1
|
Kalaba MH, El-Sherbiny GM, Darwesh OM, Moghannem SA. A statistical approach to enhance the productivity of Streptomyces baarensis MH-133 for bioactive compounds. Synth Syst Biotechnol 2024; 9:196-208. [PMID: 38385149 PMCID: PMC10876617 DOI: 10.1016/j.synbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The goal of this study was to use statistical optimization to change the nutritional and environmental conditions so that Streptomyces baarensis MH-133 could make more active metabolites. Twelve trials were used to screen for critical variables influencing productivity using the Placket-Burman Design method. S. baarensis MH-133 is significantly influenced by elicitation, yeast extract, inoculum size, and incubation period in terms of antibacterial activity. A total of 27 experimental trials with various combinations of these factors were used to carry out the response surface technique using the Box-Behnken design. The analyses revealed that the model was highly significant (p < 0.001), with a lack-of-fit of 0.212 and a coefficient determination (R2) of 0.9224. Additionally, the model predicted that the response as inhibition zone diameter would reach a value of 27 mm. Under optimal conditions, S. baarensis MH-133 produced 18.0 g of crude extract to each 35L and was purified with column chromatography. The active fraction exhibiting antibacterial activity was characterized using spectroscopic analysis. The MIC and MBC values varied between 37.5 and 300 μg/ml and 75 and 300 μg/ml, respectively. In conclusion, the biostatistical optimization of the active fraction critical variables, including environmental and nutritional conditions, enhances the production of bioactive molecules by Streptomyces species.
Collapse
Affiliation(s)
- Mohamed H. Kalaba
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Gamal M. El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Osama M. Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saad A. Moghannem
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
2
|
Sarkar G, Suthindhiran K. Diversity and Biotechnological Potential of Marine Actinomycetes from India. Indian J Microbiol 2022; 62:475-493. [PMID: 35601673 PMCID: PMC9107781 DOI: 10.1007/s12088-022-01024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/01/2022] [Indexed: 01/23/2023] Open
Abstract
Actinomycetes are potential antibiotic producers that have been isolated from various terrestrial ecosystems and are exploited for their bioactive compounds. On the contrary, the marine environments were less explored and the research on marine actinomycetes had gained momentum only for the past three decades. Marine actinomycetes are one of the most significant producers of diverse groups of secondary metabolites and provide a huge scope for pharmaceutical and other industries. These organisms are proved to be important, both biotechnologically and economically considering their global presence. The marine ecosystem in India is less explored for the isolation of actinomycetes and several ecological niches are left unattended. Compared to the global scenario, the contribution from Indian researchers towards the isolation and exploitation of marine actinomycetes from the Indian sub-continent is noteworthy. Exploration of actinomycetes from these ecosystems will certainly yield new species and metabolites. Considering the declining rate of drug discovery from terrestrial actinomycetes, the marine counterparts, especially from unexplored regions from the Indian coast will hold a promising way ahead. Apart from drugs, these organisms are reported for the production of different industrially important enzymes like cellulase, amylase, protease, lipase, etc. They are also used in environmental applications, agriculture, and aquacultures sectors. With the rapid advancement in the study of actinomycetes from different marine sources in India, new metabolites are being discovered which have an important role from the economic and industrial point of view. As the world is witnessing newer diseases such as Sars-Cov 2 and the pandemic due to its demands drugs and other metabolites are increasing day by day. Therefore, the necessity for the quest for unique and rare marine actinomycetes is enhancing too. This review highlights the research on marine actinomycetes in India and also the challenges associated with its research.
Collapse
Affiliation(s)
- Gargi Sarkar
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - K. Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
3
|
Valença CAS, Barbosa AAT, Souto EB, Caramão EB, Jain S. Volatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds. Chem Biodivers 2021; 18:e2100549. [PMID: 34643327 DOI: 10.1002/cbdv.202100549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.
Collapse
Affiliation(s)
- Camilla A S Valença
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Ana A T Barbosa
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eliana B Souto
- CEB - Center of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elina B Caramão
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil.,Instituto Nacional de Ciência e Tecnologia - Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
4
|
Abdelaleem ER, Samy MN, Abdelmohsen UR, Desoukey SY. Natural products potential of Dictyoceratida sponges-associated micro-organisms. Lett Appl Microbiol 2021; 74:8-16. [PMID: 34496057 DOI: 10.1111/lam.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/30/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
The marine environment represents one of the most underexplored environments in the world. Marine sponges have a higher taxonomic diversity according to definite environmental conditions. They have been considered interesting sources for bioactive compounds. Dictyoceratida sponges are divided into five families which are widely distributed and habituating different types of micro-organisms. However, some secondary metabolites are probably not produced by the sponges themselves, but rather by their associated micro-organisms. These secondary metabolites are characterized by different chemical structures and consequently different biological activities. This review outlines the reported secondary metabolites from micro-organisms associated with Dictyoceratida sponges and their investigated biological activities from 1991 to 2019. The increasing research studies in this field can play a major role in marine microbial natural products drug discovery in the future.
Collapse
Affiliation(s)
- E R Abdelaleem
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - M N Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - U R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - S Y Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Almeida EL, Kaur N, Jennings LK, Carrillo Rincón AF, Jackson SA, Thomas OP, Dobson ADW. Genome Mining Coupled with OSMAC-Based Cultivation Reveal Differential Production of Surugamide A by the Marine Sponge Isolate Streptomyces sp. SM17 When Compared to Its Terrestrial Relative S. albidoflavus J1074. Microorganisms 2019; 7:microorganisms7100394. [PMID: 31561472 PMCID: PMC6843307 DOI: 10.3390/microorganisms7100394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Much recent interest has arisen in investigating Streptomyces isolates derived from the marine environment in the search for new bioactive compounds, particularly those found in association with marine invertebrates, such as sponges. Among these new compounds recently identified from marine Streptomyces isolates are the octapeptidic surugamides, which have been shown to possess anticancer and antifungal activities. By employing genome mining followed by an one strain many compounds (OSMAC)-based approach, we have identified the previously unreported capability of a marine sponge-derived isolate, namely Streptomyces sp. SM17, to produce surugamide A. Phylogenomics analyses provided novel insights on the distribution and conservation of the surugamides biosynthetic gene cluster (sur BGC) and suggested a closer relatedness between marine-derived sur BGCs than their terrestrially derived counterparts. Subsequent analysis showed differential production of surugamide A when comparing the closely related marine and terrestrial isolates, namely Streptomyces sp. SM17 and Streptomyces albidoflavus J1074. SM17 produced higher levels of surugamide A than S. albidoflavus J1074 under all conditions tested, and in particular producing >13-fold higher levels when grown in YD and 3-fold higher levels in SYP-NaCl medium. In addition, surugamide A production was repressed in TSB and YD medium, suggesting that carbon catabolite repression (CCR) may influence the production of surugamides in these strains.
Collapse
Affiliation(s)
- Eduardo L Almeida
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
| | - Navdeep Kaur
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Laurence K Jennings
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | | | - Stephen A Jackson
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland.
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland.
| |
Collapse
|
6
|
Manikandan M, Gowdaman V, Duraimurugan K, Prabagaran SR. Taxonomic characterization and antimicrobial compound production from Streptomyces chumphonensis BDK01 isolated from marine sediment. 3 Biotech 2019; 9:167. [PMID: 30997304 PMCID: PMC6449414 DOI: 10.1007/s13205-019-1687-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
Streptomyces sp. isolated from marine sediment collected from Palk Strait, Bay of Bengal was investigated for its antagonistic potential. The isolate exhibited antimicrobial activity against selected bacterial strains of clinical importance such as Staphylococcus aureus MTCC 3160, Bacillus pumilus NCIM 2327, S. aureus (methicillin resistant), Escherichia coli MTCC 1698, E. coli (ESBL), Shigella flexneri MTCC 1457, Proteus vulgaris and Enterobacter cloacae. Phenotypic and molecular characterization ascertained the isolate BDK01 as Streptomyces chumphonensis. Media optimization with one variable-at-a-time strategy was attempted to identify the ideal concentrations of starch (5-15 g/l), casein (0.01-0.05 g/l), NaCl 1.0-3.0 g/l, pH (4.0-9.0 g/l), temperature (25-45 °C) and inoculum level (0.5-5 ml) towards achieving maximum antimicrobial compound production. Statistical optimization of production media was carried by establishing an 11 variables 17 run experiment through PB model which evinced starch, calcium carbonate, pH and inoculum concentration that highly influenced bioactive compound production. Spectral data of active ethyl acetate extract revealed the presence of various bioactive compounds such as Salicyl alcohol, N-phenyl benzamide. 6-Octadecenoic acid, (Z), 1,3,5-Cycloheptatriene. Antiproliferation activity of active fraction against MCF-7 Cell line exhibited IC50 value of 9.5 µg/ml. Overall, it is observed that the marine actinomycete S. chumphonensis BDK01 could be employable as promising strain for novel antimicrobial and cytotoxic metabolites.
Collapse
Affiliation(s)
- Madheslu Manikandan
- Department of Biotechnology, Sri Krishna Arts and Science College, Coimbatore, 641 008 India
| | | | - Kasiviswanathan Duraimurugan
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, 711 103 India
| | | |
Collapse
|
7
|
Law JWF, Ser HL, Ab Mutalib NS, Saokaew S, Duangjai A, Khan TM, Chan KG, Goh BH, Lee LH. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:3056. [PMID: 30816228 PMCID: PMC6395624 DOI: 10.1038/s41598-019-39592-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
A new Streptomyces species discovered from Sarawak mangrove soil is described, with the proposed name - Streptomyces monashensis sp. nov. (strain MUSC 1JT). Taxonomy status of MUSC 1JT was determined via polyphasic approach. Phylogenetic and chemotaxonomic properties of strain MUSC 1JT were in accordance with those known for genus Streptomyces. Based on phylogenetic analyses, the strains closely related to MUSC 1JT were Streptomyces corchorusii DSM 40340T (98.7%), Streptomyces olivaceoviridis NBRC 13066T (98.7%), Streptomyces canarius NBRC 13431T (98.6%) and Streptomyces coacervatus AS-0823T (98.4%). Outcomes of DNA-DNA relatedness between strain MUSC 1JT and its closely related type strains covered from 19.7 ± 2.8% to 49.1 ± 4.3%. Strain MUSC 1JT has genome size of 10,254,857 bp with DNA G + C content of 71 mol%. MUSC 1JT extract exhibited strong antioxidative activity up to 83.80 ± 4.80% in the SOD assay, with significant cytotoxic effect against colon cancer cell lines HCT-116 and SW480. Streptomyces monashensis MUSC 1JT (=DSM 103626T = MCCC 1K03221T) could potentially be a producer of novel bioactive metabolites; hence discovery of this new species may be highly significant to the biopharmaceutical industry as it could lead to development of new and useful chemo-preventive drugs.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center (CPOR), Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Acharaporn Duangjai
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Tahir Mehmood Khan
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
8
|
Siddharth S, Vittal RR. Evaluation of Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Activities of Partially Purified Volatile Metabolites of Marine Streptomyces sp.S2A. Microorganisms 2018; 6:E72. [PMID: 30021990 PMCID: PMC6163298 DOI: 10.3390/microorganisms6030072] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
In the present study, marine actinobacteria Streptomyces sp.S2A was isolated from the Gulf of Mannar, India. Identification was carried out by 16S rRNA analysis. Bioactive metabolites were extracted by solvent extraction method. The metabolites were assayed for antagonistic activity against bacterial and fungal pathogens, inhibition of α-glucosidase and α-amylase enzymes, antioxidant activity and cytotoxic activity against various cell lines. The actinobacterial extract showed significant antagonistic activity against four gram-positive and two gram-negative pathogens. Excellent reduction in the growth of fungal pathogens was also observed. The minimum inhibitory concentration of the partially purified extract (PPE) was determined as 31.25 μg/mL against Klebsiella pneumoniae, 15.62 μg/mL against Staphylococcus epidermidis, Staphylococcus aureus and Bacillus cereus. The lowest MIC was observed against Micrococcus luteus as 7.8 μg/mL. MIC against fungal pathogens was determined as 62.5 μg/mL against Bipolaris maydis and 15.62 μg/mL against Fusarium moniliforme. The α-glucosidase and α-amylase inhibitory potential of the fractions were carried out by microtiter plate method. IC50 value of active fraction for α-glucosidase and α-amylase inhibition was found to be 21.17 μg/mL and 20.46 μg/mL respectively. The antioxidant activity of partially purified extract (PPE) (DPPH, ABTS, FRAP and Metal chelating activity) were observed and were also found to have significant cytotoxic activity against HT-29, MDA and U-87MG cell lines. The compound analysis was performed using gas chromatography-mass spectrometry (GC-MS) and resulted in three constituents; pyrrolo[1⁻a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)-, being the main component (80%). Overall, the strain possesses a wide spectrum of antimicrobial, enzyme inhibitory, antioxidant and cytotoxic activities which affords the production of significant bioactive metabolites as potential pharmacological agents.
Collapse
Affiliation(s)
- Saket Siddharth
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India.
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India.
| |
Collapse
|
9
|
Seghal Kiran G, Ramasamy P, Sekar S, Ramu M, Hassan S, Ninawe A, Selvin J. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules. Int J Biol Macromol 2018; 112:1278-1288. [DOI: 10.1016/j.ijbiomac.2018.01.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/18/2022]
|
10
|
Cell Aggregating Temperament and Biopotency of Cultivable Indigenous Actinobacterial Community Profile in Chicken (Gallus gallus domesticus) Gut System. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sugappriya M, Sudarsanam D, Bhaskaran R, Joseph J, Suresh A. Druggability and Binding Site Interaction Studies of Potential Metabolites Isolated from Marine Sponge Aurora globostellata against Human Epidermal Growth Factor Receptor-2. Bioinformation 2017; 13:261-268. [PMID: 28959095 PMCID: PMC5609291 DOI: 10.6026/97320630013261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
To study the involvement of compounds stigmasterol and oleic acid isolated from marine sponge Aurora globostellata and docking against the Human Epidermal Growth Factor Receptor-2 in breast cancer. The comparative molecular docking was performed with the natural compounds from marine sponge and the synthetic drugs used in breast cancer treatment against the target HER2. The molecular docking analysis was done using GLIDE in Schrodinger software package. The ADME properties were calculated using the Qikprop. The observation of the common binding site for all the ligands confirms the binding pocket; where the isolated compound Stigmasterol agrees well with the binding residues and thus can be optimized further to arrive at a molecule that has a high binding affinity and low binding constant. The results of the docking studies carried out on HER2 provide an insight for the compound stigmasterol to have drug like properties than oleic acid. These results are supportive to confirm the marine sponges as a better lead for cancer therapeutics.
Collapse
Affiliation(s)
- M. Sugappriya
- Research and development centre, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - D. Sudarsanam
- Department of Zoology and Advanced Biotechnology, Loyola college, Chennai 600034,Tamil nadu, India
| | - Raj Bhaskaran
- School of Biotechnology and genetic engineering Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Jeppiaar Research park, Sathyabama University, Chennai 600119,Tamilnadu, India
| | - Arumugam Suresh
- Centre for Drug Discovery and Development, Jeppiaar Research park, Sathyabama University, Chennai 600119,Tamilnadu, India
| |
Collapse
|
12
|
Latha S, Sivaranjani G, Dhanasekaran D. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol 2017; 43:567-582. [PMID: 28129718 DOI: 10.1080/1040841x.2016.1271308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.
Collapse
Affiliation(s)
- Selvanathan Latha
- a Bioprocess Technology Laboratory, Department of Microbiology , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Govindhan Sivaranjani
- a Bioprocess Technology Laboratory, Department of Microbiology , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Dharumadurai Dhanasekaran
- a Bioprocess Technology Laboratory, Department of Microbiology , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India.,b Department of Molecular, Cellular and Biomedical Sciences , University of New Hampshire , Durham , USA
| |
Collapse
|
13
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|
14
|
Ali El-Nag NEA, A. Hamouda R. Antimicrobial Potentialities of Streptomyces lienomycini NEAE-31 Against Human Pathogen Multidrug-resistant Pseudomonas aeruginosa. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.769.788] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Pazhanimurugan R, Radhakrishnan M, Shanmugasundaram T, Gopikrishnan V, Balagurunathan R. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities. World J Microbiol Biotechnol 2016; 32:161. [PMID: 27562595 DOI: 10.1007/s11274-016-2121-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/07/2016] [Indexed: 11/29/2022]
Abstract
The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources.
Collapse
Affiliation(s)
- Raasaiyah Pazhanimurugan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India
| | - Manikkam Radhakrishnan
- Centre for Drug Discovery and Development, Sathyabama University, Jeppiar Nagar, Chennai, Tamil Nadu, 600 119, India
| | - Thangavel Shanmugasundaram
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India
| | - Venugopal Gopikrishnan
- Centre for Drug Discovery and Development, Sathyabama University, Jeppiar Nagar, Chennai, Tamil Nadu, 600 119, India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
16
|
Indraningrat AAG, Smidt H, Sipkema D. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds. Mar Drugs 2016; 14:E87. [PMID: 27144573 PMCID: PMC4882561 DOI: 10.3390/md14050087] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.
Collapse
Affiliation(s)
- Anak Agung Gede Indraningrat
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands.
- Department of Biology, Faculty of Mathematics and Science Education, Institut Keguruan dan Ilmu Pendidikan Persatuan Guru Republik Indonesia (IKIP PGRI) Bali, Jl. Seroja Tonja, Denpasar 80238, Indonesia.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands.
| |
Collapse
|
17
|
Su H, Shao H, Zhang K, Li G. Antibacterial metabolites from the Actinomycete Streptomyces sp. P294. J Microbiol 2016; 54:131-5. [PMID: 26832669 DOI: 10.1007/s12275-016-5311-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
The Actinomycete strain P294 was isolated from soil and identified as Streptomyces sp. based upon the results of 16S rRNA sequence analysis. Three compounds obtained from the solid fermentation products of this strain have been determined by 1D, 2D NMR and HRMS experiments. These compounds include two new compounds angumycinones C (1) and D (2), and the known compound X-14881 E (3). All compounds were assayed for antibacterial and nematicidal activity. The results showed the three compounds had different degrees of inhibitory activity against several target bacteria but no significant toxicity against the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Huining Su
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, Yunnan, P. R. China
| | - Hongwei Shao
- Angang General Hospital, Anshan, 114021, P. R. China
| | - Keqin Zhang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, Yunnan, P. R. China
| | - Guohong Li
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, Yunnan, P. R. China.
| |
Collapse
|
18
|
Xu X, Kumar A, Deblais L, Pina-Mimbela R, Nislow C, Fuchs JR, Miller SA, Rajashekara G. Discovery of novel small molecule modulators of Clavibacter michiganensis subsp. michiganensis. Front Microbiol 2015; 6:1127. [PMID: 26539169 PMCID: PMC4609890 DOI: 10.3389/fmicb.2015.01127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/28/2015] [Indexed: 12/05/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a Gram-positive seed-transmitted bacterial phytopathogen responsible for substantial economic losses by adversely affecting tomato production worldwide. A high-throughput, cell-based screen was adapted to identify novel small molecule growth inhibitors to serve as leads for future bactericide development. A library of 4,182 compounds known to be bioactive against Saccharomyces cerevisiae was selected for primary screening against Cmm wild-type strain C290 for whole-cell growth inhibition. Four hundred sixty-eight molecules (11.2% hit rate) were identified as bacteriocidal or bacteriostatic against Cmm at 200 μM. Seventy-seven candidates were selected based on Golden Triangle analyses for secondary screening. Secondary screens showed that several of these candidates were strain-selective. Several compounds were inhibitory to multiple Cmm strains as well as Bacillus subtilis, but not to Pseudomonas fluorescens, Mitsuaria sp., Lysobacter enzymogenes, Lactobacillus rhamnosus, Bifidobacterium animalis, or Escherichia coli. Most of the compounds were not phytotoxic and did not show overt host toxicity. Using a novel 96-well bioluminescent Cmm seedling infection assay, we assessed effects of selected compounds on pathogen infection. The 12 most potent novel molecules were identified by compiling the scores from all secondary screens combined with the reduction of pathogen infection in planta. When tested for ability to develop resistance to the top-12 compounds, no resistant Cmm were recovered, suggesting that the discovered compounds are unlikely to induce resistance. In conclusion, here we report top-12 compounds that provide chemical scaffolds for future Cmm-specific bactericide development.
Collapse
Affiliation(s)
- Xiulan Xu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University Wooster, OH, USA
| | - Anand Kumar
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Loïc Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Ruby Pina-Mimbela
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia Vancouver, BC, Canada
| | - James R Fuchs
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Sally A Miller
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University Wooster, OH, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| |
Collapse
|
19
|
Manimaran M, Gopal JV, Kannabiran K. Antibacterial Activity of Streptomyces sp. VITMK1 Isolated from Mangrove Soil of Pichavaram, Tamil Nadu, India. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-015-0619-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Hoppers A, Stoudenmire J, Wu S, Lopanik NB. Antibiotic activity and microbial community of the temperate sponge, Haliclona sp. J Appl Microbiol 2014; 118:419-30. [PMID: 25431341 DOI: 10.1111/jam.12709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023]
Abstract
AIMS Sessile marine invertebrates engage in a diverse array of beneficial interactions with bacterial symbionts. One feature of some of these relationships is the presence of bioactive natural products that can defend the holobiont from predation, competition or disease. In this study, we investigated the antimicrobial activity and microbial community of a common temperate sponge from coastal North Carolina. METHODS AND RESULTS The sponge was identified as a member of the genus Haliclona, a prolific source of bioactive natural products, based on its 18S rRNA gene sequence. The crude chemical extract and methanol partition had broad activity against the assayed Gram-negative and Gram-positive pathogenic bacteria. Further fractionation resulted in two groups of compounds with differing antimicrobial activity, primarily against Gram-positive test organisms. There was, however, notable activity against the Gram-negative marine pathogen, Vibrio parahaemolyticus. Microbial community analysis of the sponge and surrounding sea water via denaturing gradient gel electrophoresis (DGGE) indicates that it harbours a distinct group of bacterial associates. CONCLUSIONS The common temperate sponge, Haliclona sp., is a source of multiple antimicrobial compounds and has some consistent microbial community members that may play a role in secondary metabolite production. SIGNIFICANCE AND IMPACT OF THE STUDY These data suggest that common temperate sponges can be a source of bioactive chemical and microbial diversity. Further studies may reveal the importance of the microbial associates to the sponge and natural product biosynthesis.
Collapse
Affiliation(s)
- A Hoppers
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | | | | |
Collapse
|