10.1007/s00360-025-01608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
Widespread species often display traits of generalists, yet local adaptations may limit their ability to cope with diverse environmental conditions. With climate change being a pressing issue, distinguishing between the general ecological and physiological capacities of a species and those of individual populations is vital for assessing the capability to adapt rapidly to changing habitats. Despite its importance, physiological variation across broad range distributions, particularly among free-ranging bats in natural environments, has rarely been assessed. Studies focusing on physiological variation among different populations across seasons are even more limited. We investigated physiological variation in the Malagasy Trident Bat Triaenops menamena across three different roost types in Madagascar during the wet and dry season, examining aspects such as energy regimes, body temperature, and roost microclimates. We focused on patterns of torpor in relation to roosting conditions. We hypothesized that torpor occurrence would be higher during the colder, more demanding dry season. We predicted that populations roosting in more variable microclimates would expend less energy than those in mores stable ones due to more frequent use of torpor and greater metabolic rate reductions. Our findings highlight complex thermoregulatory strategies, with varying torpor expression across seasons and roosts. We observed an overall higher energy expenditure during the wet season but also greater energy savings during torpor in that season, regardless of roost type. We found that reductions in metabolic rate were positively correlated with greater fluctuations in ambient conditions, demonstrating these bats' adaptability to dynamic environments. Notably, we observed diverse torpor patterns, indicating the species' ability to use prolonged torpor under extreme conditions. This individual-level variation is crucial for adaptation to changing environmental conditions. Moreover, the flexibility in body temperature during torpor suggests caution in relying solely on it as an indicator for torpor use. Our study emphasizes the necessity to investigate thermoregulatory responses across different populations in their respective habitats to fully understand a species' adaptive potential.
Collapse
Affiliation(s)
- Sina Remmers
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany.
| | - K Dausmann
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| | - M Schoroth
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| | - H Rabarison
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| | - S Reher
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
de Mel RK, Moseby KE, Stewart KA, Rankin KE, Czenze ZJ. The heat is on: Thermoregulatory and evaporative cooling patterns of desert-dwelling bats. J Therm Biol 2024; 123:103919. [PMID: 39024847 DOI: 10.1016/j.jtherbio.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
For small endotherms inhabiting desert ecosystems, defending body temperatures (Tb) is challenging as they contend with extremely high ambient temperatures (Ta) and limited standing water. In the arid zone, bats may thermoconform whereby Tb varies with Ta, or may evaporatively cool themselves to maintain Tb < Ta. We used an integrative approach that combined both temperature telemetry and flow through respirometry to investigate the ecological and physiological strategies of lesser long-eared bats (Nyctophilus geoffroyi) in Australia's arid zone. We predicted individuals would exhibit desert-adapted thermoregulatory patterns (i.e., thermoconform to prioritise water conservation), and that females would be more conservative with their water reserves for evaporative cooling compared to males. Temperature telemetry data indicated that free-ranging N. geoffroyi were heterothermic (Tskin = 18.9-44.9 °C) during summer and thermoconformed over a wide range of temperatures, likely to conserve water and energy during the day. Experimentally, at high Tas, females maintained significantly lower Tb and resting metabolic rates, despite lower evaporative water loss (EWL) rates compared to males. Females only increased EWL at experimental Ta = 42.5 °C, significantly higher than males (40.7 °C), and higher than any bat species yet recorded. During the hottest day of this study, our estimates suggest the water required for evaporative cooling ranged from 18.3% (females) and 25.5% (males) of body mass. However, if we extrapolate these results to a recent heatwave these values increase to 36.5% and 47.3%, which are likely beyond lethal limits. It appears this population is under selective pressures to conserve water reserves and that these pressures are more pronounced in females than males. Bats in arid ecosystems are threatened by both current and future heatwaves and we recommend future conservation efforts focus on protecting current roost trees and creating artificial standing water sites near vulnerable populations.
Collapse
Affiliation(s)
- Ruvinda K de Mel
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia.
| | - Katherine E Moseby
- School of Biological, Earth and Environment Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Kathleen A Stewart
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| | - Kate E Rankin
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| | - Zenon J Czenze
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
3
|
Pollock HS, Rutt CL, Cooper WJ, Brawn JD, Cheviron ZA, Luther DA. Equivocal support for the climate variability hypothesis within a Neotropical bird assemblage. Ecology 2024; 105:e4206. [PMID: 37950619 DOI: 10.1002/ecy.4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023]
Abstract
The climate variability hypothesis posits that an organism's exposure to temperature variability determines the breadth of its thermal tolerance and has become an important framework for understanding variation in species' susceptibilities to climate change. For example, ectotherms from more thermally stable environments tend to have narrower thermal tolerances and greater sensitivity to projected climate warming. Among endotherms, however, the relationship between climate variability and thermal physiology is less clear, particularly with regard to microclimate variation-small-scale differences within or between habitats. To address this gap, we explored associations between two sources of temperature variation (habitat type and vertical forest stratum) and (1) thermal physiological traits and (2) temperature sensitivity metrics within a diverse assemblage of Neotropical birds (n = 89 species). We used long-term temperature data to establish that daily temperature regimes in open habitats and forest canopy were both hotter and more variable than those in the forest interior and forest understory, respectively. Despite these differences in temperature regime, however, we found little evidence that species' thermal physiological traits or temperature sensitivity varied in association with either habitat type or vertical stratum. Our findings provide two novel and important insights. First, and in contrast to the supporting empirical evidence from ectotherms, the thermal physiology of birds at our study site appears to be largely decoupled from local temperature variation, providing equivocal support for the climate variability hypothesis in endotherms. Second, we found no evidence that the thermal physiology of understory forest birds differed from that of canopy or open-habitat species-an oft-invoked, yet previously untested, mechanism for why these species are so vulnerable to environmental change.
Collapse
Affiliation(s)
- Henry S Pollock
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cameron L Rutt
- Department of Biology, George Mason University, Fairfax, Virginia, USA
- American Bird Conservancy, The Plains, Virginia, USA
| | | | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - David A Luther
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
4
|
Nowack J, Mzilikazi N, Dausmann KH. Saving energy via short and shallow torpor bouts. J Therm Biol 2023; 114:103572. [PMID: 37344030 DOI: 10.1016/j.jtherbio.2023.103572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/23/2023]
Abstract
Maintaining a high and stable body temperature as observed in most endothermic mammals and birds is energetically costly and many heterothermic species reduce their metabolic demands during energetic bottlenecks through the use of torpor. With the increasing number of heterotherms revealed in a diversity of habitats, it becomes apparent that triggers and patterns of torpor use are more variable than previously thought. Here, we report the previously overlooked use of, shallow rest-time torpor (body temperature >30 °C) in African lesser bushbabies, Galago moholi. Body core temperature of three adult male bushbabies recorded over five months showed a clear bimodal distribution with an average active modal temperature of 39.2 °C and a resting modal body temperature of 36.7 °C. Shallow torpor was observed in two out of three males (n = 29 torpor bouts) between June and August (austral winter), with body temperatures dropping to an overall minimum of 30.7 °C and calculated energy savings of up to 10%. We suggest that shallow torpor may be an ecologically important, yet mostly overlooked energy-saving strategy employed by heterothermic mammals. Our data emphasise that torpor threshold temperatures need to be used with care if we aim to fully understand the level of physiological plasticity displayed by heterothermic species.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, United Kingdom; Department of Biology, Institute of Cell and Systems Biology of Animals, Functional Ecology, University Hamburg, Hamburg, Germany.
| | - Nomakwezi Mzilikazi
- Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Kathrin H Dausmann
- Department of Biology, Institute of Cell and Systems Biology of Animals, Functional Ecology, University Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
City comfort: weaker metabolic response to changes in ambient temperature in urban red squirrels. Sci Rep 2023; 13:1393. [PMID: 36697502 PMCID: PMC9876937 DOI: 10.1038/s41598-023-28624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The ecophysiological responses of species to urbanisation reveal important information regarding the processes of successful urban colonization and biodiversity patterns in urban landscapes. Investigating these responses will also help uncover whether synurban species are indeed urban 'winners'. Yet we still lack basic knowledge about the physiological costs and overall energy budgets of most species living in urban habitats, especially for mammals. Within this context, we compared the energetic demands of Eurasian red squirrels (Sciurus vulgaris) from the core of an urban environment with those from a nearby forest. We measured oxygen consumption as a proxy for resting metabolic rate (RMR) of 20 wild individuals (13 urban, 7 forest), at naturally varying ambient temperature (Ta) in an outdoor-enclosure experiment. We found that the variation in RMR was best explained by the interaction between Ta and habitat, with a significant difference between populations. Urban squirrels showed a shallower response of metabolic rate to decreasing Ta than woodland squirrels. We suggest that this is likely a consequence of urban heat island effects, as well as widespread supplemental food abundance. Our results indicate energy savings for urban squirrels at cooler temperatures, yet with possible increased costs at higher temperatures compared to their woodland conspecifics. Thus, the changed patterns of metabolic regulation in urban individuals might not necessarily represent an overall advantage for urban squirrels, especially in view of increasing temperatures globally.
Collapse
|
6
|
Sørås R, Fjelldal MA, Bech C, van der Kooij J, Skåra KH, Eldegard K, Stawski C. State dependence of arousal from torpor in brown long-eared bats (Plecotus auritus). J Comp Physiol B 2022; 192:815-827. [PMID: 35972527 PMCID: PMC9550697 DOI: 10.1007/s00360-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
To cope with periods of low food availability and unsuitable environmental conditions (e.g., short photoperiod or challenging weather), many heterothermic mammals can readily go into torpor to save energy. However, torpor also entails several potential costs, and quantitative energetics can, therefore, be influenced by the individual state, such as available energy reserves. We studied the thermal energetics of brown long-eared bats (Plecotus auritus) in the northern part of its distributional range, including torpor entry, thermoregulatory ability during torpor and how they responded metabolically to an increasing ambient temperature (Ta) during arousal from torpor. Torpor entry occurred later in bats with higher body mass (Mb). During torpor, only 10 out of 21 bats increased oxygen consumption (V̇O2) to a greater extent above the mean torpor metabolic rates (TMR) when exposed to low Ta. The slope of the torpid thermoregulatory curve was shallower than that of resting metabolic rate (RMR) during normothermic conditions, indicating a higher thermal insulation during torpor. During exposure to an increasing Ta, all bats increased metabolic rate exponentially, but the bats with higher Mb aroused at a lower Ta than those with lower Mb. In bats with low Mb, arousal was postponed to an Ta above the lower critical temperature of the thermoneutral zone. Our results demonstrate that physiological traits, which are often considered fixed, can be more flexible than previously assumed and vary with individual state. Thus, future studies of thermal physiology should to a greater extent take individual state-dependent effects into account.
Collapse
Affiliation(s)
- Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway.
| | - Mari Aas Fjelldal
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Jeroen van der Kooij
- Nature Education, Research and Consultancy van der Kooij, Rudsteinveien 67, 1480, Slattum, NO, Norway
| | - Karoline H Skåra
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, Oslo, 0213, NO, Norway
| | - Katrine Eldegard
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, 1433, Ås, NO, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
7
|
Reher S, Rabarison H, Nowack J, Dausmann KH. Limited Physiological Compensation in Response to an Acute Microclimate Change in a Malagasy Bat. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.779381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid environmental changes are challenging for endothermic species because they have direct and immediate impacts on their physiology by affecting microclimate and fundamental resource availability. Physiological flexibility can compensate for certain ecological perturbations, but our basic understanding of how species function in a given habitat and the extent of their adaptive scope is limited. Here we studied the effect of acute, experimental microclimate change on the thermal physiology of two populations of the widespread Malagasy bat, Macronycteris commersoni. Populations of this species are found roosting under contrasting conditions, i.e., in a constant hot and humid cave or below foliage unprotected from fluctuations in ambient conditions. We exposed free-ranging individuals of each population to the respective opposite condition and thus to novel microclimate within an ecologically realistic scope while measuring metabolic rate and skin temperature. Cave bats in forest setting had a limited capacity to maintain euthermia to the point that two individuals became hypothermic when ambient temperature dropped below their commonly experienced cave temperature. Forest bats on the other hand, had difficulties to dissipate heat in the humid cave set-up. The response to heat, however, was surprisingly uniform and all bats entered torpor combined with hyperthermia at temperatures exceeding their thermoneutral zone. Thus, while we observed potential for flexible compensation of heat through “hot” torpor, both populations showed patterns suggestive of limited potential to cope with acute microclimate changes deviating from their typically occupied roosts. Our study emphasizes that intraspecific variation among populations could be misleading when assessing species’ adaptive scopes, as variation may arise from genetic adaptation, developmental plasticity or phenotypic flexibility, all of which allow for compensatory responses at differing time scales. Disentangling these mechanisms and identifying the basis of variation is vital to make accurate predictions of species’ chances for persisting in ever rapidly changing habitats and climates.
Collapse
|