1
|
da Costa HHM, Bielavsky M, Orts DJB, Araujo S, Adriani PP, Nogueira JS, Astray RM, Pandey RP, Lancellotti M, Cunha-Junior JP, Prudencio CR. Production of Recombinant Zika Virus Envelope Protein by Airlift Bioreactor as a New Subunit Vaccine Platform. Int J Mol Sci 2023; 24:13955. [PMID: 37762254 PMCID: PMC10531330 DOI: 10.3390/ijms241813955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 09/29/2023] Open
Abstract
The Zika Virus (ZIKV) is an emerging arbovirus of great public health concern, particularly in the Americas after its last outbreak in 2015. There are still major challenges regarding disease control, and there is no ZIKV vaccine currently approved for human use. Among many different vaccine platforms currently under study, the recombinant envelope protein from Zika Virus (rEZIKV) constitutes an alternative option for vaccine development and has great potential for monitoring ZIKV infection and antibody response. This study describes a method to obtain a bioactive and functional rEZIKV using an E. coli expression system, with the aid of a 5-L airlift bioreactor and following an automated fast protein liquid chromatography (FPLC) protocol, capable of obtaining high yields of approximately 20 mg of recombinant protein per liter of bacterium cultures. The purified rEZIKV presented preserved antigenicity and immunogenicity. Our results show that the use of an airlift bioreactor for the production of rEZIKV is ideal for establishing protocols and further research on ZIKV vaccines bioprocess, representing a promising system for the production of a ZIKV envelope recombinant protein-based vaccine candidate.
Collapse
Affiliation(s)
- Hernan H. M. da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Monica Bielavsky
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Diego J. B. Orts
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo 04023-062, Brazil
| | - Sergio Araujo
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Patrícia P. Adriani
- Skinzymes Biotechnology Ltd., São Paulo 05441-040, Brazil
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Renato M. Astray
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
- Multi-Purpose Laboratory Butantan Institute, São Paulo 05503-900, Brazil
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES University, Dehradun 248007, Uttarakhand, India
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences—FCF, University of Campinas—UNICAMP, Campinas 13083-871, Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunochemistry and Immunotechnology, Department of Immunology, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| | - Carlos R. Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
3
|
ClearColi as a platform for untagged pneumococcal surface protein A production: cultivation strategy, bioreactor culture, and purification. Appl Microbiol Biotechnol 2022; 106:1011-1029. [PMID: 35024919 PMCID: PMC8755982 DOI: 10.1007/s00253-022-11758-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Abstract
Several studies have searched for new antigens to produce pneumococcal vaccines that are more effective and could provide broader coverage, given the great number of serotypes causing pneumococcal diseases. One of the promising subunit vaccine candidates is untagged recombinant pneumococcal surface protein A (PspA4Pro), obtainable in high quantities using recombinant Escherichia coli as a microbial factory. However, lipopolysaccharides (LPS) present in E. coli cell extracts must be removed, in order to obtain the target protein at the required purity, which makes the downstream process more complex and expensive. Endotoxin-free E. coli strains, which synthesize a nontoxic mutant LPS, may offer a cost-effective alternative way to produce recombinant proteins for application as therapeutics. This paper presents an investigation of PspA4Pro production employing the endotoxin-free recombinant strain ClearColi® BL21(DE3) with different media (defined, auto-induction, and other complex media), temperatures (27, 32, and 37 °C), and inducers. In comparison to conventional E. coli cells in a defined medium, ClearColi presented similar PspA4Pro yields, with lower productivities. Complex medium formulations supplemented with salts favored PspA4Pro yields, titers, and ClearColi growth rates. Induction with isopropyl-β-d-thiogalactopyranoside (0.5 mM) and lactose (2.5 g/L) together in a defined medium at 32 °C, which appeared to be a promising cultivation strategy, was reproduced in 5 L bioreactor culture, leading to a yield of 146.0 mg PspA4Pro/g dry cell weight. After purification, the cell extract generated from ClearColi led to 98% purity PspA4Pro, which maintained secondary structure and biological function. ClearColi is a potential host for industrial recombinant protein production. Key points • ClearColi can produce as much PspA4Pro as conventional E. coli BL21(DE3) cells. • 10.5 g PspA4Pro produced in ClearColi bioreactor culture using a defined medium. • Functional PspA4Pro (98% of purity) was obtained in ClearColi bioreactor culture.Graphical abstract ![]() Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11758-9.
Collapse
|
4
|
Biazi L, Martínez-Jimenez F, Bonan C, Soares L, Morais E, Ienczak J, Costa A. A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Cardoso VM, Campani G, Santos MP, Silva GG, Pires MC, Gonçalves VM, de C. Giordano R, Sargo CR, Horta AC, Zangirolami TC. Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00441. [PMID: 32140446 PMCID: PMC7049567 DOI: 10.1016/j.btre.2020.e00441] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing E. coli BL21(DE3). Cultivation strategies and corresponding process costs covered a wide range of operational conditions, including different media, inducers, and temperatures. The core expenses were related to the medium and cooling. When the price of peptone was above the threshold value of US$ 30/kg, defined medium became the best choice. IPTG and temperatures around 32 °C led to shorter cultures and lower PspA4Pro production costs. The procedure offers a simple, accessible theoretical tool to identify cost-effective production strategies using bioreactors.
Collapse
Affiliation(s)
- Valdemir M. Cardoso
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Gilson Campani
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
- Department of Engineering, Federal University of Lavras, 37200-000, Lavras, MG, Brazil
| | - Maurício P. Santos
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Gabriel G. Silva
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Manuella C. Pires
- Laboratory of Vaccine Development, Butantan Institute, Av. Vital Brasil 1500, 05508-900, São Paulo, SP, Brazil
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Av. Vital Brasil 1500, 05508-900, São Paulo, SP, Brazil
| | - Roberto de C. Giordano
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Cíntia R. Sargo
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Antônio C.L. Horta
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Teresa C. Zangirolami
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
6
|
Benedini LJ, Figueiredo D, Cabrera-Crespo J, Gonçalves VM, Silva GG, Campani G, Zangirolami TC, Furlan FF. Modeling and simulation of anion exchange chromatography for purification of proteins in complex mixtures. J Chromatogr A 2020; 1613:460685. [DOI: 10.1016/j.chroma.2019.460685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023]
|
7
|
A hierarchical state estimation and control framework for monitoring and dissolved oxygen regulation in bioprocesses. Bioprocess Biosyst Eng 2019; 42:1467-1481. [DOI: 10.1007/s00449-019-02143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
|