1
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
2
|
Gray M, de Janon A, Seeler M, Heller WT, Panoskaltsis N, Mantalaris A, Champion JA. Intracellular Biomacromolecule Delivery by Stimuli-Responsive Protein Vesicles Loaded by Hydrophobic Ion Pairing. ACS OMEGA 2025; 10:2628-2639. [PMID: 39895718 PMCID: PMC11780410 DOI: 10.1021/acsomega.4c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Proteins can perform ideal therapeutic functions. However, their large size and significant surface hydrophilicity and charge prohibit them from reaching intracellular targets. These chemical features also render them poorly encapsulated by nanoparticles used for intracellular delivery. In this work, a novel combination of protein vesicles and hydrophobic ion pairing (HIP) was used to load protein cargo and achieve cytosolic delivery to overcome the limitations of previous protein vesicle properties. Protein vesicles are thermally self-assembling nanoparticles made from elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper and a globular protein fused to a glutamate-rich leucine zipper. To impart stimuli-responsive disassembly, physiological stability, and small size, the ELP sequence was modified to include histidine and tyrosine residues. HIP was used to load and release protein cargo requiring endosomal escape for cytosolic function. HIP vesicles enabled delivery of cytochrome c, a cytosolically active protein, and a significant reduction in viability in both a traditional two-dimensional (2D) human cancer cell line culture and a biomimetic three-dimensional (3D) organoid model of acute myeloid leukemia. By examining the uptake of positively and negatively charged fluorescent protein cargos loaded by HIP, this work revealed the necessity of HIP for cytosolic cargo delivery and how HIP loading influences protein vesicle self-assembly and disassembly using microscopy, small-angle X-ray scattering, and nanoparticle tracking analysis. HIP protein vesicles have the potential to broaden the use of intracellular proteins as therapeutics for various diseases and extend protein vesicles to deliver other biomacromolecules, as the strategy developed here resulted in the first cytosolic protein cargo delivery using protein vesicles.
Collapse
Affiliation(s)
- Mikaela
A. Gray
- Chemical
and Biomolecular Engineering, Georgia Institute
of Technology Atlanta, Georgia 30332-0002, United States
| | - Alejandro de Janon
- Biomedical
Systems Engineering Laboratory, Georgia
Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Michelle Seeler
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332-0002, United States
| | - William T. Heller
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Nicki Panoskaltsis
- Biomedical
Systems Engineering Laboratory, Georgia
Institute of Technology, Atlanta, Georgia 30332-0002, United States
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department
of Haematology, St. James’s Hospital, Dublin 8, Ireland
| | - Athanasios Mantalaris
- Biomedical
Systems Engineering Laboratory, Georgia
Institute of Technology, Atlanta, Georgia 30332-0002, United States
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- National
Institute for Bioprocessing Research and Training, Dublin A94 X099, Ireland
| | - Julie A. Champion
- Chemical
and Biomolecular Engineering, Georgia Institute
of Technology Atlanta, Georgia 30332-0002, United States
| |
Collapse
|
3
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
4
|
Wishart G, Gupta P, Nisbet A, Velliou E, Schettino G. Enhanced effect of X-rays in the presence of a static magnetic field within a 3D pancreatic cancer model. Br J Radiol 2023; 96:20220832. [PMID: 36475863 PMCID: PMC9975369 DOI: 10.1259/bjr.20220832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the impact of static magnetic field (SMF) presence on the radiation response of pancreatic cancer cells in polyurethane-based highly macro-porous scaffolds in hypoxic (1% O2) and normoxic (21% O2) conditions, towards understanding MR-guided radiotherapy, shedding light on the potential interaction phenomenon between SMF and radiation in a three-dimensional (3D) microenvironment. METHODS Pancreatic cancer cells (PANC-1, ASPC-1) were seeded into fibronectin-coated highly porous polyethene scaffolds for biomimicry and cultured for 4 weeks in in vitro normoxia (21% O2) followed by a 2-day exposure to either in vitro hypoxia (1% O2) or maintenance in in vitro normoxia (21% O2). The samples were then irradiated with 6 MV photons in the presence or absence of a 1.5 T field. Thereafter, in situ post-radiation monitoring (1 and 7 days post-irradiation treatment) took place via quantification of (i) live dead and (ii) apoptotic profiles. RESULTS We report: (i) pancreatic ductal adenocarcinoma hypoxia-associated radioprotection, in line with our previous findings, (ii) an enhanced effect of radiation in the presence of SMFin in vitro hypoxia (1% O2) for both short- (1 day) and long-term (7 days) post -radiation analysis and (iii) an enhanced effect of radiation in the presence of SMF in in vitro normoxia (21% O2) for long-term (7 days) post-radiation analysis within a 3D pancreatic cancer model. CONCLUSION With limited understanding of the potential interaction phenomenon between SMF and radiation, this 3D system allows combination evaluation for a cancer in which the role of radiotherapy is still evolving. ADVANCES IN KNOWLEDGE This study examined the use of a 3D model to investigate MR-guided radiotherapy in a hypoxic microenvironment, indicating that this could be a useful platform to further understanding of SMF influence on radiation.
Collapse
Affiliation(s)
| | | | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
| | | | | |
Collapse
|
5
|
Gupta P, Velliou EG. A Step-by-Step Methodological Guide for Developing Zonal Multicellular Scaffold-Based Pancreatic Cancer Models. Methods Mol Biol 2023; 2645:221-229. [PMID: 37202622 DOI: 10.1007/978-1-0716-3056-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tumor microenvironment (TME), a complex heterogeneous mixture of various cellular, physical, and biochemical components and signals, is a major player in the process of tumor growth and its response to therapeutic methods. In vitro 2D monocellular cancer models are unable to mimic the complex in vivo characteristics of cancer TME involving cellular heterogeneity, presence of extracellular matrix (ECM) proteins, as well as spatial orientation and organization of different cell types forming the TME. In vivo animal-based studies have ethical concerns, are expensive and time-consuming, and involve models of non-human species. In vitro 3D models are capable of tiding over several issues associated with both 2D in vitro and in vivo animal models. We have recently developed a novel zonal multicellular 3D in vitro model for pancreatic cancer involving cancer cells, endothelial cells, and pancreatic stellate cells. Our model (i) can provide long-term culture (up to 4 weeks), (ii) can control the ECM biochemical configuration in a cell specific manner, (iii) shows large amounts of collagen secretion by the stellate cells mimicking desmoplasia, and (iv) expresses cell-specific markers throughout the whole culture period. This chapter describes the experimental methodology to form our hybrid multicellular 3D model for pancreatic ductal adenocarcinoma, including the immunofluorescence staining on the cell culture.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, UK
| | - Eirini G Velliou
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, UK.
| |
Collapse
|
6
|
Sevinyan L, Gupta P, Velliou E, Madhuri TK. The Development of a Three-Dimensional Platform for Patient-Derived Ovarian Cancer Tissue Models: A Systematic Literature Review. Cancers (Basel) 2022; 14:5628. [PMID: 36428724 PMCID: PMC9688222 DOI: 10.3390/cancers14225628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
There is an unmet biomedical need for ex vivo tumour models that would predict drug responses and in turn help determine treatment regimens and potentially predict resistance before clinical studies. Research has shown that three dimensional models of ovarian cancer (OvCa) are more realistic than two dimensional in vitro systems as they are able to capture patient in vivo conditions in more accurate manner. The vast majority of studies aiming to recapitulate the ovarian tumour morphology, behaviors, and study chemotherapy responses have been using ovarian cancer cell lines. However, despite the advantages of utilising cancer cell lines to set up a platform, they are not as informative as systems applying patient derived cells, as cell lines are not able to recapitulate differences between each individual patient characteristics. In this review we discussed the most recent advances in the creation of 3D ovarian cancer models that have used patient derived material, the challenges to overcome and future applications.
Collapse
Affiliation(s)
- Lusine Sevinyan
- Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Cancer Research, School of Applied Sciences, University of Brighton, Brighton BN2 4HQ, UK
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Thumuluru Kavitha Madhuri
- Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Cancer Research, School of Applied Sciences, University of Brighton, Brighton BN2 4HQ, UK
| |
Collapse
|
7
|
Al-Kaabneh B, Frisch B, Aljitawi OS. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells. Cancers (Basel) 2022; 14:5252. [PMID: 36358676 PMCID: PMC9656790 DOI: 10.3390/cancers14215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2023] Open
Abstract
The complexity of the bone marrow (BM) microenvironment makes studying hematological malignancies in vitro a challenging task. Three-dimensional cell cultures are being actively studied, particularly due to their ability to serve as a bridge of the gap between 2D cultures and animal models. The role of 3D in vitro models in studying the mechanisms of chemotherapeutic resistance and leukemia stem cells (LSCs) in acute myeloid leukemia (AML) is not well-reviewed. We present an overview of 3D cell models used for studying AML, emphasizing the recent advancements in microenvironment modeling, chemotherapy testing, and resistance.
Collapse
Affiliation(s)
- Basil Al-Kaabneh
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Frisch
- Departments of Pathology and Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Omar S. Aljitawi
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
8
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
9
|
Mastrullo V, van der Veen DR, Gupta P, Matos RS, Johnston JD, McVey JH, Madeddu P, Velliou EG, Campagnolo P. Pericytes' Circadian Clock Affects Endothelial Cells' Synchronization and Angiogenesis in a 3D Tissue Engineered Scaffold. Front Pharmacol 2022; 13:867070. [PMID: 35387328 PMCID: PMC8977840 DOI: 10.3389/fphar.2022.867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis, the formation of new capillaries from existing ones, is a fundamental process in regenerative medicine and tissue engineering. While it is known to be affected by circadian rhythms in vivo, its peripheral regulation within the vasculature and the role it performs in regulating the interplay between vascular cells have not yet been investigated. Peripheral clocks within the vasculature have been described in the endothelium and in smooth muscle cells. However, to date, scarce evidence has been presented regarding pericytes, a perivascular cell population deeply involved in the regulation of angiogenesis and vessel maturation, as well as endothelial function and homeostasis. More crucially, pericytes are also a promising source of cells for cell therapy and tissue engineering. Here, we established that human primary pericytes express key circadian genes and proteins in a rhythmic fashion upon synchronization. Conversely, we did not detect the same patterns in cultured endothelial cells. In line with these results, pericytes' viability was disproportionately affected by circadian cycle disruption, as compared to endothelial cells. Interestingly, endothelial cells' rhythm could be induced following exposure to synchronized pericytes in a contact co-culture. We propose that this mechanism could be linked to the altered release/uptake pattern of lactate, a known mediator of cell-cell interaction which was specifically altered in pericytes by the knockout of the key circadian regulator Bmal1. In an angiogenesis assay, the maturation of vessel-like structures was affected only when both endothelial cells and pericytes did not express Bmal1, indicating a compensation system. In a 3D tissue engineering scaffold, a synchronized clock supported a more structured organization of cells around the scaffold pores, and a maturation of vascular structures. Our results demonstrate that pericytes play a critical role in regulating the circadian rhythms in endothelial cells, and that silencing this system disproportionately affects their pro-angiogenic function. Particularly, in the context of tissue engineering and regenerative medicine, considering the effect of circadian rhythms may be critical for the development of mature vascular structures and to obtain the maximal reparative effect.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Daan R. van der Veen
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Rolando S. Matos
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan D. Johnston
- Chronobiology Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - John H. McVey
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Paola Campagnolo
- Cardiovascular Section, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
10
|
Wishart G, Gupta P, Nisbet A, Schettino G, Velliou E. On the Evaluation of a Novel Hypoxic 3D Pancreatic Cancer Model as a Tool for Radiotherapy Treatment Screening. Cancers (Basel) 2021; 13:6080. [PMID: 34885188 PMCID: PMC8657010 DOI: 10.3390/cancers13236080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is evolving to mimic intricate ecosystems of tumour microenvironments (TME) to more readily map realistic in vivo niches of cancerous tissues. Such advanced cancer tissue models enable more accurate preclinical assessment of treatment strategies. Pancreatic cancer is a dangerous disease with high treatment resistance that is directly associated with a highly complex TME. More specifically, the pancreatic cancer TME includes (i) complex structure and complex extracellular matrix (ECM) protein composition; (ii) diverse cell populations (e.g., stellate cells), cancer associated fibroblasts, endothelial cells, which interact with the cancer cells and promote resistance to treatment and metastasis; (iii) accumulation of high amounts of (ECM), which leads to the creation of a fibrotic/desmoplastic reaction around the tumour; and (iv) heterogeneous environmental gradients such as hypoxia, which result from vessel collapse and stiffness increase in the fibrotic/desmoplastic area of the TME. These unique hallmarks are not effectively recapitulated in traditional preclinical research despite radiotherapeutic resistance being largely connected to them. Herein, we investigate, for the first time, the impact of in vitro hypoxia (5% O2) on the radiotherapy treatment response of pancreatic cancer cells (PANC-1) in a novel polymer (polyurethane) based highly macroporous scaffold that was surface modified with proteins (fibronectin) for ECM mimicry. More specifically, PANC-1 cells were seeded in fibronectin coated macroporous scaffolds and were cultured for four weeks in in vitro normoxia (21% O2), followed by a two day exposure to either in vitro hypoxia (5% O2) or maintenance in in vitro normoxia. Thereafter, in situ post-radiation monitoring (one day, three days, seven days post-irradiation) of the 3D cell cultures took place via quantification of (i) live/dead and apoptotic profiles and (ii) ECM (collagen-I) and HIF-1a secretion by the cancer cells. Our results showed increased post-radiation viability, reduced apoptosis, and increased collagen-I and HIF-1a secretion in in vitro hypoxia compared to normoxic cultures, revealing hypoxia-induced radioprotection. Overall, this study employed a low cost, animal free model enabling (i) the possibility of long-term in vitro hypoxic 3D cell culture for pancreatic cancer, and (ii) in vitro hypoxia associated PDAC radio-protection development. Our novel platform for radiation treatment screening can be used for long-term in vitro post-treatment observations as well as for fractionated radiotherapy treatment.
Collapse
Affiliation(s)
- Gabrielle Wishart
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK;
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London (UCL), London WC1E 6BT, UK;
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK;
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
11
|
Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proc Natl Acad Sci U S A 2021; 118:2114227118. [PMID: 34580200 DOI: 10.1073/pnas.2114227118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/13/2023] Open
Abstract
Human malignant hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) niches, which remain challenging to explore due to limited in vivo accessibility and constraints with humanized animal models. Several in vitro systems have been established to culture patient-derived HSPCs in specific microenvironments, but they do not fully recapitulate the complex features of native bone marrow. Our group previously reported that human osteoblastic BM niches (O-N), engineered by culturing mesenchymal stromal cells within three-dimensional (3D) porous scaffolds under perfusion flow in a bioreactor system, are capable of maintaining, expanding, and functionally regulating healthy human cord blood-derived HSPCs. Here, we first demonstrate that this 3D O-N can sustain malignant CD34+ cells from acute myeloid leukemia (AML) and myeloproliferative neoplasm patients for up to 3 wk. Human malignant cells distributed in the bioreactor system mimicking the spatial distribution found in native BM tissue, where most HSPCs remain linked to the niches and mature cells are released to the circulation. Using human adipose tissue-derived stromal vascular fraction cells, we then generated a stromal-vascular niche and demonstrated that O-N and stromal-vascular niche differentially regulate leukemic UCSD-AML1 cell expansion, immunophenotype, and response to chemotherapy. The developed system offers a unique platform to investigate human leukemogenesis and response to drugs in customized environments, mimicking defined features of native hematopoietic niches and compatible with the establishment of personalized settings.
Collapse
|
12
|
Wishart G, Gupta P, Schettino G, Nisbet A, Velliou E. 3d tissue models as tools for radiotherapy screening for pancreatic cancer. Br J Radiol 2021; 94:20201397. [PMID: 33684308 PMCID: PMC8010544 DOI: 10.1259/bjr.20201397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
The efficiency of radiotherapy treatment regimes varies from tumour to tumour and from patient to patient but it is generally highly influenced by the tumour microenvironment (TME). The TME can be described as a heterogeneous composition of biological, biophysical, biomechanical and biochemical milieus that influence the tumour survival and its' response to treatment. Preclinical research faces challenges in the replication of these in vivo milieus for predictable treatment response studies. 2D cell culture is a traditional, simplistic and cost-effective approach to culture cells in vitro, however, the nature of the system fails to recapitulate important features of the TME such as structure, cell-cell and cell-matrix interactions. At the same time, the traditional use of animals (Xenografts) in cancer research allows realistic in vivo architecture, however foreign physiology, limited heterogeneity and reduced tumour mutation rates impairs relevance to humans. Furthermore, animal research is very time consuming and costly. Tissue engineering is advancing as a promising biomimetic approach, producing 3D models that capture structural, biophysical, biochemical and biomechanical features, therefore, facilitating more realistic treatment response studies for further clinical application. However, currently, the application of 3D models for radiation response studies is an understudied area of research, especially for pancreatic ductal adenocarcinoma (PDAC), a cancer with a notoriously complex microenvironment. At the same time, specific novel and/or more enhanced radiotherapy tumour-targeting techniques such as MRI-guided radiotherapy and proton therapy are emerging to more effectively target pancreatic cancer cells. However, these emerging technologies may have different biological effectiveness as compared to established photon-based radiotherapy. For example, for MRI-guided radiotherapy, the novel use of static magnetic fields (SMF) during radiation delivery is understudied and not fully understood. Thus, reliable biomimetic platforms to test new radiation delivery strategies are required to more accurately predict in vivo responses. Here, we aim to collate current 3D models for radiation response studies of PDAC, identifying the state of the art and outlines knowledge gaps. Overall, this review paper highlights the need for further research on the use of 3D models for pre-clinical radiotherapy screening including (i) 3D (re)-modeling of the PDAC hypoxic TME to allow for late effects of ionising radiation (ii) the screening of novel radiotherapy approaches and their combinations as well as (iii) a universally accepted 3D-model image quantification method for evaluating TME components in situ that would facilitate accurate post-treatment(s) quantitative comparisons.
Collapse
Affiliation(s)
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | | | | | | |
Collapse
|
13
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
14
|
Harada T, Tsuboi I, Utsunomiya M, Yasuda M, Aizawa S. Kinetics of leukemic cells in 3D culture with stromal cells and with arginine deprivation stress. J Biosci Bioeng 2020; 130:650-658. [PMID: 32861594 DOI: 10.1016/j.jbiosc.2020.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Previously, we established a three-dimensional (3D) bone marrow culture system that maintains normal hematopoiesis, including prolongation of hematopoietic stem cell proliferation and differentiation. To analyze the role of bone marrow stromal cells that compose the microenvironment, the growth of a leukemic cell line (K562) in the 3D condition and with arginine deprivation stress was compared with two-dimensional stromal cell monolayers (2D) and suspension cultures without stromal cells (stroma (-)). Arginine is essential for the proliferation and differentiation of erythrocytes. The proliferation and differentiation of K562 cells cultured in the 3D system were stabilized compared with cells in 2D or stroma (-). Furthermore, the number of K562 cells in the G0/G1 phase in 3D was increased significantly compared with cells grown in 2D or stroma (-). Interestingly, the mRNA expression of various hematopoietic growth factors of stromal cells in 3D was not different from 2D, even though supportive activity on K562 cell growth was observed in the arginine deprivation condition. Thus, the hematopoietic microenvironment involves multi-dimensional and complex systems including biochemical and physiochemical factors that regulate quiescence, proliferation, activation, and differentiation of normal hematopoietic cells and cloned leukemic cells. Our 3D culture system may be a valuable new tool for investigating leukemic cell-stromal cell interactions in vitro.
Collapse
Affiliation(s)
- Tomonori Harada
- Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Isao Tsuboi
- Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Mizuki Utsunomiya
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masahiro Yasuda
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Shin Aizawa
- Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
15
|
Gupta P, Pérez-Mancera PA, Kocher H, Nisbet A, Schettino G, Velliou EG. A Novel Scaffold-Based Hybrid Multicellular Model for Pancreatic Ductal Adenocarcinoma-Toward a Better Mimicry of the in vivo Tumor Microenvironment. Front Bioeng Biotechnol 2020; 8:290. [PMID: 32391339 PMCID: PMC7193232 DOI: 10.3389/fbioe.2020.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
With a very low survival rate, pancreatic ductal adenocarcinoma (PDAC) is a deadly disease. This has been primarily attributed to (i) its late diagnosis and (ii) its high resistance to current treatment methods. The latter specifically requires the development of robust, realistic in vitro models of PDAC, capable of accurately mimicking the in vivo tumor niche. Advancements in the field of tissue engineering (TE) have helped the development of such models for PDAC. Herein, we report for the first time a novel hybrid, polyurethane (PU) scaffold-based, long-term, multicellular (tri-culture) model of pancreatic cancer involving cancer cells, endothelial cells, and stellate cells. Recognizing the importance of ECM proteins for optimal growth of different cell types, the model consists of two different zones/compartments: an inner tumor compartment consisting of cancer cells [fibronectin (FN)-coated] and a surrounding stromal compartment consisting of stellate and endothelial cells [collagen I (COL)-coated]. Our developed novel hybrid, tri-culture model supports the proliferation of all different cell types for 35 days (5 weeks), which is the longest reported timeframe in vitro. Furthermore, the hybrid model showed extensive COL production by the cells, mimicking desmoplasia, one of PDAC's hallmark features. Fibril alignment of the stellate cells was observed, which attested to their activated state. All three cell types expressed various cell-specific markers within the scaffolds, throughout the culture period and showed cellular migration between the two zones of the hybrid scaffold. Our novel model has great potential as a low-cost tool for in vitro studies of PDAC, as well as for treatment screening.
Collapse
Affiliation(s)
- Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Pedro A. Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford, United Kingdom
- Medical Radiation Science Group, The National Physical Laboratory, Teddington, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
16
|
Ham J, Lever L, Fox M, Reagan MR. In Vitro 3D Cultures to Reproduce the Bone Marrow Niche. JBMR Plus 2019; 3:e10228. [PMID: 31687654 PMCID: PMC6820578 DOI: 10.1002/jbm4.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past century, the study of biological processes in the human body has progressed from tissue culture on glass plates to complex 3D models of tissues, organs, and body systems. These dynamic 3D systems have allowed for more accurate recapitulation of human physiology and pathology, which has yielded a platform for disease study with a greater capacity to understand pathophysiology and to assess pharmaceutical treatments. Specifically, by increasing the accuracy with which the microenvironments of disease processes are modeled, the clinical manifestation of disease has been more accurately reproduced in vitro. The application of these models is crucial in all realms of medicine, but they find particular utility in diseases related to the complex bone marrow niche. Osteoblast, osteoclasts, bone marrow adipocytes, mesenchymal stem cells, and red and white blood cells represent some of cells that call the bone marrow microenvironment home. During states of malignant marrow disease, neoplastic cells migrate to and join this niche. These cancer cells both exploit and alter the niche to their benefit and to the patient's detriment. Malignant disease of the bone marrow, both primary and secondary, is a significant cause of morbidity and mortality today. Innovative study methods are necessary to improve patient outcomes. In this review, we discuss the evolution of 3D models and compare them to the preceding 2D models. With a specific focus on malignant bone marrow disease, we examine 3D models currently in use, their observed efficacy, and their potential in developing improved treatments and eventual cures. Finally, we comment on the aspects of 3D models that must be critically examined as systems continue to be optimized so that they can exert greater clinical impact in the future. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin Ham
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Lauren Lever
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Maura Fox
- University of New EnglandBiddefordMEUSA
| | - Michaela R Reagan
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of Maine Graduate School of Biomedical Science and EngineeringOronoMEUSA,Sackler School of Graduate Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
17
|
Lu X, Lodi A, Konopleva M, Tiziani S. Three-Dimensional Leukemia Co-Culture System for In Vitro High-Content Metabolomics Screening. SLAS DISCOVERY 2019; 24:817-828. [PMID: 31345091 DOI: 10.1177/2472555219860446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metabolomics is increasingly applied to investigate different individuals and time-dependent responses to environmental stimuli. Rapid data acquisition and improved detection limits of direct infusion mass spectrometry (DIMS) are paving the way for applications of metabolomics in preclinical screening, opening new opportunities in drug discovery and personalized medicine. Three-dimensional (3D) cell culture systems, which mimic the in vivo cell microenvironment, are well recognized as tissue and organ substitutes. Here, we investigated cell viability and induction of reactive oxygen species (ROS) in stromal cells cultured in various 3D systems as well as the standard monolayer culture to evaluate which system provides the most favorable growing conditions. The selected 3D system was then tested for use in 3D co-culture of leukemia and stromal cells for DIMS-based high-throughput/high-content metabolic drug screens. The NanobioMatrix-poly(ε-caprolactone) (NBM-PCL) scaffold resulted in the lowest ROS production, supported rapid cell proliferation, and was suitable for the 96- and 384-well plate formats. Doxorubicin treatment in leukemia co-cultured with stromal cells induced some unique metabolic responses that drastically differed from those observed in leukemia cells alone. The DIMS results also showed that the drug-induced metabolic modulations in both normal and cancer cells were weakened by co-culturing even at high treatment doses, thereby demonstrating the value of the 3D co-culture high-content metabolic drug screen. In conclusion, we optimized a high sample throughput method for 3D co-culture with a DIMS-based high-content metabolic drug screen and drug development.
Collapse
Affiliation(s)
- Xiyuan Lu
- 1 Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA.,2 Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Alessia Lodi
- 1 Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA.,2 Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Marina Konopleva
- 3 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefano Tiziani
- 1 Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA.,2 Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Gupta P, Totti S, Pérez-Mancera PA, Dyke E, Nisbet A, Schettino G, Webb R, Velliou EG. Chemoradiotherapy screening in a novel biomimetic polymer based pancreatic cancer model. RSC Adv 2019; 9:41649-41663. [PMID: 35541584 PMCID: PMC9076463 DOI: 10.1039/c9ra09123h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly and aggressive disease with a very low survival rate. This is partly due to the resistance of the disease to currently available treatment options. Herein, we report for the first time the use of a novel polyurethane scaffold based PDAC model for screening the short and relatively long term (1 and 17 days post-treatment) responses of chemotherapy, radiotherapy and their combination. We show a dose dependent cell viability reduction and apoptosis induction for both chemotherapy and radiotherapy. Furthermore, we observe a change in the impact of the treatment depending on the time-frame, especially for radiation for which the PDAC scaffolds showed resistance after 1 day but responded more 17 days post-treatment. This is the first study to report a viable PDAC culture in a scaffold for more than 2 months and the first to perform long-term (17 days) post-treatment observations in vitro. This is particularly important as a longer time-frame is much closer to animal studies and to patient treatment regimes, highlighting that our scaffold system has great potential to be used as an animal free model for screening of PDAC. Poly-urethane scaffold based 3D pancreatic cancer model enables realistic long term chemotherapy and radiotherapy screening. This model can be used for personalised treatment screening.![]()
Collapse
Affiliation(s)
- Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem)
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | - Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem)
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | | | - Eleanor Dyke
- Department of Medical Physics
- The Royal Surrey County Hospital
- NHS Foundation Trust
- Guildford
- UK
| | - Andrew Nisbet
- Department of Medical Physics
- The Royal Surrey County Hospital
- NHS Foundation Trust
- Guildford
- UK
| | - Giuseppe Schettino
- Department of Physics
- University of Surrey
- Guildford GU2 7XH
- UK
- Medical Radiation Science Group
| | - Roger Webb
- The Ion Beam Centre
- University of Surrey
- Guildford
- UK
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem)
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| |
Collapse
|
19
|
Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:153-165. [PMID: 30606521 DOI: 10.1016/j.msec.2018.10.086] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 07/23/2018] [Accepted: 10/27/2018] [Indexed: 12/29/2022]
Abstract
The need for new approaches to investigate ex vivo the causes and effects of tumor and to achieve improved cancer treatments and medical therapies is particularly urgent for malignant pathologies such as lymphomas and leukemias, whose tissue initiator cells interact with the stroma creating a three-dimensional (3D) protective environment that conventional mono- and bi-dimensional (2D) models are not able to simulate realistically. The solvent-casting particulate leaching (SCPL) technique, that is already a standard method to produce polymer-based scaffolds for bone tissue repair, is proposed here to fabricate innovative 3D porous structures to mimic the bone marrow niche in vitro. Two different polymers, namely a rigid polymethyl methacrylate (PMMA) and a flexible polyurethane (PU), were evaluated to the purpose, whereas NaCl, in the form of common salt table, resulted to be an efficient porogen. The adoption of an appropriate polymer-to-salt ratio, experimentally defined as 1:4 for both PMMA and PU, gave place to a rich and interconnected porosity, ranging between 82.1 vol% and 91.3 vol%, and the choice of admixing fine-grained or coarse-grained salt powders allowed to control the final pore size. The mechanical properties under compression load were affected both by the polymer matrix and by the scaffold's architecture, with values of the elastic modulus indicatively varying between 29 kPa and 1283 kPa. Preliminary tests performed with human stromal HS-5 cells co-cultured with leukemic cells allowed us to conclude that stromal cells grown associated to the supports keep their well-known protective and pro-survival effect on cancer cells, indicating that these devices can be very useful to mimic the bone marrow microenvironment and therefore to assess the efficacy of novel therapies in pre-clinical studies.
Collapse
|
20
|
Totti S, Allenby MC, Dos Santos SB, Mantalaris A, Velliou EG. A 3D bioinspired highly porous polymeric scaffolding system for in vitro simulation of pancreatic ductal adenocarcinoma. RSC Adv 2018; 8:20928-20940. [PMID: 35542351 PMCID: PMC9080900 DOI: 10.1039/c8ra02633e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease with an extremely low survival rate. This is due to the (i) poor prognosis and (ii) high resistance of the disease to current treatment options. The latter is partly due to the very complex and dense tissue/tumour microenvironment of pancreatic cancer, which contributes to the disease's progression and the inhibition of apoptotic pathways. Over the last years, advances in tissue engineering and the development of three-dimensional (3D) culture systems have shed more light into cancer research by enabling a more realistic recapitulation of the niches and structure of the tumour microenvironment. Herein, for the first time, 3D porous polyurethane scaffolds were fabricated and coated with fibronectin to mimic features of the structure and extracellular matrix present in the pancreatic cancer tumour microenvironment. The developed 3D scaffold could support the proliferation of the pancreatic tumour cells, which was enhanced with the presence of fibronectin, for a month, which is a significantly prolonged in vitro culturing duration. Furthermore, in situ imaging of cellular and biomarker distribution showed the formation of dense cellular masses, the production of collagen-I by the cells and the formation of environmental stress gradients (e.g. HIF-1α) with similar heterogeneity trends to the ones reported in in vivo studies. The results obtained in this study suggest that this bioinspired porous polyurethane based scaffold has great potential for in vitro high throughput studies of pancreatic cancer including drug and treatment screening.
Collapse
Affiliation(s)
- Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK 0044-(0)-1483686577
| | - Mark C Allenby
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Susana Brito Dos Santos
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK 0044-(0)-1483686577
| |
Collapse
|
21
|
Matta-Domjan B, King A, Totti S, Matta C, Dover G, Martinez P, Zakhidov A, La Ragione R, Macedo H, Jurewicz I, Dalton A, Velliou EG. Biophysical interactions between pancreatic cancer cells and pristine carbon nanotube substrates: Potential application for pancreatic cancer tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 106:1637-1644. [PMID: 28976640 DOI: 10.1002/jbm.b.34012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/23/2017] [Accepted: 09/17/2017] [Indexed: 12/16/2022]
Abstract
Novel synthetic biomaterials able to support direct tissue growth and retain cellular phenotypical properties are promising building blocks for the development of tissue engineering platforms for accurate and fast therapy screening for cancer. The aim of this study is to validate an aligned, pristine multi-walled carbon nanotube (CNT) platform for in vitro studies of pancreatic cancer as a systematic understanding of interactions between cells and these CNT substrates is lacking. Our results demonstrate that our CNT scaffolds-which are easily tuneable to form sheets/fibers-support growth, proliferation, and spatial organization of pancreatic cancer cells, indicating their great potential in cancer tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1637-1644, 2018.
Collapse
Affiliation(s)
- Brigitta Matta-Domjan
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Alice King
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, UK
| | - Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Csaba Matta
- Department of Veterinary Preclinical Sciences, School of Veterinary Science and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - George Dover
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Patricia Martinez
- NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083-068875080
| | - Anvar Zakhidov
- NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083-068875080.,National University of Science and Technology, MISIS, Moscow, 119049, Russia.,Laboratory of Hybrid Nanophotonics and Optoelectronics, Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| | - Roberto La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Science and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | | | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Alan Dalton
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
22
|
Totti S, Vernardis SI, Meira L, Pérez-Mancera PA, Costello E, Greenhalf W, Palmer D, Neoptolemos J, Mantalaris A, Velliou EG. Designing a bio-inspired biomimetic in vitro system for the optimization of ex vivo studies of pancreatic cancer. Drug Discov Today 2017; 22:690-701. [PMID: 28153670 DOI: 10.1016/j.drudis.2017.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the most aggressive and lethal human malignancies. Drug therapies and radiotherapy are used for treatment as adjuvants to surgery, but outcomes remain disappointing. Advances in tissue engineering suggest that 3D cultures can reflect the in vivo tumor microenvironment and can guarantee a physiological distribution of oxygen, nutrients, and drugs, making them promising low-cost tools for therapy development. Here, we review crucial structural and environmental elements that should be considered for an accurate design of an ex vivo platform for studies of pancreatic cancer. Furthermore, we propose environmental stress response biomarkers as platform readouts for the efficient control and further prediction of the pancreatic cancer response to the environmental and treatment input.
Collapse
Affiliation(s)
- Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Spyros I Vernardis
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Lisiane Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - William Greenhalf
- NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - John Neoptolemos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
23
|
Bray LJ, Binner M, Körner Y, von Bonin M, Bornhäuser M, Werner C. A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche. Haematologica 2017; 102:1215-1226. [PMID: 28360147 PMCID: PMC5566030 DOI: 10.3324/haematol.2016.157883] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ex vivo studies of human disease, such as acute myeloid leukemia, are generally limited to the analysis of two-dimensional cultures which often misinterpret the effectiveness of chemotherapeutics and other treatments. Here we show that matrix metalloproteinase-sensitive hydrogels prepared from poly(ethylene glycol) and heparin functionalized with adhesion ligands and pro-angiogenic factors can be instrumental to produce robust three-dimensional culture models, allowing for the analysis of acute myeloid leukemia development and response to treatment. We evaluated the growth of four leukemia cell lines, KG1a, MOLM13, MV4-11 and OCI-AML3, as well as samples from patients with acute myeloid leukemia. Furthermore, endothelial cells and mesenchymal stromal cells were co-seeded to mimic the vascular niche for acute myeloid leukemia cells. Greater drug resistance to daunorubicin and cytarabine was demonstrated in three-dimensional cultures and in vascular co-cultures when compared with two-dimensional suspension cultures, opening the way for drug combination studies. Application of the C-X-C chemokine receptor type 4 (CXCR4) inhibitor, AMD3100, induced mobilization of the acute myeloid leukemia cells from the vascular networks. These findings indicate that the three-dimensional tri-culture model provides a specialized platform for the investigation of cell-cell interactions, addressing a key challenge of current testing models. This ex vivo system allows for personalized analysis of the responses of patients’ cells, providing new insights into the development of acute myeloid leukemia and therapies for this disease.
Collapse
Affiliation(s)
- Laura J Bray
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany .,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Marcus Binner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| | - Yvonne Körner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| | - Malte von Bonin
- Universitätsklinikum Carl-Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Saxony, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Martin Bornhäuser
- Universitätsklinikum Carl-Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Saxony, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| |
Collapse
|
24
|
A systematic framework for the design, simulation and optimization of personalized healthcare: Making and healing blood. Comput Chem Eng 2015. [DOI: 10.1016/j.compchemeng.2015.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|