1
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
2
|
Ruan JJ, Weng WF, Yan J, Zhou YX, Chen H, Ren MJ, Cheng JP. Coix lacryma-jobi chymotrypsin inhibitor displays antifungal activity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:49-57. [PMID: 31519257 DOI: 10.1016/j.pestbp.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
A novel chymotrypsin inhibitor, named ClCI, was purified from coix seed (Coix lacryma-jobi L.) by aqueous two-phase extraction, chymotrypsin-Sepharose 4B affinity chromatography and centrifugal ultrafiltration. ClCI was a 7.9 kDa competitive inhibitor with pI 6.54. The inhibition constants (Ki) for bovine pancreatic chymotrypsin and bacterial subtilisin were 1.27 × 10-10 M and 1.57 × 10-9 M respectively. ClCI had no inhibitory activity against bovine trypsin and porcine elastase. ClCI had wide pH stability and good heat resistance. It can maintain >90% inhibition activity against chymotrypsin at 20-80 °C for 1 h. The primary structure of ClCI was highly similar (57%-92%) to those of several inhibitors belonging to the Gramineae crop potato protease inhibitor- I superfamily and showed the typical sequence motif of the protease inhibitor of the seed storage protein group. ClCI (12.5 mg) inhibited mycelial growth of the phytopathogenic fungi Mycosphaerella melonis, Helminthosporium turcicum, Alternaria solani, Phytophthora capsici, Isariopsis griseola, and Colletotrichum gloeosporioides, and caused 89% inhibition of the proteases from spore germination of plant-pathogenic fungi. The results of the present study indicate that ClCI had biotechnological potential as an alternative agent to combat the important phytopathogenic fungi.
Collapse
Affiliation(s)
- Jing-Jun Ruan
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wen-Feng Weng
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yue-Xia Zhou
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Ming-Jian Ren
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jian-Ping Cheng
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
3
|
Ramasamy M, Mora V, Damaj MB, Padilla CS, Ramos N, Rossi D, Solís-Gracia N, Vargas-Bautista C, Irigoyen S, DaSilva JA, Mirkov TE, Mandadi KK. A biolistic-based genetic transformation system applicable to a broad-range of sugarcane and energycane varieties. GM CROPS & FOOD 2018; 9:211-227. [PMID: 30558472 DOI: 10.1080/21645698.2018.1553836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sugarcane and energycane (Saccharum spp. hybrids) are prominent sources of sugar, ethanol, as well as high-value bioproducts globally. Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome, limited germplasm resources, long breeding cycle, as well as recalcitrance to genetic transformation. Here, we present a biolistic-based transformation and bioreactor-based micro-propagation system that has been utilized successfully to transform twelve elite cane genotypes, yielding transformation efficiencies of up to 39%. The system relies on the generation of embryogenic callus from sugarcane and energycane apical shoot tissue, followed by DNA bombardment of embryogenic leaf roll discs (approximately one week) or calli (approximately 4 weeks). We present optimal criteria and practices for selection and regeneration of independent transgenic lines, molecular characterization, as well as a bioreactor-based micro-propagation technique, which can aid in rapid multiplication and analysis of transgenic lines. The cane transformation and micro-propagation system described here, although built on our previous protocols, has significantly accelerated the process of producing and multiplying transgenic material, and it is applicable to other varieties. The system is highly reproducible and has been successfully used to engineer multiple commercial sugarcane and energycane varieties. It will benefit worldwide researchers interested in genomics and genetics of sugarcane photosynthesis, cell wall, and bioenergy related traits.
Collapse
Affiliation(s)
| | - Victoria Mora
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Mona B Damaj
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Carmen S Padilla
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Ninfa Ramos
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Denise Rossi
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Nora Solís-Gracia
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | | | - Sonia Irigoyen
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Jorge A DaSilva
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA.,b Department of Soil & Crop Sciences , Texas A&M University , TX , USA
| | - T Erik Mirkov
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA.,c Department of Plant Pathology & Microbiology , Texas A&M University , TX , USA
| | - Kranthi K Mandadi
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA.,c Department of Plant Pathology & Microbiology , Texas A&M University , TX , USA
| |
Collapse
|
4
|
Menzel S, Holland T, Boes A, Spiegel H, Fischer R, Buyel JF. Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expr Purif 2018; 152:122-130. [PMID: 30059744 DOI: 10.1016/j.pep.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/15/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Plants as a platform for recombinant protein expression are now economically comparable to well-established systems, such as microbes and mammalian cells, thanks to advantages such as scalability and product safety. However, downstream processing accounts for the majority of the final product costs because plant extracts contain large quantities of host cell proteins (HCPs) that must be removed using elaborate purification strategies. Heat precipitation in planta (blanching) can remove ∼80% of HCPs and thus simplify further purification steps, but this is only possible if the target protein is thermostable. Here we describe a combination of blanching and chromatography to purify the thermostable transmission-blocking malaria vaccine candidate FQS, which was transiently expressed in Nicotiana benthamiana leaves. If the blanching temperature exceeded a critical threshold of ∼75 °C, FQS was no longer recognized by the malaria transmission-blocking monoclonal antibody 4B7. A design-of-experiments approach revealed that reducing the blanching temperature from 80 °C to 70 °C restored antibody binding while still precipitating most HCPs. We also found that blanching inhibited the degradation of FQS in plant extracts, probably due to the thermal inactivation of proteases. We screened hydrophobic interaction chromatography materials using miniature columns and a liquid-handling station. Octyl Sepharose achieved the highest FQS purity during the primary capture step and led to a final purity of ∼72% with 60% recovery via step elution. We found that 30-75% FQS was lost during ultrafiltration/diafiltration, giving a final yield of 9 mg kg-1 plant material after purification based on an initial yield of ∼49 mg kg-1 biomass after blanching.
Collapse
Affiliation(s)
- Stephan Menzel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Tanja Holland
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Eppendorf AG, Bioprocess Center, Rudolf-Schulten-Str. 5, 52428, Juelich, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Basso MF, da Cunha BADB, Ribeiro AP, Martins PK, de Souza WR, de Oliveira NG, Nakayama TJ, Augusto das Chagas Noqueli Casari R, Santiago TR, Vinecky F, Cançado LJ, de Sousa CAF, de Oliveira PA, de Souza SACD, Cançado GMDA, Kobayashi AK, Molinari HBC. Improved Genetic Transformation of Sugarcane (Saccharum spp.) Embryogenic Callus Mediated by Agrobacterium tumefaciens. ACTA ACUST UNITED AC 2018; 2:221-239. [PMID: 31725972 DOI: 10.1002/cppb.20055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sugarcane (Saccharum spp.) is a monocotyledonous semi-perennial C4 grass of the Poaceae family. Its capacity to accumulate high content of sucrose and biomass makes it one of the most important crops for sugar and biofuel production. Conventional methods of sugarcane breeding have shown several limitations due to its complex polyploid and aneuploid genome. However, improvement by biotechnological engineering is currently the most promising alternative to introduce economically important traits. In this work, we present an improved protocol for Agrobacterium tumefaciens-mediated transformation of commercial sugarcane hybrids using immature top stalk-derived embryogenic callus cultures. The callus cultures are transformed with preconditioned A. tumefaciens carrying a binary vector that encodes expression cassettes for a gene of interest and the bialaphos resistance gene (bar confers resistance to glufosinate-ammonium herbicide). This protocol has been used to successfully transform a commercial sugarcane cultivar, SP80-3280, highlighting: (i) reduced recalcitrance and oxidation; (ii) high yield of embryogenic callus; (iii) improved selection; and (iv) shoot regeneration and rooting of the transformed plants. Altogether, these improvements generated a transformation efficiency of 2.2%. This protocol provides a reliable tool for a routine procedure for sugarcane improvement by genetic engineering. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Bárbara Andrade Dias Brito da Cunha
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Nelson Geraldo de Oliveira
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Thiago Jonas Nakayama
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Raphael Augusto das Chagas Noqueli Casari
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Thais Ribeiro Santiago
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Letícia Jungmann Cançado
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Carlos Antônio Ferreira de Sousa
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Patricia Abrão de Oliveira
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | | | - Geraldo Magela de Almeida Cançado
- The Joint Research Unit for Genomics Applied to Climate Change (UMIP GenClima), National Center for Agricultural Informatics (CNPTIA), Brazilian Agricultural Research Corporation (EMBRAPA), Campinas, São Paulo, Brazil
| | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Hugo Bruno Correa Molinari
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| |
Collapse
|
6
|
Gao SJ, Damaj MB, Park JW, Wu XB, Sun SR, Chen RK, Mirkov TE. A novel Sugarcane bacilliform virus promoter confers gene expression preferentially in the vascular bundle and storage parenchyma of the sugarcane culm. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:172. [PMID: 28680479 PMCID: PMC5496340 DOI: 10.1186/s13068-017-0850-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Saccharum species such as sugarcane and energy cane are key players in the expanding bioeconomy for sugars, bioenergy, and production of high-value proteins. Genomic tools such as culm-regulated promoters would be of great value in terms of improving biomass characteristics through enhanced carbon metabolism for sugar accumulation and/or fiber content for biofuel feedstock. Unlike the situation in dicots, monocot promoters currently used are limited and mostly derived from highly expressed constitutive plant genes and viruses. In this study, a novel promoter region of Sugarcane bacilliform virus (SCBV; genus Badnavirus, family Caulimoviridae), SCBV21 was cloned and mapped by deletion analysis and functionally characterized transiently in monocot and dicot species and stably in sugarcane. RESULTS In silico analysis of SCBV21 [1816 base pair (bp)] identified two putative promoter regions (PPR1 and PPR2) with transcription start sites (TSS1 and TSS2) and two TATA-boxes (TATAAAT and ATATAA), and several vascular-specific and regulatory elements. Deletion analysis revealed that the 710 bp region spanning PPR2 (with TSS2 and ATATAA) at the 3' end of SCBV21 retained the full promoter activity in both dicots and monocots, as shown by transient expression of the enhanced yellow fluorescent protein (EYFP) gene. In sugarcane young leaf segments, SCBV21 directed a 1.8- and 2.4-fold higher transient EYFP expression than the common maize ubiquitin 1 (Ubi1) and Cauliflower mosaic virus 35S promoters, respectively. In transgenic sugarcane, SCBV21 conferred a preferential expression of the β-glucuronidase (GUS) gene in leaves and culms and specifically in the culm storage parenchyma surrounding the vascular bundle and in vascular phloem cells. Among the transgenic events and tissues characterized in this study, the SCBV21 promoter frequently produced higher GUS activity than the Ubi1 or 35S promoters in a manner that was not obviously correlated with the transgene copy number. CONCLUSIONS The newly developed plant viral SCBV21 promoter is distinct from the few existing SCBV promoters in its sequence and expression pattern. The potential of SCBV21 as a tissue-regulated promoter with a strong activity in the culm vascular bundle and its storage parenchyma makes it useful in sugarcane engineering for improved carbon metabolism, increased bioenergy production, and enhanced stress tolerance.
Collapse
Affiliation(s)
- San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | | | | | - Xiao-Bin Wu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316 Guangdong China
| | - Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ru-Kai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | | |
Collapse
|
7
|
Palaniswamy H, Syamaladevi DP, Mohan C, Philip A, Petchiyappan A, Narayanan S. Vacuolar targeting of r-proteins in sugarcane leads to higher levels of purifiable commercially equivalent recombinant proteins in cane juice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:791-807. [PMID: 26183462 PMCID: PMC11389112 DOI: 10.1111/pbi.12430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 05/07/2023]
Abstract
Sugarcane is an ideal candidate for biofarming applications because of its large biomass, rapid growth rate, efficient carbon fixation pathway and a well-developed storage tissue system. Vacuoles occupy a large proportion of the storage parenchyma cells in the sugarcane stem, and the stored products can be harvested as juice by crushing the cane. Hence, for the production of any high-value protein, it could be targeted to the lytic vacuoles so as to extract and purify the protein of interest from the juice. There is no consensus vacuolar-targeting sequence so far to target any heterologous proteins to sugarcane vacuole. Hence, in this study, we identified an N-terminal 78-bp-long putative vacuolar-targeting sequence from the N-terminal domain of unknown function (DUF) in Triticum aestivum 6-SFT (sucrose: fructan 6-fructosyl transferase). In this study, we have generated sugarcane transgenics with gene coding for the green fluorescent protein (GFP) fused with the vacuolar-targeting determinants at the N-terminal driven by a strong constitutive promoter (Port ubi882) and demonstrated the targeting of GFP to the vacuoles. In addition, we have also generated transgenics with His-tagged β-glucuronidase (GUS) and aprotinin targeted to the lytic vacuole, and these two proteins were isolated and purified from the transgenic sugarcane and compared with commercially available protein samples. Our studies have demonstrated that the novel vacuolar-targeting determinant could localize recombinant proteins (r-proteins) to the vacuole in high concentrations and such targeted r-proteins can be purified from the juice with a few simple steps.
Collapse
Affiliation(s)
| | - Divya P Syamaladevi
- Sugarcane Breeding Institute (ICAR-SBI), Coimbatore, Tamilnadu, India
- Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, Telangana, India
| | | | - Anna Philip
- Sugarcane Breeding Institute (ICAR-SBI), Coimbatore, Tamilnadu, India
| | | | | |
Collapse
|
8
|
Barnabas L, Ramadass A, Amalraj RS, Palaniyandi M, Rasappa V. Sugarcane proteomics: An update on current status, challenges, and future prospects. Proteomics 2015; 15:1658-1670. [PMID: 25641866 DOI: 10.1002/pmic.201400463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/27/2014] [Accepted: 01/09/2015] [Indexed: 12/23/2022]
Abstract
Sugarcane is one of the most important commercial crops cultivated worldwide for the production of crystal sugar, ethanol, and other related by-products. Unlike other comparable monocots like sorghum, maize, and rice, sugarcane genome by virtue of its polyploidy nature remains yet to be fully deciphered. Proteomics-an established complementary tool to genomics is at its infancy in sugarcane as compared to the other monocots. However, with the surge in genomics research accomplished by next-generation sequencing platforms, sugarcane proteomics has gained momentum. This review summarizes the available literature from 1970 to 2014, which ensures a comprehensive coverage on sugarcane proteomics-a topic first of its kind to be reviewed. We herewith compiled substantial contributions in different areas of sugarcane proteomics, which include abiotic and biotic stresses, cell wall, organelle, and structural proteomics. The past decade has witnessed a paradigm shift in the pace with which sugarcane proteomics is progressing, as evident by the number of research publications. In addition to extensively reviewing the progress made thus far, we intend to highlight the scope in sugarcane proteomics, with an aspiration to instigate focused research on sugarcane to harness its full potential for the human welfare.
Collapse
Affiliation(s)
- Leonard Barnabas
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Ashwin Ramadass
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Ramesh Sundar Amalraj
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Malathi Palaniyandi
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Viswanathan Rasappa
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| |
Collapse
|
9
|
Buyel JF, Twyman RM, Fischer R. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 2015; 33:902-13. [PMID: 25922318 DOI: 10.1016/j.biotechadv.2015.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - R M Twyman
- TRM Ltd, PO Box 463, York, United Kingdom.
| | - R Fischer
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| |
Collapse
|
10
|
de Siqueira Ferreira S, Nishiyama MY, Paterson AH, Souza GM. Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era. Genome Biol 2013; 14:210. [PMID: 23805917 PMCID: PMC3707038 DOI: 10.1186/gb-2013-14-6-210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Saccharinae, especially sugarcane, Miscanthus and sorghum, present remarkable characteristics for bioenergy production. Biotechnology of these plants will be important for a sustainable feedstock supply. Herein, we review knowledge useful for their improvement and synergies gained by their parallel study.
Collapse
Affiliation(s)
- Savio de Siqueira Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Milton Yutaka Nishiyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|