1
|
Jing W, Hou F, Wu X, Zheng M, Zheng Y, Lu F, Liu F. A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose. Foods 2024; 13:1228. [PMID: 38672899 PMCID: PMC11048954 DOI: 10.3390/foods13081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Isomaltulose is a novel sweetener and is considered healthier than the common sugars, such as sucrose or glucose. It has been internationally recognized as a safe food product and holds vast potential in pharmaceutical and food industries. Sucrose isomerase is commonly used to produce isomaltulose from the substrate sucrose in vitro and in vivo. However, free cells/enzymes were often mixed with the product, making recycling difficult and leading to a significant increase in production costs. Immobilized cells/enzymes have the following advantages including easy separation from products, high stability, and reusability, which can significantly reduce production costs. They are more suitable than free ones for industrial production. Recently, immobilized cells/enzymes have been encapsulated using composite materials to enhance their mechanical strength and reusability and reduce leakage. This review summarizes the advancements made in immobilized cells/enzymes for isomaltulose production in terms of refining traditional approaches and innovating in materials and methods. Moreover, innovations in immobilized enzyme methods include cross-linked enzyme aggregates, nanoflowers, inclusion bodies, and directed affinity immobilization. Material innovations involve nanomaterials, graphene oxide, and so on. These innovations circumvent challenges like the utilization of toxic cross-linking agents and enzyme leakage encountered in traditional methods, thus contributing to enhanced enzyme stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (W.J.); (F.H.); (X.W.); (M.Z.); (Y.Z.); (F.L.)
| |
Collapse
|
2
|
Li Y, Luo L, Ding X, Zhang X, Gan S, Shang C. Production of Tetramethylpyrazine from Cane Molasses by Bacillus sp. TTMP20. Molecules 2023; 28:molecules28062640. [PMID: 36985611 PMCID: PMC10054849 DOI: 10.3390/molecules28062640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TTMP) is an active ingredient of Ligusticum wallichii Franch. It can be used in medicine and food fields. In this study, Bacillus sp. TTMP20 was applied to produce TTMP using cane molasses as a carbon source. After pretreatment with phosphoric acid, 170 mL/L treated molasses, combined with 10 g/L yeast powder, 30 g/L tryptone and 30 g/L (NH4)2HPO4 were used for fermentation. After 36 h, TTMP output reached the highest value of 208.8 mg/L. The yield of TTMP using phosphoric acid-treated molasses as carbon source was 145.59% higher than control. Under the sulfuric acid treatment process of molasses (150 g), the maximum yield of TTMP was 895.13 mg/L, which was 183.18% higher than that of untreated molasses (316.1 mg/L). This study demonstrated that molasses is a high-quality and inexpensive carbon source for the manufacture of TTMP, laying the groundwork for the future industrial production of TTMP.
Collapse
|
3
|
Wu Y, Sun J, Xu X, Mao S, Luan G, Lu X. Engineering cyanobacteria for converting carbon dioxide into isomaltulose. J Biotechnol 2023; 364:1-4. [PMID: 36702257 DOI: 10.1016/j.jbiotec.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Isomaltulose is a promising functional sweetener with broad application prospects in the food industry. Currently, isomaltulose is mainly produced through bioconversion processes based on the isomerization of sucrose, the economic feasibility of which is influenced by the cost of sucrose feedstocks, the biocatalyst preparation, and product purification. Cyanobacterial photosynthetic production utilizing solar energy and carbon dioxide represents a promising route for the supply of sugar products, which can promote both carbon reduction and green production. Previously, some cyanobacteria strains have been successfully engineered for synthesis of sucrose, the main feedstock for isomaltulose production. In this work, we introduced different sucrose isomerases into Synechococcus elongatus PCC 7942 and successfully achieved the isomaltulose synthesis and accumulation in the recombinant strains. Combinatory expression of an Escherichia coli sourced sucrose permease CscB with the sucrose isomerases led to efficient secretion of isomaltulose and significantly elevated the final titer. During a 6-day cultivation, 777 mg/L of isomaltulose was produced by the engineered Synechococcus cell factory. This work demonstrated a new route for isomaltulose biosynthesis utilizing carbon dioxide as the substrate, and provided novel understandings for the plasticity of cyanobacterial photosynthetic metabolism network.
Collapse
Affiliation(s)
- Yannan Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jiahui Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoming Mao
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China.
| | - Guodong Luan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Chen N, Chang B, Shi N, Lu F, Liu F. Robust and recyclable cross-linked enzyme aggregates of sucrose isomerase for isomaltulose production. Food Chem 2023; 399:134000. [DOI: 10.1016/j.foodchem.2022.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/24/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
|
5
|
Zhang F, Cai X, Cheng F, Yu JM, Wang B, Liu ZQ, Zheng YG. Immobilization of Sucrose Isomerase from Erwinia sp. with Graphene Oxide and Its Application in Synthesizing Isomaltulose. Appl Biochem Biotechnol 2022; 194:709-724. [PMID: 34519920 DOI: 10.1007/s12010-021-03678-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Sucrose isomerase (SIase) is a key enzyme used for the production of isomaltulose from sucrose. In this study, an SIase gene from Erwinia sp. Ejp617 (ErSIase) was heterologously expressed in Escherichia coli BL21(DE3), and the recombinant ErSIase was served as biocatalyst combined with the graphene oxide (GO) as carrier for ErSIase immobilization. The Fourier transform infrared spectroscopy, transmission electron microscope, and confocal laser microscopy analyses showed that ErSIase was successfully immobilized on the surface of GO to form ErSIase-GO. The loading capacity of ErSIase on GO reached up to 460 mg/g with a specific activity of 727.04 U/mg protein when the optimal immobilization time of 12 h and the ErSIase/GO ratio of 7.4:4 (w/w) were applied. A high conversion rate of 95.3% was reached from sucrose to isomaltulose using ErSIase-GO as biocatalyst with 600 g/L sucrose as substrate, after 180 min at 40 °C and pH 6.0. Moreover, stabilities of the immobilized ErSIase-GO in the aspects of thermal, pH, and storage were improved, and its activity after 10 batches still remained around 80% under the optimal conditions. The Km value of ErSIase-GO was 29.32 mM, and the kcat/Km was increased to 27.34 s-1 mM-1 when 0.1% (w/v) detergent NP40 was added. These results indicated that the ErSIase was well immobilized onto GO, and the ErSIase-GO is a promising biocatalyst with high operational stability and catalytic activity for industrial production of isomaltulose.
Collapse
Affiliation(s)
- Feng Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Cheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jia-Ming Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
6
|
Wang QQ, Yang M, Hao JH, Ma ZC. Direct Isomaltulose Synthesis From Beet Molasses by Immobilized Sucrose Isomerase. Front Bioeng Biotechnol 2021; 9:691547. [PMID: 34336804 PMCID: PMC8322766 DOI: 10.3389/fbioe.2021.691547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Isomaltulose is becoming a focus as a functional sweetener for sucrose substitutes; however, isomaltulose production using sucrose as the substrate is not economical. Low-cost feedstocks are needed for their production. In this study, beet molasses (BM) was introduced as the substrate to produce isomaltulose for the first time. Immobilized sucrose isomerase (SIase) was proved as the most efficient biocatalyst for isomaltulose synthesis from sulfuric acid (H2SO4) pretreated BM followed by centrifugation for the removal of insoluble matters and reducing viscosity. The effect of different factors on isomaltulose production is investigated. The isomaltulose still achieved a high concentration of 446.4 ± 5.5 g/L (purity of 85.8%) with a yield of 0.94 ± 0.02 g/g under the best conditions (800 g/L pretreated BM, 15 U immobilized SIase/g dosage, 40°C, pH of 5.5, and 10 h) in the eighth batch. Immobilized SIase used in repeated batch reaction showed good reusability to convert pretreated BM into isomaltulose since the sucrose conversion rate remained 97.5% in the same batch and even above 94% after 11 batches. Significant cost reduction of feedstock costs was also confirmed by economic analysis. The findings indicated that this two-step process to produce isomaltulose using low-cost BM and immobilized SIase is feasible. This process has the potential to be effective and promising for industrial production and application of isomaltulose as a functional sweetener for sucrose substitute.
Collapse
Affiliation(s)
- Qin-Qing Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Yang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Hua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zai-Chao Ma
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Su HH, Xu RY, Yang ZD, Guo YS, Gao JY, Mo LZ, Gao YF, Cheng H, Zhang PJ, Huang JS. Green synthesis of isomaltulose from cane molasses by an immobilized recombinant Escherichia coli strain and its prebiotic activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Tesfay MA, Wen X, Liu Y, Lin H, Chen L, Lin J, Lin J. Construction of recombinant Escherichia coli expressing xylitol-4-dehydrogenase and optimization for enhanced L-xylulose biotransformation from xylitol. Bioprocess Biosyst Eng 2021; 44:1021-1032. [PMID: 33481075 DOI: 10.1007/s00449-020-02505-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
L-Xylulose is a rare ketopentose which inhibits α-glucosidase and is an indicator of hepatitis or liver cirrhosis. This pentose is also a precursor of other rare sugars such as L-xylose, L-ribose or L-lyxose. Recombinant E. coli expressing xylitol-4-dehydrogenase gene of Pantoea ananatis was constructed. A cost-effective culture media were used for L-xylulose production using the recombinant E. coli strain constructed. Response surface methodology was used to optimize these media components for L-xylulose production. A high conversion rate of 96.5% was achieved under an optimized pH and temperature using 20 g/L xylitol, which is the highest among the reports. The recombinant E. coli cells expressing the xdh gene were immobilized in calcium alginate to improve recycling of cells. Effective immobilization was achieved with 2% (w/v) sodium alginate and 3% (w/v) calcium chloride. The immobilized E. coli cells retained good stability and enzyme activity for 9 batches with conversion between 53 and 92% which would be beneficial for economical production of L-xylulose.
Collapse
Affiliation(s)
- Mesfin Angaw Tesfay
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yujie Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
9
|
Liu L, Bilal M, Luo H, Zhao Y, Duan X. Studies on Biological Production of Isomaltulose Using Sucrose Isomerase: Current Status and Future Perspectives. Catal Letters 2020. [DOI: 10.1007/s10562-020-03439-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zhang F, Cheng F, Jia DX, Gu YH, Liu ZQ, Zheng YG. Characterization of a recombinant sucrose isomerase and its application to enzymatic production of isomaltulose. Biotechnol Lett 2020; 43:261-269. [PMID: 32910357 DOI: 10.1007/s10529-020-02999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize a recombinant isomerase that can catalyze the isomerization of sucrose into isomaltulose and investigate its application for the enzymatic production of isomaltulose. RESULTS A sucrose isomerase gene from Erwinia sp. Ejp617 was synthesized and expressed in Escherichia coli BL21(DE3). The enzymatic characterization revealed that the optimal pH and temperature of the purified sucrose isomerase were 6.0 and 40 °C, respectively. The enzyme activity was slightly activated by Mn2+and Mg2+, but partially inhibited by Ca2+, Ba2+, Cu2+, Zn2+ and EDTA. The kinetic parameters of Km and Vmax for sucrose were 69.28 mM and 118.87 U/mg, respectively. The time course showed that 240.9 g/L of isomaltulose was produced from 300 g/L of sucrose, and the yield reached 80.3% after bioreaction for 180 min. CONCLUSIONS This recombinant enzyme showed excellent capability for biotransforming sucrose to isomaltulose at the substrate concentration of 300 g/L. Further investigations should be carried out focusing on selection of suitable heterologous expression system with the aim to improve its expression level.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, 310014, People's Republic of China
| | - Dong-Xu Jia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, 310014, People's Republic of China
| | - Yue-Hao Gu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China. .,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
11
|
Gao H, Lu C, Wang H, Wang L, Yang Y, Jiang T, Li S, Xu D, Wu L. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int J Biol Macromol 2020; 150:955-964. [DOI: 10.1016/j.ijbiomac.2019.10.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
|
12
|
Efficient expression of chondroitinase ABC I for specific disaccharides detection of chondroitin sulfate. Int J Biol Macromol 2020; 143:41-48. [DOI: 10.1016/j.ijbiomac.2019.11.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
|
13
|
Wang ZP, Wang QQ, Liu S, Liu XF, Yu XJ, Jiang YL. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia lipolytica Strain in Fed-Batch Fermentation. Molecules 2019; 24:E1228. [PMID: 30925836 PMCID: PMC6480463 DOI: 10.3390/molecules24071228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
: Cane molasses is one of the main by-products of sugar refineries, which is rich in sucrose. In this work, low-cost cane molasses was introduced as an alternative substrate for isomaltulose production. Using the engineered Yarrowia lipolytica, the isomaltulose production reached the highest (102.6 g L-¹) at flask level with pretreated cane molasses of 350 g L-¹ and corn steep liquor of 1.0 g L-¹. During fed-batch fermentation, the maximal isomaltulose concentration (161.2 g L-¹) was achieved with 0.96 g g-¹ yield within 80 h. Simultaneously, monosaccharides were completely depleted, harvesting the high isomaltulose purity (97.4%) and high lipid level (12.2 g L-¹). Additionally, the lipids comprised of 94.29% C16 and C18 fatty acids, were proved suitable for biodiesel production. Therefore, the bioprocess employed using cane molasses in this study was low-cost and eco-friendly for high-purity isomaltulose production, coupling with valuable lipids.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Qin-Qing Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China.
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| | - Song Liu
- Development & Reform Bureau, West Coast New Area, Qingdao, Shandong 266000, China.
| | - Xiao-Fang Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Lin Jiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
14
|
Zhang P, Wang ZP, Liu S, Wang YL, Zhang ZF, Liu XM, Du YM, Yuan XL. Overexpression of secreted sucrose isomerase in Yarrowia lipolytica and its application in isomaltulose production after immobilization. Int J Biol Macromol 2019; 121:97-103. [DOI: 10.1016/j.ijbiomac.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022]
|
15
|
Zhang P, Wang ZP, Sheng J, Zheng Y, Ji XF, Zhou HX, Liu XY, Chi ZM. High and efficient isomaltulose production using an engineered Yarrowia lipolytica strain. BIORESOURCE TECHNOLOGY 2018; 265:577-580. [PMID: 30056834 DOI: 10.1016/j.biortech.2018.06.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Isomaltulose is an ideal functional sweetener and has been approved as a safe sucrose substitute. It is produced mainly through sucrose isomerization catalyzed by sucrose isomerase. Here, to produce food-grade isomaltulose and improve its yield, the sucrose isomerase gene from Pantoea dispersa UQ68J was overexpressed in the non-pathogenic yeast Yarrowia lipolytica. When the engineered strain, S47, was fermented on 600 g/L sucrose in a 10-L bioreactor, a maximum isomaltulose concentration of 572.1 g/L was achieved. Sucrose isomerase activity was 7.43 U/mL, and yield reached 0.96 g/g. Moreover, monosaccharide byproducts were simultaneously transformed into intracellular lipids, thus reducing the production of undesirable compounds and resulting in high isomaltulose purity (97.8%) in the final broth. In summary, the bioprocess employed in this study provides an efficient alternative strategy for isomaltulose production.
Collapse
Affiliation(s)
- Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Jun Sheng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yuan Zheng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xiao-Feng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
16
|
Efficient Expression of Maltohexaose-Forming α-Amylase from Bacillus stearothermophilus in Brevibacillus choshinensis SP3 and Its Use in Maltose Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5479762. [PMID: 29250543 PMCID: PMC5700550 DOI: 10.1155/2017/5479762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
The maltohexaose-forming, Ca2+-independent α-amylase gene from Bacillus stearothermophilus (AmyMH) was efficiently expressed in Brevibacillus choshinensis SP3. To improve the production of AmyMH in B. choshinensis SP3, the temperature and initial pH of culture medium were optimized. In addition, single-factor and response surface methodologies were pursued to optimize culture medium. Addition of proline to the culture medium significantly improved the production of recombinant α-amylase in B. choshinensis SP3. This improvement may result from improved cellular integrity of recombinant B. choshinensis SP3 in existence of proline. Culture medium optimization resulted in an 8-fold improvement in α-amylase yield, which reached 1.72 × 104 U·mL−1. The recombinant α-amylase was applied to the production of maltose on a laboratory scale. A maltose content of 90.72%, which could be classified as an extremely high maltose syrup, could be achieved using 15% (m/v) corn starch as the substrate. This study demonstrated that the B. choshinensis SP3 expression system was able to produce substantial quantities of recombinant α-amylase that has potential application in the starch industry.
Collapse
|
17
|
Green synthesis of isomaltulose from cane molasses by Bacillus subtilis WB800-pHA01-palI in a biologic membrane reactor. Food Chem 2017; 229:761-768. [DOI: 10.1016/j.foodchem.2017.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 03/01/2017] [Indexed: 11/13/2022]
|
18
|
Li L, Wang H, Cheng H, Deng Z. Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Wu L, Qiu J, Wu S, Liu X, Liu C, Xu Z, Li S, Xu H. Bioinspired Production of Antibacterial Sucrose Isomerase-Sponge for the Synthesis of Isomaltulose. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Juanjuan Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Shanshan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiaoliu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
20
|
Zou C, Duan X, Wu J. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. Appl Microbiol Biotechnol 2016; 100:7115-23. [DOI: 10.1007/s00253-016-7386-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 12/22/2022]
|
21
|
Wu L, Liu Y, Chi B, Xu Z, Feng X, Li S, Xu H. An innovative method for immobilizing sucrose isomerase on ε-poly-L-lysine modified mesoporous TiO2. Food Chem 2015; 187:182-8. [PMID: 25977014 DOI: 10.1016/j.foodchem.2015.04.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/11/2015] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
Sucrose isomerase (SIase) is the key enzyme in the enzymatic synthesis of isomaltulose. Mesoporous titanium dioxide (M-TiO2) and ε-poly-L-lysine-functionalized M-TiO2 (EPL-M-TiO2) were prepared as carriers for immobilizing SIase. SIase was effectively immobilized on EPL-M-TiO2 (SI-EPL-M-TiO2) with an enzyme activity of 39.41 U/g, and the enzymatic activity recovery rate up to 93.26%. The optimal pH and temperature of immobilized SIase were 6.0 and 30° C, respectively. SI-EPL-M-TiO2 was more stable in pH and thermal tests than SIase immobilized on M-TiO2 and free SIase. K(m) of SI-EPL-M-TiO2 was 204.92 mmol/L, and vmax was 45.7 μmol/L/s. Batch catalysis reaction of sucrose by SI-EPL-M-TiO2 was performed under the optimal conditions. The half-life period of SI-EPL-M-TiO2 under continuous reaction was 114 h, and the conversion rate of sucrose after 16 batches consistently remained at around 95%, which indicates that SI-EPL-M-TiO2 has good operational stability. Thus, SI-EPL-M-TiO2 can be used as a biocatalyst in food industries.
Collapse
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Yi Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
22
|
Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Appl Microbiol Biotechnol 2014; 98:6569-82. [DOI: 10.1007/s00253-014-5816-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
23
|
Contesini FJ, Carvalho PDO, Grosso CRF, Sato HH. Single-step purification, characterization and immobilization of a sucrose isomerase from Erwinia sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|