1
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
2
|
Gaballah MS, Guo J, Hassanein A, Sobhi M, Zheng Y, Philbert M, Li B, Sun H, Dong R. Removal performance and inhibitory effects of combined tetracycline, oxytetracycline, sulfadiazine, and norfloxacin on anaerobic digestion process treating swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159536. [PMID: 36280067 DOI: 10.1016/j.scitotenv.2022.159536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Combined veterinary antibiotics (CVAs) belonging to different antibiotics classes could cause exacerbated impacts on the anaerobic digestion (AD) process of swine manure. Four different antibiotics "two tetracyclines: tetracycline (TC) and oxytetracycline (OTC), one fluoroquinolones: norfloxacin (Norf), and one sulfonamides: sulfadiazine (SDZ)" were combined to evaluate their removal performances and its inhibition effects on AD. Results indicated that CVAs removal decreased from 84.3 to 63.7 %, with an increase in the initial concentration from 12.5 to 50 mg L-1, where the removal of CVAs occurring in the order OTC > TC > Norf > SDZ. An average of 9.5, 7.5, 9.5, and 32.1 % of the spiked TC, OTC, SDZ, and Norf were remained in the sludge, respectively. With 50 mg L-1 of CVAs, a competitive adsorption phenomenon was found to have a notable impact on biodegradation microorganisms' activity leading a 73.1 % decrease in CH4 production. CVAs caused a temporal inhibition to the acidogenic activity followed by partial inhibition to methanogenic by 66.8 %, and IC50 was 38.5 mg L-1. Moreover, CVAs resulted in acetate accumulation, while 26 % and 48 % lower in TS and COD removal, respectively, were observed. A significant reduction in the relative abundance of bacteria and archaeal genera was also mentioned. The findings of this research would provide a more in-depth understanding of AD's performance in treating swine manure contaminated with combined antibiotics.
Collapse
Affiliation(s)
- Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; National Institute of Oceanography and Fisheries, Marine Environment Division, NIOF, Egypt
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Amro Hassanein
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Mperejekumana Philbert
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
3
|
Lee C, Ju M, Lee J, Kim S, Kim JY. Long-term inhibition of chlortetracycline antibiotics on anaerobic digestion of swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116802. [PMID: 36442333 DOI: 10.1016/j.jenvman.2022.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to identify whether chronic effects are present in the anaerobic digestion (AD) of swine manure (SM) containing chlortetracycline (CTC), which is one of the major broad-spectrum veterinary antibiotics, and to elucidate the long-term inhibitory effects and recovery from the inhibition based on AD performance and microbial community. Two continuous-stirred tank reactors treating SM with and without CTC spiking (3 mg/L) were operated for 900 days. Due to the degradation and transformation, the total concentration including CTC's epimer and isomer in the test reactor was 1.5 mg/L. The exposure level was determined according to probabilistically estimated concentrations with uncertainties in field conditions. Until the cessation of CTC exposure on day 585, the methane generation of test reactor continuously decreased to 55 ± 17 mL/g-VS/day, 53% that of control. The methane generation and organic removal were not recovered within 300 days after the CTC exposure was stopped. During the experiment, stability parameters such as pH, total ammonium nitrogen, the composition of methane and alkalinity were the same for both reactors. The concentration and composition of VFAs in the test reactor were different with those of control but not in inhibition level. Microbial profiles revealed that reduction in bacterial diversity and changed balance in microbial species resulted in the performance downgrade under the long-term antibiotic pressure. Since it is hard to recover from the inhibition and difficult to predict the inhibition using physicochemical indicators, continuous exposure to CTC needs to be avoided for the sustainable management of AD plants treating SM.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Munsol Ju
- Department of Living Environment Research, Korea Environment Institute, 370 Sicheong-daero, Sejong, Republic of Korea
| | - Jongkeun Lee
- Department of Environmental and Energy Engineering, College of Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do, Republic of Korea
| | - Seunghwan Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Current Status and Prospects of Valorizing Organic Waste via Arrested Anaerobic Digestion: Production and Separation of Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile fatty acids (VFA) are intermediary degradation products during anaerobic digestion (AD) that are subsequently converted to methanogenic substrates, such as hydrogen (H2), carbon dioxide (CO2), and acetic acid (CH3COOH). The final step of AD is the conversion of these methanogenic substrates into biogas, a mixture of methane (CH4) and CO2. In arrested AD (AAD), the methanogenic step is suppressed to inhibit VFA conversion to biogas, making VFA the main product of AAD, with CO2 and H2. VFA recovered from the AAD fermentation can be further converted to sustainable biofuels and bioproducts. Although this concept is known, commercialization of the AAD concept has been hindered by low VFA titers and productivity and lack of cost-effective separation methods for recovering VFA. This article reviews the different techniques used to rewire AD to AAD and the current state of the art of VFA production with AAD, emphasizing recent developments made for increasing the production and separation of VFA from complex organic materials. Finally, this paper discusses VFA production by AAD could play a pivotal role in producing sustainable jet fuels from agricultural biomass and wet organic waste materials.
Collapse
|
5
|
Yang G, Xie S, Yang M, Tang S, Zhou L, Jiang W, Zhou B, Li Y, Si B. A critical review on retaining antibiotics in liquid digestate: Potential risk and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158550. [PMID: 36075409 DOI: 10.1016/j.scitotenv.2022.158550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Substantial levels of antibiotics remain in liquid digestate, posing a significant threat to human safety and the environment. A comprehensive assessment of residual antibiotics in liquid digestate and related removal technologies is required. To this end, this review first evaluates the potential risks of the residual antibiotics in liquid digestate by describing various anaerobic digestion processes and their half-lives in the environment. Next, emerging technologies for removing antibiotics in liquid digestate are summarized and discussed, including membrane separation, adsorption, and advanced oxidation processes. Finally, this study comprehensively and critically discusses these emerging technologies' prospects and challenges, including techno-economic feasibility and environmental impacts.
Collapse
Affiliation(s)
- Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shihao Xie
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Tang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhou
- Center for Professional Training and Service, China Association for Science and Technology, Beijing 100081, China
| | - Weizhong Jiang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Buchun Si
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Mushtaq M, Zeeshan M, Nawaz I, Hassan M. Effect of low levels of oxytetracycline on anaerobic digestion of cattle manure. BIORESOURCE TECHNOLOGY 2022; 349:126894. [PMID: 35217155 DOI: 10.1016/j.biortech.2022.126894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Cattle manure is rich in organic matter and nutrients, but it may also contain harmful substances such as residual antibiotics and other toxic compounds. Oxytetracycline (OTC) is a widely used veterinary antibiotic and its presence in manure can affect the subsequent anaerobic digestion process. This study evaluated the effect of OTC concentrations viz. 0.12, 0.3, 0.6, 1.2, 3, 6 and 12 mg L-1 on batch mesophilic anaerobic digestion of cattle manure. The results showed that cumulative biogas yield decreased by 25, 29 and 55% at 3, 6 and 12 mg OTC L-1 in contrast to control. Volatile solids removal was 39% for control which reduced to 13% in 12 mg L-1 OTC spiked reactor. Effect on stability parameters was significant at OTC concentrations from 1.2 to 12 mg L-1. Two different kinetic models were used for biogas data validation and the modified Gompertz model best fitted to the experimental data.
Collapse
Affiliation(s)
- Moniba Mushtaq
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Zeeshan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ismat Nawaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| | - Muneeb Hassan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
7
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
8
|
Schueler J, Lansing S, Crossette E, Naas K, Hurst J, Raskin L, Wigginton K, Aga DS. Tetracycline, sulfadimethoxine, and antibiotic resistance gene dynamics during anaerobic digestion of dairy manure. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:694-705. [PMID: 33955027 DOI: 10.1002/jeq2.20211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/22/2021] [Indexed: 05/23/2023]
Abstract
Antibiotic use in animal husbandry is a potential entryway for antibiotics and antibiotic resistance genes (ARGs) to enter the environment through manure fertilizer application. The potential of anaerobic digestion (AD) to remove antibiotics and ARGs was investigated through tetracycline (TC) and sulfadimethoxine (SDM) additions into dairy manure digested for 44 d. This was the first study to evaluate antibiotics at concentrations quantified on-farm and relevant to field applications of manure. Triplicate treatments included a 1 mg L-1 TC spike, a 10 mg L-1 TC spike, a 1 mg L-1 SDM spike (SDM 1), a 10 mg L-1 SDM spike, a mixture of TC and SDM at 1 mg L-1 each (TC+SDM 1), and a manure-only treatment. The SDM spikes were reduced by >99% reduction during the AD processing, but TC additions had variable reductions (0-96%). Molecular analyses showed that decreases in tetM gene copies correlated with declines in TC; however, reductions in SDM concentration did not correlate with decreases in sul1 gene copy concentrations. The AD reactors containing 10 mg L-1 of TC and 10 mg L-1 of SDM both had CH4 production reductions of 7.8%, whereas no CH4 reduction was observed in other treatments (1 mg L-1 treatments). The study results were the first to confirm that AD can remove SDM when adding at concentrations observed in on-farm manure (<1 mg L-1 ) without compromising energy production. Because TC adsorbs to the solid particles and transforms into isomers, the decreases in TC concentrations were more variable and should be closely monitored.
Collapse
Affiliation(s)
- Jenna Schueler
- Dep. of Environmental Science and Technology, Univ. of Maryland, 1449 Animal Science Bldg., College Park, MD, 20742, USA
| | - Stephanie Lansing
- Dep. of Environmental Science and Technology, Univ. of Maryland, 1449 Animal Science Bldg., College Park, MD, 20742, USA
| | - Emily Crossette
- Dep. of Civil and Environmental Engineering, Univ. of Michigan, 1351 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Kayla Naas
- Dep. of Chemistry, Univ. at Buffalo, The State Univ. of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA
| | - Jerod Hurst
- Dep. of Chemistry, Univ. at Buffalo, The State Univ. of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA
| | - Lutgarde Raskin
- Dep. of Civil and Environmental Engineering, Univ. of Michigan, 1351 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Krista Wigginton
- Dep. of Civil and Environmental Engineering, Univ. of Michigan, 1351 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Diana S Aga
- Dep. of Chemistry, Univ. at Buffalo, The State Univ. of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA
| |
Collapse
|
9
|
The Impact of Antimicrobial Substances on the Methanogenic Community during Methane Fermentation of Sewage Sludge and Cattle Slurry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11010369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study showed the effect of amoxicillin (AMO), and oxytetracycline (OXY) at a concentration of 512 µg mL−1, and sulfamethoxazole (SMX), and metronidazole (MET) at a concentration of 1024 µg mL−1 on the efficiency of anaerobic digestion (AD) of sewage sludge (SS) and cattle slurry (CS). The production of biogas and methane (CH4) content, and the concentration of volatile fatty acids (VFAs) was analyzed in this study. Other determinations included the concentration of the mcrA gene, which catalyzes the methanogenesis, and analysis of MSC and MST gene concentration, characteristic of the families Methanosarcinaceae and Methanosaetaceae (Archaea). Both substrates differed in the composition of microbial communities, and in the sensitivity of these microorganisms to particular antimicrobial substances. Metronidazole inhibited SS fermentation to the greatest extent (sixfold decrease in biogas production and over 50% decrease in the content of CH4). The lowest concentrations of the mcrA gene (106 gD−1) were observed in CS and SS digestates with MET. A decline in the number of copies of the MSC and MST genes was noted in most of the digestate samples with antimicrobials supplementation. Due to selective pressure, antimicrobials led to a considerably lowered efficiency of the AD process and induced changes in the structure of methanogenic biodiversity.
Collapse
|
10
|
Andriamanohiarisoamanana FJ, Ihara I, Yoshida G, Umetsu K. Kinetic study of oxytetracycline and chlortetracycline inhibition in the anaerobic digestion of dairy manure. BIORESOURCE TECHNOLOGY 2020; 315:123810. [PMID: 32683290 DOI: 10.1016/j.biortech.2020.123810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/22/2023]
Abstract
This study was aimed to investigate the mechanisms of oxytetracycline (OTC) and chlortetracycline (CTC) inhibition in anaerobic digestion (AD) using four kinetic models. The results showed that the inhibition rate of OTC was faster than CTC at OTC and CTC between 0.04 and 1.28 g/L. Hydrolysis rate constant was linearly and positively correlated with OTC and increased from 0.172 to 0.193 d-1, 0.164 to 0.179 d-1 and 0.251 to 0.285 d-1 using first-order kinetic, Fitzhugh and Cone models, respectively, while the maximum specific methane production rate was linearly and negatively correlated with CTC and decreased from 0.028 to 0.016 L/gVS. Cone model was found to give the most satisfactory fitting results followed in descending order by first-order kinetic, Fitzhugh and modified Gompertz models. The kinetic modeling of methane yield helped explain the mechanism of OTC and CTC inhibition in the AD process and provided essential information for further process improvement.
Collapse
Affiliation(s)
| | - Ikko Ihara
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe 657-8501 Japan.
| | - Gen Yoshida
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe 657-8501 Japan
| | - Kazutaka Umetsu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
11
|
Gurmessa B, Pedretti EF, Cocco S, Cardelli V, Corti G. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137532. [PMID: 32179343 DOI: 10.1016/j.scitotenv.2020.137532] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
This review was aimed to summarize and critically evaluate studies on removal of veterinary antibiotics (VAs), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) with anaerobic digestion (AD) of manure and demonstrate areas of focus for improved removal efficiency. The environmental risks associated to the release of the same were also critically evaluated. The potential of AD and advanced AD of manure on removal rate of VAs, ARGs and MGEs was thoroughly assessed. In addition, the role of post and pre-AD treatments and their potential to support VAs and ARGs removal efficiency were evaluated. The overall review results show disparity among the different groups of VAs in terms of removal rate with relatively higher efficiency for β-lactams and tetracyclines compared to the other groups. Some of sulfonamides, fluoroquinolones and macrolides were reported to be highly persistent with removal rates as low as zero. Within group differences were also reported in many literatures. Moreover, removal of ARGs and MGEs by AD was widely reported although complete removal was hardly possible. Even in rare scenarios, some AD conditions were reported to increase copies of specific groups of the genes. Temperature pretreatments and temperature phased advanced AD were also reported to improve removal efficiency of VAs while contributing to increased biogas production. Moreover, a few studies also showed the possibility of further removal by post-AD treatments such as liquid-solid separation, drying and composting. In conclusion, the various studies revealed that AD in its current technological level is not a guarantee for complete removal of VAs, ARGs and MGEs from manure. Consequently, their possible release to the soils with digestate could threaten the healthcare and disturb soil microbial ecology. Thus, intensive management strategies need to be designed to increase removal efficiency at the different manure management points along the anaerobic digestion process.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
12
|
Tong T, Xie S. Impacts of sulfanilamide and oxytetracycline on methane oxidation and methanotrophic community in freshwater sediment. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:392-398. [PMID: 30790109 DOI: 10.1007/s10646-019-02026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 05/28/2023]
Abstract
Methanotrophs are of great significance for the abatement of methane emission from anoxic environments. Antibiotics are ubiquitous in the environment and can affect microbial activity and community density and composition. However, information about the effect of antibiotics on methanotrophs is still lacking. The current study explored the influences of sulfonamides and tetracyclines on methane oxidation potential (MOP) and methanotrophic density and community structure in freshwater sediment microcosms. The addition of both sulfanilamide (SA) and oxytetracycline (OTC) could increase MOP and particulate methane monooxygenase subunit A (pmoA) gene density but decrease the number of pmoA transcripts. Both SA and OTC could also have impacts on sediment methanotrophic community structure. The antibiotic effects on MOP and methanotrophs were found to depend on the dosage and type of antibiotics. This work could provide some new insights towards the links between methane oxidation and antibiotics.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
13
|
Zhang X, Gu J, Wang X, Zhang K, Yin Y, Zhang R, Zhang S. Effects of tylosin, ciprofloxacin, and sulfadimidine on mcrA gene abundance and the methanogen community during anaerobic digestion of cattle manure. CHEMOSPHERE 2019; 221:81-88. [PMID: 30634152 DOI: 10.1016/j.chemosphere.2018.12.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated how tylosin (TYL), ciprofloxacin (CIP), and sulfadimidine (SM2) affected biogas and CH4 production during anaerobic digestion (AD) via their effects on the key genes related to methane production and the methanogenic community. The results showed that TYL, CIP, and SM2 reduced the production of methane during AD by 7.5%, 21.9%, and 16.0%, respectively. After AD for five days, CIP strongly inhibited the mcrA gene, where its abundance was 49% less than that in the control. TYL and SM2 decreased the abundances of Spirochaeta and Fibrobacteres during AD. High-throughput sequencing identified 10 methanogen genera, where Methanocorpusculum, Methanobrevibacter, and Methanosarcina accounted for 99.1% of the total archaeal reads. TYL and SM2 increased the efficiency of the acetoclastic methanogen pathway (Methanosarcina) by 29.04% and 52.79%, respectively. Redundancy analysis showed that Spirochaeta, Fibrobacteres, and Methanosarcina had positive correlations with CH4 and mcrA. We found that 30 mg kg-1 CIP had a strong inhibitory effect on methane production by influencing the abundances of Methanobrevibacter and Methanosarcina during AD.
Collapse
Affiliation(s)
- Xin Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yanan Yin
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ranran Zhang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sheqi Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Chen J, Hu Y, Huang W, Liu Y, Tang M, Zhang L, Sun J. Biodegradation of oxytetracycline and electricity generation in microbial fuel cell with in situ dual graphene modified bioelectrode. BIORESOURCE TECHNOLOGY 2018; 270:482-488. [PMID: 30245318 DOI: 10.1016/j.biortech.2018.09.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
A three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) in microbial fuel cell (MFC) in previous studies. This study explored the biodegradation of oxytetracycline (OTC) and electricity generation in O-D-GM-BE MFC. The OTC removal efficiency of graphene modified biocathode and bioanode (O-GM-BC, O-GM-BA) was 95.0% and 91.8% in eight days. The maximum power density generated by O-D-GM-BE MFC was 86.6 ± 5.1 mW m-2, which was 2.1 times of that in OTC control bioelectrode (O-C-BE) MFC. The Rct of O-GM-BA and O-GM-BC were decreased significantly by 78.3% and 76.3%. OTC was biodegraded to monocyclic benzene compounds by bacteria. O-GM-BA was affected strongly by OTC, and Salmonella and Trabulsiella were accounted for 83.0%, while typical exoelectrogens (Geobacter) were still enriched after the maturity of biofilm. In O-GM-BC, bacteria related with OTC biodegradation (Comamonas, Ensifer, Sphingopyxis, Pseudomonas, Dechloromonas, etc.) were enriched, which contributed to the high removal efficiency of OTC.
Collapse
Affiliation(s)
- Junfeng Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Wantang Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Lihua Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jian Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure. Appl Microbiol Biotechnol 2016; 100:6469-6479. [DOI: 10.1007/s00253-016-7469-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 01/26/2023]
|