1
|
Huang K, Su K, Mohan M, Chen J, Xu Y, Zhou X. Research progress on organic acid pretreatment of lignocellulose. Int J Biol Macromol 2025; 307:142325. [PMID: 40118402 DOI: 10.1016/j.ijbiomac.2025.142325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/18/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Lignocellulosic biomass is a naturally occurring, renewable resource that is utilized to produce a variety of high-value-added products, such as fuels, acids, and building block chemicals. The pretreatment of lignocellulosic biomass is a crucial step in the deconstruction and fractionation of its components. Organic acids, such as formic, acetic, lactic, and maleic acids, have been widely studied for their effectiveness in lignocellulose pretreatment. Organic acid-based pretreatment techniques are gaining increased attention due to their ability to selectively separate hemicellulose and cellulose, promote oligomer formation, and minimize byproducts. This paper presents a comprehensive review of the various advancements in the science and application of organic acids for the pretreatment of lignocellulose. Furthermore, the significant challenges of organic acid recovery after pretreatment are highlighted, and different recovery methods are discussed. The future challenges related to utilizing organic acids for lignocellulose pretreatment are summarized, with a strong emphasis on adopting a sustainable approach to converting valuable bioresources into renewable products.
Collapse
Affiliation(s)
- Kaixuan Huang
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Kaiyue Su
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
| | - Mood Mohan
- Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jiayi Chen
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
| | - Yong Xu
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Xin Zhou
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
2
|
Wang J, Zhang R, Shao Y, Zhang C, You X, Yang Q, Xie F, Yang R, Luo H. Efficient pretreatment of Phragmites australis biomass using glutamic acid for bioethanol production by a hybrid hydrolysis and fermentation strategy. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03165-x. [PMID: 40221957 DOI: 10.1007/s00449-025-03165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Microbial fermentation of renewable lignocellulosic biomass to produce biofuels presents significant environmental advantages. The conversion of cellulose and hemicellulose into fermentable sugars provides essential carbon sources for microbial metabolism. However, the recalcitrance of biomass limits enzymatic accessibility. In this study, mild L-glutamic acid (GA) pretreatment was applied to Phragmites australis residues (reed straw) to fractionate lignin and polysaccharides for enhancing enzymatic hydrolysis. Pretreatment with 0.20 mol/L GA at 180 °C for 50 min (logRo = 4.1) achieved glucan recovery and xylan removal rates of 84.2% and 87.8%. Consequently, glucose and total sugar yields reached 75.5 and 71.2%, representing 5.35- and 5.18-fold increases compared to untreated reed. The 28.7 g fermentable sugars with a high glucose-to-xylose ratio (18.1 g/g) were obtained from 100 g reed. The hydrolysates were subsequently used as substrates for bioethanol production by Saccharomyces cerevisiae, which yielded 12.4-32.3 g/L ethanol via separate hydrolysis and fermentation (SHF). By analyzing bioethanol production of SHF and simultaneous saccharification and fermentation (SSF), an optimized hybrid hydrolysis and fermentation (HHF) strategy was developed. Under HHF process, 48.5 g/L of ethanol was achieved from 20 wt% solid loads. This study demonstrates an efficient approach to convert abundant lignocellulosic waste into fermentable sugars and biofuels.
Collapse
Affiliation(s)
- Jiabin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yu Shao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Cheng Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xinyan You
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qianyue Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
3
|
Tantayotai P, Gundupalli MP, Katam K, Rattanaporn K, Cheenkachorn K, Sriariyanun M. In-depth investigation of the bioethanol and biogas production from organic and mineral acid pretreated sugarcane bagasse: Comparative and optimization studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Dong X, Ji J, Zhang S, Peng D, Wang Y, Zhang L, Li J, Wang G. Study on a Low-temperature Cellulose-degrading Strain: Fermentation Optimization, Straw Degradation, and the Effect of Fermentation Broth on Seed Growth. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zafar A, Hamid A, Peng L, Wang Y, Aftab MN. Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from Clostridium clariflavum: a potential addition for biofuel industry. RSC Adv 2022; 12:14917-14931. [PMID: 35702232 PMCID: PMC9115876 DOI: 10.1039/d2ra00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The present study describes the cloning, expression, purification and characterization of the xylosidase gene (1650 bp) from a thermophilic bacterium Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production. The recombinant xylosidase enzyme was purified to homogeneity by heat treatment and immobilized metal ion affinity chromatography. SDS-PAGE determined that the molecular weight of purified xylosidase was 60 kDa. This purified recombinant xylosidase showed its maximum activity at a temperature of 37 °C and pH 6.0. The purified recombinant xylosidase enzyme remains stable up to 90 °C for 4 h and retained 54.6% relative activity as compared to the control. The presence of metal ions such as Ca2+ and Mg2+ showed a positive impact on xylosidase enzyme activity whereas Cu2+ and Hg2+ inhibit its activity. Organic solvents did not considerably affect the stability of the purified xylosidase enzyme while DMSO and SDS cause the inhibition of enzyme activity. Pretreatment experiments were run in triplicate for 72 h at 30 °C using 10% NaOH. Saccharification experiment was performed by using 1% substrate (pretreated plant biomass) in citrate phosphate buffer of pH 6.5 loaded with 150 U mL−1 of purified recombinant xylosidase enzyme along with ampicillin (10 μg mL−1). Subsequent incubation was carried out at 50 °C and 100 rpm in a shaking incubator for 24 h. Saccharification potential of the recombinant xylosidase enzyme was calculated against both pretreated and untreated sugarcane bagasse and wheat straw as 9.63% and 8.91% respectively. All these characteristics of the recombinant thermotolerant xylosidase enzyme recommended it as a potential candidate for biofuel industry. The present study describes the cloning, expression, purification and characterization of a xylosidase gene from Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production.![]()
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| |
Collapse
|
6
|
Santiago B, Moreira MT, Feijoo G, González-García S. Environmental comparison of banana waste valorisation strategies under a biorefinery approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:77-87. [PMID: 35180613 DOI: 10.1016/j.wasman.2022.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Banana wastes can be valorised in bioethanol due to its high content in cellulose (more than 30% of total on a dry basis) and hemicelluloses (25% of total). Large amount of these wastes is generated during the banana cultivation and harvesting stage. This study proposes the use of, beside conventional acid sulphuric, different organic acids (tartaric, oxalic and citric) during acid pretreatment step, to suppress the unwanted compounds formation and improve bioethanol production. Instead, bioethanol production generates a solid waste flow that is managed in an anaerobic digestion plant, obtaining biogas, to be converted into energy, and digestate, considered as a potential biofertiliser. Life cycle assessment methodology is used to analyse the environmental profiles of four valorisation scenarios to produce bioethanol from banana peel waste. According to the results, reported per kilogram of bioethanol, the citric acid-based scenario has the worst environmental profile due to the background processes involved in the acid production (around 55% for most impact categories). Conversely, the oxalic acid-based scenario has the best environmental profile, with a decrease of around 20% and 35%, depending on the impact category, compared to the citric acid scenario. The energy requirements production (mostly thermal energy) is the main hotspot in numerous subsystems regardless of the scenario (ranging from 30% to 50% depending on the impact category). Therefore, the use of renewable energy sources to satisfy energy requirements combined with an energy optimisation of the valorisation strategies through the reuse of some internal steams, is proposed as improvement activities.
Collapse
Affiliation(s)
- Beatriz Santiago
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - María Teresa Moreira
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sara González-García
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Improvement of Enzymatic Saccharification and Ethanol Production from Rice Straw Using Recycled Ionic Liquid: The Effect of Anti-Solvent Mixture. Bioengineering (Basel) 2022; 9:bioengineering9030115. [PMID: 35324804 PMCID: PMC8944977 DOI: 10.3390/bioengineering9030115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major concerns for utilizing ionic liquid on an industrial scale is the cost involved in the production. Despite its proven pretreatment efficiency, expenses involved in its usage hinder its utilization. A better way to tackle this limitation could be overcome by studying the recyclability of ionic liquid. The current study has applied the Box–Behnken design (BBD) to optimize the pretreatment condition of rice straw through the usage of 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) as an ionic liquid. The model predicted the operation condition with 5% solid loading at 128.4 °C for 71.83 min as an optimum pretreatment condition. Under the optimized pretreatment condition, the necessity of the best anti-solvent was evaluated among water, acetone methanol, and their combinations. The study revealed that pure methanol is the suitable choice of anti-solvent, enhancing the highest sugar yield. Recyclability of EMIM-Ac coupled with anti-solvent was conducted up to five recycles following the predicted pretreatment condition. Fermentation studies evaluated the efficacy of recycled EMIM-Ac for ethanol production with 89% more ethanol production than the untreated rice straw even after five recycles. This study demonstrates the potential of recycled ionic liquid in ethanol production, thereby reducing the production cost at the industrial level.
Collapse
|
8
|
Sriariyanun M, Kitiborwornkul N, Tantayotai P, Rattanaporn K, Show PL. One-Pot Ionic Liquid-Mediated Bioprocess for Pretreatment and Enzymatic Hydrolysis of Rice Straw with Ionic Liquid-Tolerance Bacterial Cellulase. Bioengineering (Basel) 2022; 9:bioengineering9010017. [PMID: 35049726 PMCID: PMC8772859 DOI: 10.3390/bioengineering9010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquid (IL) pretreatment of lignocellulose is an efficient method for the enhancement of enzymatic saccharification. However, the remaining residues of ILs deactivate cellulase, therefore making intensive biomass washing after pretreatment necessary. This study aimed to develop the one-pot process combining IL pretreatment and enzymatic saccharification by using low-toxic choline acetate ([Ch][OAc]) and IL-tolerant bacterial cellulases. Crude cellulases produced from saline soil inhabited Bacillus sp. CBD2 and Brevibacillus sp. CBD3 were tested under the influence of 0.5–2.0 M [Ch][OAc], which showed that their activities retained at more than 95%. However, [Ch][OAc] had toxicity to CBD2 and CBD3 cultures, in which only 32.85% and 12.88% were alive at 0.5 M [Ch][OAc]. Based on the specific enzyme activities, the sugar amounts produced from one-pot processes using 1 mg of CBD2 and CBD3 were higher than that of Celluclast 1.5 L by 2.0 and 4.5 times, respectively, suggesting their potential for further application in the biorefining process of value-added products.
Collapse
Affiliation(s)
- Malinee Sriariyanun
- Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Correspondence:
| | - Nichaphat Kitiborwornkul
- Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia;
| |
Collapse
|
9
|
Panakkal EJ, Cheenkachorn K, Gundupalli MP, Kitiborwornkul N, Sriariyanun M. Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Interferences of Waxes on Enzymatic Saccharification and Ethanol Production from Lignocellulose Biomass. Bioengineering (Basel) 2021; 8:bioengineering8110171. [PMID: 34821737 PMCID: PMC8615184 DOI: 10.3390/bioengineering8110171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Wax is an organic compound found on the surface of lignocellulose biomass to protect plants from physical and biological stresses in nature. With its small mass fraction in biomass, wax has been neglected from inclusion in the design of the biorefinery process. This study investigated the interfering effect of wax in three types of lignocellulosic biomass, including rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). In this study, although small fractions of wax were extracted from RS, NG, and SB at 0.57%, 0.61%, and 1.69%, respectively, dewaxing causes changes in the plant compositions and their functional groups and promotes dissociations of lignocellulose fibrils. Additionally, dewaxing of biomass samples increased reducing sugar by 1.17-, 1.04-, and 1.35-fold in RS, NG, and SB, respectively. The ethanol yield increased by 1.11-, 1.05-, and 1.23-fold after wax removal from RS, NG, and SB, respectively. The chemical composition profiles of the waxes obtained from RS, NG, and SB showed FAME, alcohol, and alkane as the major groups. According to the conversion rate of the dewaxing process and ethanol fermentation, the wax outputs of RS, NG, and SB are 5.64, 17.00, and 6.00 kg/ton, respectively. The current gasoline price is around USD 0.903 per liter, making ethanol more expensive than gasoline. Therefore, in order to reduce the cost of ethanol in the biorefinery industry, other valuable products (such as wax) should be considered for commercialization. The cost of natural wax ranges from USD 2 to 22 per kilogram, depending on the source of the extracted wax. The wax yields obtained from RS, SB, and NG have the potential to increase profits in the biorefining process and could provide an opportunity for application in a wider range of downstream industries than just biofuels.
Collapse
|
11
|
Paulraj Gundupalli M, Cheng YS, Chuetor S, Bhattacharyya D, Sriariyanun M. Effect of dewaxing on saccharification and ethanol production from different lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 339:125596. [PMID: 34298246 DOI: 10.1016/j.biortech.2021.125596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Dewaxing effects on the pretreatment, saccharification and fermentation are rarely reported due to the low abundance of wax in lignocellulose. This study aimed to investigate the effect of wax removal on saccharification and ethanol yield from lignocellulose by using Rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). The wax contents of 0.56%, 1.7%, and 0.6% were obtained from RS, NG and SB after the wax extraction, respectively. The alkaline pretreatment was applied in combination with dewaxing to decipher the synergistic effect of these treatments. Dewaxing and alkaline pretreatment of lignocellulosic biomass showed changes in the plant compositions. Removal of wax from RS, NG and SB showed significant changes in the surface morphology and functional groups. A higher yield of sugars and ethanol was observed in dewaxed and alkaline pretreated samples. The ethanol yields of 75.4%, 89.85%, and 74% from RS, NG, and SB were obtained after fermentation, respectively.
Collapse
Affiliation(s)
- Marttin Paulraj Gundupalli
- Chemical and Process Engineering (CPE), The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand; Biorefinery and Process Automation Engineering Center (BPAEC), King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, Taiwan
| | - Santi Chuetor
- Biorefinery and Process Automation Engineering Center (BPAEC), King Mongkut's University of Technology North Bangkok, Bangkok, Thailand; Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | | | - Malinee Sriariyanun
- Chemical and Process Engineering (CPE), The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand; Biorefinery and Process Automation Engineering Center (BPAEC), King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.
| |
Collapse
|
12
|
Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass. Bioprocess Biosyst Eng 2021; 44:2331-2344. [PMID: 34195894 DOI: 10.1007/s00449-021-02607-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Inorganic salt pretreatment of lignocellulosic biomass has proven to be an efficient way to increase the efficiency of enzymatic saccharification. However, it is not clear that this improvement is the result of modification of the lignocellulosic substrate after pretreatment, or removal of inhibitor, or enhancement of cellulase or a combination of these events. Therefore, this study aimed to analyze the effects of inorganic salts on kinetics of cellulase enzymes (celluclast 1.5L and accellerase 1500). Two substrates rich in cellulose content [carboxymethylcellulose (CMC), avicel (AV)] and lignocellulose substrate [sugarcane bagasse (SB)] were considered. The enzymatic saccharification was carried with and without the addition of inorganic salts (NaCl and KCl) at 0.5 M and 1.0 M concentration. The kinetic parameters, Km and Vm, were determined to mechanically understand the pattern of inhibition and enhancement of inorganic salts on enzymatic saccharification. The kinetics parameters of celluclast 1.5L and accellerase 1500 for hydrolysis of CMC and AV with NaCl showed uncompetitive inhibition. Whereas, influences of KCl on both cellulase were differentiated to function in inhibition or enhancement modes when challenged with different substrates. On the other hand, enzymatic hydrolysis efficiencies of SB using both cellulases were enhanced under addition of NaCl and KCl, by increasing Vm of celluclast 1.5L from 0.303 to 0.635 mg/mL min (0.5 M KCl) and accellerase 1500 from 0.383 to 0.719 mg/mL min (1.0 M NaCl). The details of kinetic analysis in this work revealed the mechanism of inorganic salts on cellulase kinetics to be involved in substrate modification and removal of inhibitor.
Collapse
|
13
|
Faizal A, Sembada AA, Priharto N. Production of bioethanol from four species of duckweeds ( Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza) through optimization of saccharification process and fermentation with Saccharomyces cerevisiae. Saudi J Biol Sci 2021; 28:294-301. [PMID: 33424309 PMCID: PMC7785427 DOI: 10.1016/j.sjbs.2020.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 11/17/2022] Open
Abstract
Duckweeds are promising potential sources for bioethanol production due to their high starch content and fast growth rate. We assessed the potential for four species, Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza, for bioethanol production. We also optimized a possible production procedure, which must include saccharification to convert starch to soluble sugars that can serve as a substrate for fermentation. Duckweeds were cultivated on 10% Hoagland solution for 12 days, harvested, dried, homogenized, and dissolved in solutions that were tested as substrates for bioethanol production by the yeast Saccharomyces cerevisiae. First, we optimized the saccharification process, including the ideal ratio of the enzyme used to convert starch into simple sugars. The greatest starch-to-sugar conversion was obtained when the α-amylase and amyloglucosidase was 2:1 (v/v) and with a 24 h incubation period at 50 °C. After saccharification, the solutions were incubated with the yeast, S. cerevisiae. The fermentation process was carried out for 48 h with 10% (v/v) yeast inoculum. The ethanol content was maximal approximately 24 h after the start of incubation, and the sugars and protein were minimal, with little change over the next 24 h. The final ethanol concentration obtained were 0.19, 0.17, 0.19, and 0.16 g ethanol/g dry biomass for L. punctata, L. aequinoctialis, S. polyrrhiza, and W. arrhiza respectively. We suggest that these four species of duckweed have the potential to serve sources of bioethanol and hope that the procedure we have optimized proves useful in the endeavour.
Collapse
Affiliation(s)
- Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia
- Corresponding author.
| | - Anca Awal Sembada
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia
| | - Neil Priharto
- Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia
| |
Collapse
|
14
|
Gönen Ç, Deveci EÜ, Akter Önal N. Evaluation of biomass pretreatment to optimize process factors for different organic acids via Box-Behnken RSM method. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2021; 23:2016-2027. [PMID: 35194402 PMCID: PMC8295973 DOI: 10.1007/s10163-021-01276-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
UNLABELLED Biomass, as renewable energy source, is of importance to investigate to extend the conversion yield by microorganism. Because of lignocellulosic structure, biomass must be pretreated with a process, frequently inorganic acid has to be used with a problem of hazardous byproducts. Organic acid pretreatment is an efficient alternative to be investigated. Sugar beet pulp, as an agro-industrial residue of microorganism, can be utilized by pretreatment, which is usually a costly process. Pretreatment with organic acids creates a great opportunity to convert the process into more economic and effective. Moreover, pressure conditions significantly increase the yield of biodegradable sugar content. In this study, different organic acids of maleic, fumaric, oxalic, and acetic acid pretreatment was investigated to pretreatment of sugar beet pulp, which came vast amount from factories, under pressure and non-pressure conditions via Box-Behnken method to estimate optimum point of acid ratio (1, 3, 5%), time (10, 27.5, 45 min), and solid ratio factors (3, 6.5, 10%) for highest degradation. Results were also evaluated economically. As a result of the experiments, it was observed that acetic acid gave the best result with 409.16 g/L total sugar concentration than the other organic acids. The highest TS concentration of maleic, oxalic, and fumaric acid were 97.26, 97.85, and 91.37 g/L, respectively, under pressure. According to economical evaluation, owing to lower market price and highest TS formation yield, pretreatment cost of acetic acid pretreatment was found averagely 1.51 $/gTS under pressure conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10163-021-01276-7.
Collapse
Affiliation(s)
- Çağdaş Gönen
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University Campus, 51240 Niğde, Turkey
| | - Ece Ümmü Deveci
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University Campus, 51240 Niğde, Turkey
| | - Nagehan Akter Önal
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University Campus, 51240 Niğde, Turkey
| |
Collapse
|
15
|
Deconstruction of banana peel for carbohydrate fractionation. Bioprocess Biosyst Eng 2020; 44:297-306. [PMID: 32948889 DOI: 10.1007/s00449-020-02442-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
The deconstruction of banana peel for carbohydrate recovery was performed by sequential treatment (acid, alkaline, and enzymatic). The pretreatment with citric acid promoted the extraction of pectin, resulting in a yield of 8%. In addition, xylose and XOS, 348.5 and 17.3 mg/g xylan, respectively, were also quantified in acidic liquor as a result of partial depolymerization of hemicellulose. The spent solid was pretreated with alkaline solution (NaOH or KOH) for delignification and release of residual carbohydrates from the hemicellulose. The yields of xylose and arabinose (225.2 and 174.0 mg/g hemicellulose) were approximately 40% higher in the pretreatment with KOH, while pretreatment with NaOH promoted higher delignification (67%), XOS yield (32.6 mg/g xylan), and preservation of cellulosic fraction. Finally, the spent alkaline solid, rich in cellulose (76%), was treated enzymatically to release glucose, reaching the final concentration of 28.2 g/L. The mass balance showed that through sequential treatment, 9.9 g of xylose, 0.5 g of XOS, and 8.2 g of glucose were obtained from 100 g of raw banana peels, representing 65.8% and 46.5% conversion of hemicellulose and cellulose, respectively. The study of the fractionation of carbohydrates in banana peel proved to be a useful tool for valorization, mainly of the hemicellulose fraction for the production of XOS and xylose with high value applications in the food industry.
Collapse
|
16
|
Ramaiah SK, Thimappa GS, Nataraj LK, Dasgupta P. Optimization of oxalic acid pre-treatment and enzymatic saccharification in Typha latifolia for production of reducing sugar. J Genet Eng Biotechnol 2020; 18:28. [PMID: 32648065 PMCID: PMC7347720 DOI: 10.1186/s43141-020-00042-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022]
Abstract
Background Plants with high biomass can be manipulated for their reducing sugar content which ultimately upon fermentation produces ethanol. This concept was used to enhance the production of reducing sugar from cattail (Typha latifolia) by oxalic acid (OAA) pre-treatment followed by enzymatic saccharification. Result The optimum condition of total reducing sugar released from OAA pre-treatment was found to be 22.32 mg/ml (OAA—1.2%; substrate concentration (SC)—6%; reaction time (RT)—20 min) using one variable at a time (OVAT). Enzymatic saccharification yielded 45.21 mg/ml of reducing sugar (substrate concentration (SC)—2.4%; enzymatic dosage—50 IU/g; pH 7.0; temp—50 °C) using response surface methodology (RSM). Conclusion We conclude that Typha can be used as a potential substrate for large-scale biofuel production, employing economical bioprocessing strategies.
Collapse
Affiliation(s)
- Sunil Kodishetty Ramaiah
- Bioenergy Lab, Department of Biotechnology, Bangalore University, Bengaluru, Karnataka, 560056, India
| | | | | | - Proteek Dasgupta
- Department of Zoology, Bangalore University, Bengaluru, Karnataka, 560056, India
| |
Collapse
|
17
|
Zhou L, Fang D, Wang M, Li M, Li Y, Ji N, Dai L, Lu H, Xiong L, Sun Q. Preparation and characterization of waxy maize starch nanocrystals with a high yield via dry-heated oxalic acid hydrolysis. Food Chem 2020; 318:126479. [DOI: 10.1016/j.foodchem.2020.126479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
|
18
|
Bukhari NA, Jahim JM, Loh SK, Harun S, Nasrin AB. Organic acid pretreatment of oil palm trunk biomass for fermentable xylose production. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/736/2/022010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Application of Michaelis–Menten in the kinetics of oil palm frond enzymatic hydrolysis for ferulic acid production. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Autocatalytic hydrothermal pretreatment by recycling byproduct organic acids to directionally depolymerize cassava straw. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Lyu H, Zhang J, Zhou J, Lv C, Geng Z. The byproduct-organic acids strengthened pretreatment of cassava straw: Optimization and kinetic study. BIORESOURCE TECHNOLOGY 2019; 290:121756. [PMID: 31295573 DOI: 10.1016/j.biortech.2019.121756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The subcritical liquid hot water (SLHW) pretreatment could be strengthened by its byproduct-organic acids, such as acetic acid (AA), lactic acid (LA) and formic acid (FA). The effects of these three acids on the pretreatment were investigated by the yield of fermentable sugars. The results showed that the addition of acids could effectively catalyze the hydrolysis of hemicellulose to C5 sugars and contribute to the subsequent enzymatic hydrolysis of cellulose. It was found that all three organic acids promote xylose production, and the copresence of AA + LA could limit the content of the fermentation inhibitor. The optimum proportion of three organic acids were 0.33 wt%AA + 0.45 wt%LA + 0.20 wt%FA, and the yield of C5 sugars after pretreatment and C6 sugar after enzymatic hydrolysis were 89.06% and 78.56%, respectively. The kinetic studies proved that byproduct-organic acids could promote xylose production and inhibit its further degradation and explained that xylose would accumulate at lower temperatures.
Collapse
Affiliation(s)
- Huisheng Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jia Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinyi Zhou
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Chunliu Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhongfeng Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
22
|
Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides. Appl Biochem Biotechnol 2018; 186:816-833. [DOI: 10.1007/s12010-018-2775-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
|
23
|
Cheng B, Zhang X, Lin Q, Xin F, Sun R, Wang X, Ren J. A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:324. [PMID: 30534202 PMCID: PMC6280388 DOI: 10.1186/s13068-018-1325-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/29/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Dilute oxalic acid pretreatment has drawn much attention because it could selectively hydrolyse the hemicellulose fraction during lignocellulose pretreatment. However, there are few studies focusing on the recovery of oxalic acid. Here, we reported a new approach to recycle oxalic acid used in pretreatment via ethanol extraction. RESULTS The highest xylose content in hydrolysate was 266.70 mg xylose per 1 g corncob (85.0% yield), which was achieved using 150 mmol/L oxalic acid under the optimized treatment condition (140 °C, 2.5 h). These pretreatment conditions were employed to the subsequent pretreatment using recycled oxalic acid. Oxalic acid in the hydrolysate could be recycled according to the following steps: (1) water was removed via evaporation and vacuum drying, (2) ethanol was used to extract oxalic acid in the remaining mixture, and (3) oxalic acid and ethanol were separated by reduced pressure evaporation. The total xylose yields could be stabilized by intermittent adding oxalic acid, and the yields were in range of 46.7-64.3% in this experiment. CONCLUSIONS This sustainable approach of recycling and reuse of oxalic acid has a significant potential application for replacing traditional dilute mineral acid pretreatment of lignocellulose, which could contribute to reduce CO2 emissions and the cost of the pretreatment.
Collapse
Affiliation(s)
- Banggui Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Xiao Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Fengxue Xin
- Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211800 China
| | - Runcang Sun
- Centre for Lignocellulose Science and Engineering, and Liaoning Key Laboratory Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| |
Collapse
|