1
|
Zhao Y, Chai R, Duan J, Yang Z, Zhang S, Liu Y, Wang X, Cheng J. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Bioprocess Biosyst Eng 2024; 47:1985-1997. [PMID: 39127829 DOI: 10.1007/s00449-024-03080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
To more greenly and efficiently utilize the abundant lignite resources and explore the microbial degradation and transformation potential of lignite for its environmentally friendly and resourceful utilization, Shengli lignite from the Hulunbuir region of Inner Mongolia, China, was selected as the research subject. Through the dilution plating method and streaking method, 31 native microorganisms were successfully isolated from the Shengli lignite, including 16 bacteria and 15 fungi. After microbial coal dissolution experiments, it was found that certain microorganisms have a significant dissolving effect on lignite, with some bacterial and fungal strains showing strong dissolution capabilities. In particular, the bacterium SH10 Lysinibacillus fusiformis and the fungus L1W Paecilomyces lilacinus demonstrated the best coal-dissolving abilities, with dissolution rates both reaching 60%. The products of microbial dissolution of lignite were analyzed using gas chromatography-mass spectrometry (GC-MS) technology, identifying a variety of small molecular organic compounds, including alkanes, alcohols, esters, and phenols. The results of this study provide a new perspective on the biodegradation of lignite and lay the foundation for the development of new lignite treatment and utilization technologies.
Collapse
Affiliation(s)
- Yinglin Zhao
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, China
| | - Ruina Chai
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, China
| | - Jianguo Duan
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, China
| | - Zhiying Yang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, China
| | - Shuheng Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
| | - Yunying Liu
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry, Baotou, 014010, Inner Mongolia, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
| | - Xiaoxia Wang
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry, Baotou, 014010, Inner Mongolia, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
| | - Jianguo Cheng
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry, Baotou, 014010, Inner Mongolia, China.
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China.
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
2
|
Pandya DK, Kumar MA. Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125154. [PMID: 33858107 DOI: 10.1016/j.jhazmat.2021.125154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are non-polar organic compounds that are omnipresent in the environment and released due to anthropogenic activities through emissions and discharges. PAHs, being xenobiotic and exerts health impacts, thus they attract serious concern by the environmentalists. The stringent regulations and the need of sustainable development urges the hunt for a technically feasible and cost-effective wastewater treatment. Although the conventional physico-chemical treatment are widely preferred, they cause secondary pollution problems and demand subsequent treatment options. This comprehensive review intends to address the (a) different PAHs and their associated toxicity, (b) the remedial strategies, particularly biodegradation. The biological wastewater treatment techniques that involve microbial systems are highly influenced by the different physio-chemical and environmental parameters. Therefore, suitable optimization techniques are prerequisite for effective functioning of the biological treatment that sustains judiciously and interpreted in a lesser time. Here we have aimed to discuss (a) different chemo-metric tools involved in the design of experiments (DoE), (b) design equations and models, (c) tools for evaluating the model's adequacy and (d) plots for graphically interpreting the chemo-metric designs. However, to best of our knowledge, this is a first review to discuss the PAHs biodegradation that are tailored by chemo-metric designs. The associated challenges, available opportunities and techno-economic aspects of PAHs degradation using chemo-metric engineering designs are explained. Additionally, the review highlights how well these DoE tools can be suited for the sustainable socio-industrial sectors. Concomitantly, the futuristic scope and prospects to undertake new areas of research exploration were emphasized to unravel the least explored chemo-metric designs.
Collapse
Affiliation(s)
- Darshita Ketan Pandya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Adeola AO, Forbes PBC. Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: Existing concepts, emerging trends, and future prospects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:343-359. [PMID: 32738166 DOI: 10.1002/wer.1420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In the last two decades, environmental experts have focused on the development of several biological, chemical, physical, and thermal methods/technologies for remediation of PAH-polluted water. Some of the findings have been applied to field-scale treatment, while others have remained as prototypes and semi-pilot studies. Existing treatment options include extraction, chemical oxidation, bioremediation, photocatalytic degradation, and adsorption (employing adsorbents such as biomass derivatives, geosorbents, zeolites, mesoporous silica, polymers, nanocomposites, and graphene-based materials). Electrokinetic remediation, advanced phytoremediation, green nanoremediation, enhanced remediation using biocatalysts, and integrated approaches are still at the developmental stage and hold great potential. Water is an essential component of the ecosystem and highly susceptible to PAH contamination due to crude oil exploration and spillage, and improper municipal and industrial waste management, yet comprehensive reviews on PAH remediation are only available for contaminated soils, despite the several treatment methods developed for the remediation of PAH-polluted water. This review seeks to provide a comprehensive overview of existing and emerging methods/technologies, in order to bridge information gaps toward ensuring a green and sustainable remedial approach for PAH-contaminated aqueous systems. PRACTITIONER POINTS: Comprehensive review of existing and emerging technologies for remediation of PAH-polluted water. Factors influencing efficiency of various methods, challenges and merits were discussed. Green nano-adsorbents, nano-oxidants and bio/phytoremediation are desirous for ecofriendly and economical PAH remediation. Adoption of an integrated approach for the efficient and sustainable remediation of PAH-contaminated water is recommended.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Ogawa N, Kato H, Kishida K, Ichihashi E, Ishige T, Yoshikawa H, Nagata Y, Ohtsubo Y, Tsuda M. Suppression of substrate inhibition in phenanthrene-degrading Mycobacterium by co-cultivation with a non-degrading Burkholderia strain. MICROBIOLOGY-SGM 2019; 165:625-637. [PMID: 30994434 DOI: 10.1099/mic.0.000801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In natural environments contaminated by recalcitrant organic pollutants, efficient biodegradation of such pollutants has been suggested to occur through the cooperation of different bacterial species. A phenanthrene-degrading bacterial consortium, MixEPa4, from polluted soil was previously shown to include a phenanthrene-degrading strain, Mycobacterium sp. EPa45, and a non-polycyclic aromatic hydrocarbon (PAH)-degrading strain, Burkholderia sp. Bcrs1W. In this study, we show that addition of phenanthrene to rich liquid medium resulted in the transient growth arrest of EPa45 during its degradation of phenanthrene. RNA-sequencing analysis of the growth-arrested cells showed the phenanthrene-dependent induction of genes that were predicted to be involved in the catabolism of this compound, and many other cell systems, such as a ferric iron-uptake, were up-regulated, implying iron deficiency of the cells. This negative effect of phenanthrene became much more apparent when using phenanthrene-containing minimal agar medium; colony formation of EPa45 on such agar was significantly inhibited in the presence of phenanthrene and its intermediate degradation products. However, growth inhibition was suppressed by the co-residence of viable Bcrs1W cells. Various Gram-negative bacterial strains, including the three other strains from MixEPa4, also exhibited varying degrees of suppression of the growth inhibition effect on EPa45, strongly suggesting that this effect is not strain-specific. Growth inhibition of EPa45 was also observed by other PAHs, biphenyl and naphthalene, and these two compounds and phenanthrene also inhibited the growth of another mycobacterial strain, M. vanbaalenii PYR-1, that can use them as carbon sources. These phenomena of growth inhibition were also suppressed by Bcrs1W. Our findings suggest that, in natural environments, various non-PAH-degrading bacterial strains play potentially important roles in the facilitation of PAH degradation by the co-residing mycobacteria.
Collapse
Affiliation(s)
- Natsumi Ogawa
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Hiromi Kato
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Kouhei Kishida
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Eikichi Ichihashi
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Taichiro Ishige
- 2 Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- 2 Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan
| | - Yuji Nagata
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masataka Tsuda
- 1 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 2016; 48:314-325. [PMID: 27956015 PMCID: PMC5470342 DOI: 10.1016/j.bjm.2016.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25 °C, 30 °C, 35 °C, 37 °C, 38 °C, 40 °C and 45 °C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37 °C, 37 °C, 30 °C and 35 °C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.
Collapse
|
6
|
Álvarez MS, Rodríguez A, Sanromán MÁ, Deive FJ. Simultaneous biotreatment of Polycyclic Aromatic Hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain. BIORESOURCE TECHNOLOGY 2015; 198:181-188. [PMID: 26386421 DOI: 10.1016/j.biortech.2015.08.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
A Pseudomonas stutzeri strain acclimated to the presence of neoteric contaminants has been proposed for simultaneously remediating an effluent polluted with Polycyclic Aromatic Hydrocarbons and a diazo dye. The pollutants chemical nature imposed a strict control of both the medium composition and the operating conditions. pH, temperature and agitation rates of 7.0, 37.5 and 146 rpm, respectively, led to optimum levels of contaminant removal (higher than 60%) after RSM optimization. The validity of these conditions was checked at flask and bioreactor scale and the kinetics of the biotreatment was elucidated. The simulation of this one-step process applied at larger scale for the remediation of a 200,000 m(3)/year-effluent from a leather factory was compared with a conventional two-steps option. Great reductions in treatment times and in investment and manufacturing costs were concluded, proving the promising potential of the proposed process.
Collapse
Affiliation(s)
- María S Álvarez
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain
| | - Ana Rodríguez
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain
| | | | - Francisco J Deive
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain.
| |
Collapse
|
7
|
Vecino X, Bustos G, Devesa-Rey R, Cruz JM, Moldes AB. Salt-Free Aqueous Extraction of a Cell-Bound Biosurfactant: a Kinetic Study. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1637-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Application of electro-Fenton technology to remediation of polluted effluents by self-sustaining process. ScientificWorldJournal 2014; 2014:801870. [PMID: 24723828 PMCID: PMC3958690 DOI: 10.1155/2014/801870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/20/2014] [Indexed: 11/21/2022] Open
Abstract
The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption.
Collapse
|