1
|
Jafari MS, Hejazi P. Poly(3-hydroxybutyrate) production using supplemented corn-processing byproducts through Cupriavidus necator via solid-state fermentation: Cultivation on flask and bioreactor scale. J Biotechnol 2024; 392:1-10. [PMID: 38897291 DOI: 10.1016/j.jbiotec.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The widespread adoption of Poly(3-hydroxybutyrate) (PHB) encounters challenges due to its higher production costs compared to conventional plastics. To overcome this obstacle, this study investigates the use of low-cost raw materials and optimized production methods. Specifically, food processing byproducts such as corn germ and corn bran were utilized as solid substrates through solid-state fermentation, enriched with molasses and cheese whey. Employing the One Factor at a Time technique, we examined the effects of substrate composition, temperature, initial substrate moisture, molasses, and cheese whey on PHB production at the flask scale. Subsequently, experiments were conducted at the bioreactor scale to evaluate the influence of aeration. In flask-scale experiments, the highest PHB yield, reaching 4.1 (g/kg Initial Dry Weight Substrate) (IDWS) after 72 hours, was achieved using a substrate comprising a 1:1 mass ratio of corn germ to corn bran supplemented with 20 % (v/w) cheese whey. Furthermore, PHB production in a 0.5-L packed-bed bioreactor yielded a maximum of 8.4 (g/kg IDWS), indicating a more than 100 % increase in yield after 72 hours, with optimal results achieved at an aeration rate of 0.5 l/(kg IDWS. h).
Collapse
Affiliation(s)
- Mohammad Sadegh Jafari
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parisa Hejazi
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
2
|
Lhamo P, Mahanty B. Impact of Acetic Acid Supplementation in Polyhydroxyalkanoates Production by Cupriavidus necator Using Mixture-Process Design and Artificial Neural Network. Appl Biochem Biotechnol 2024; 196:1155-1174. [PMID: 37166651 DOI: 10.1007/s12010-023-04567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The trend in bioplastic application has increased over the years where polyhydroxyalkanoates (PHAs) have emerged as a potential candidate with the advantage of being bio-origin, biodegradable, and biocompatible. The present study aims to understand the effect of acetic acid concentration (in combination with sucrose) as a mixture variable and its time of addition (process variable) on PHA production by Cupriavidus necator. The addition of acetic acid at a concentration of 1 g l-1 showed a positive influence on biomass and PHA yield; however, the further increase had a reversal effect. The addition of acetic acid at the time of incubation showed a higher PHA yield, whereas maximum biomass was achieved when acetic acid was added after 48 h. Genetic algorithm (GA) optimized artificial neural network (ANN) was used to model PHA concentration from mixture-process design data. Fitness of the GA-ANN model (R2: 0.935) was superior when compared to the polynomial model (R2: 0.301) from mixture design. Optimization of the ANN model projected 2.691 g l-1 PHA from 7.245 g l-1 acetic acid, 12.756 g l-1 sucrose, and the addition of acetic acid at the time of incubation. Sensitivity analysis indicates the inhibitory effect of all the predictors at higher levels. ANN model can be further used to optimize the variables while extending the bioprocess to fed-batch operation.
Collapse
Affiliation(s)
- Pema Lhamo
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | |
Collapse
|
3
|
Nagajothi K, Murugesan AG. Polyhydroxy butyrate biosynthesis by Azotobacter chroococcum MTCC 3858 through groundnut shell as lignocellulosic feedstock using resource surface methodology. Sci Rep 2023; 13:10743. [PMID: 37400483 DOI: 10.1038/s41598-022-15672-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 07/05/2023] Open
Abstract
This work appraises the prospect of utilising groundnut shell hydrolysate as a feedstock used for PHB biosynthesis by Azotobacter chroococcum MTCC 3853 under SMF conditions. Sugar reduction: untreated and pretreated 20% H2SO4 (39.46 g/l and 62.96 g/l, respectively), untreated and enzymatic hydrolysis (142.35 mg/g and 568.94 mg/g). The RSM-CCD optimization method was used to generate augment PHB biosynthesis from groundnut shell hydrolysate (30 g/l), ammonium sulphate (1.5 g/l), ammonium chloride (1.5 g/l), peptone (1.5 g/l), pH 7, 30 °C, and a 48 h incubation time. The most convincing factors (p < 0.0001), coefficient R2 values of biomass 0.9110 and PHB yield 0.9261, PHB production, highest biomass (17.23 g/l), PHB Yield(11.46 g/l), and 66.51 (wt% DCW) values were recorded. The control (untreated GN) PHB yield value of 2.86 g/l increased up to fourfold in pretreated GN. TGA results in a melting range in the peak perceived at 270.55 °C and a DSC peak range of 172.17 °C, correspondingly. According to the results, it furnishes an efficient agricultural waste executive approach by diminishing the production expenditure. It reinforces the production of PHB, thereby shrinking our reliance on fossil fuel-based plastics.
Collapse
Affiliation(s)
- Kasilingam Nagajothi
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India.
- Dept. of Microbiology, K.R. College of Arts and Science, Kovilpatti, 628503, Tamil Nadu, India.
| | - A G Murugesan
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India
| |
Collapse
|
4
|
Psaki O, Athanasoulia IGI, Giannoulis A, Briassoulis D, Koutinas A, Ladakis D. Fermentation development using fruit waste derived mixed sugars for poly(3-hydroxybutyrate) production and property evaluation. BIORESOURCE TECHNOLOGY 2023; 382:129077. [PMID: 37088428 DOI: 10.1016/j.biortech.2023.129077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Free sugars from fruit wastes were evaluated for the production of poly(3-hydroxybutyrate) (PHB) in Paraburkholderia sacchari fed-batch bioreactor fermentations. Different initial sugar concentration, carbon to inorganic phosphorus (C/IP) ratio, IP addition during feeding and volumetric oxygen transfer coefficient (kLa) were evaluated to promote PHB production. The highest intracellular PHB accumulation (66.6%), PHB concentration (108.3 g/L), productivity (3.28 g/L/h) and yield (0.33 g/g) were achieved at 40 g/L initial sugars, C/IP 26.5, 202.6 h-1kLa value and 20% IP supplementation in the feeding solution. The effect of different cell's harvesting time on PHB properties showed no influence in weight average molecular weight and thermal properties. The harvest time influenced the tensile strength that was reduced from 28.7 MPa at 22 h to 13.3 MPa at 36 h. The elongation at break and Young's modulus were in the range 3.6-14.8% and 830-2000 MPa, respectively.
Collapse
Affiliation(s)
- Olga Psaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioanna-Georgia I Athanasoulia
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anastasios Giannoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Demetres Briassoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
5
|
Retnam B, Balamirtham H, Aravamudan K. Maximizing Adsorption Involving Three Solutes on Enhanced Adsorbents Using the Mixture-Process Variable Design. ACS OMEGA 2022; 7:19561-19578. [PMID: 35721906 PMCID: PMC9202268 DOI: 10.1021/acsomega.2c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Unmodified (UN), acid-treated (AT) and microwave-acid-treated (MAT) activated carbons were optimized for their solute removal efficacies by adjusting feed mixture compositions and process conditions. Acetaminophen, benzotriazole, and caffeine were used either individually or as binary/ternary mixtures in this study. The process conditions considered were the pH, adsorbent dosage, and type of adsorbent. Experimental responses such as total adsorbent loading (q total) and total percentage removal (PRtotal) were fitted with empirical models that had high adjusted R 2 (>0.95), insignificant lack of fit (p-value > 0.22), and high model predictive R 2 (>0.93). Mixture compositions of the feed were found to interact significantly not only among themselves but with process variables as well. Hence, adsorption optimization must simultaneously consider mixture as well as process variables. The conventional response surface methodology for mixtures, termed as ridge analysis, optimizes mixture compositions at specified values of process variables. An improved steepest ascent method which considers mixture and process variables simultaneously was developed in this work. This could track the path of steepest ascent toward globally optimal settings, from any arbitrary starting point within the design space. For the chosen adsorbent, optimal settings for feed mixture compositions and pH were found to change along this steepest ascent path. The feed compositions, pH, and adsorbent dosage identified for maximum adsorbent utilization were usually quite different from those identified for maximum total percentage removal. When both these objectives were optimized together, the most favorable compromise solutions for q total and PRtotal were, respectively, 264.1 mg/g and 43.4% for UN, 294.9 mg/g and 52.5% for AT, and 336.6 mg/g and 55.9% for MAT.
Collapse
Affiliation(s)
- Bharathi
Ganesan Retnam
- Department
of Chemical Engineering, Indian Institute
of Technology Madras, Chennai 600036, India
- Department
of Chemical Engineering, KPR Institute of
Engineering and Technology, Coimbatore 641 407, India
| | - Hariharan Balamirtham
- Department
of Chemical Engineering, Indian Institute
of Technology Madras, Chennai 600036, India
| | - Kannan Aravamudan
- Department
of Chemical Engineering, Indian Institute
of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
HOU Y, ZHAO P, ZHANG F, YANG S, RADY A, WIJEWARDANE NK, HUANG J, LI M. Fourier-transform infrared spectroscopy and machine learning to predict amino acid content of nine commercial insects. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yinchen HOU
- Henan University of Animal Husbandry and Economy, China
| | | | - Fan ZHANG
- China Agricultural University, People’s Republic of China
| | - Shengru YANG
- Henan University of Animal Husbandry and Economy, China
| | | | | | | | - Mengxing LI
- University of Nebraska-Lincoln, USA; University of Nebraska-Lincoln, USA
| |
Collapse
|
7
|
Wang J, Huang J, Guo H, Jiang S, Qiao J, Chen X, Qu Z, Cui W, Liu S. Effects of different sodium salts and nitrogen sources on the production of 3-hydroxybutyrate and polyhydroxybutyrate by Burkholderia cepacia. BIORESOUR BIOPROCESS 2021; 8:64. [PMID: 38650234 PMCID: PMC10992559 DOI: 10.1186/s40643-021-00418-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
The effects of NaCl, Na2SO4, Na2HPO4, and Na3C6H5O7 on the production of 3-hydroxybutyrate, polyhydroxybutyrate, and by-products by Burkholderia cepacia. Proper addition of Na3C6H5O7 can significantly promote the production of 3-hydroxybutyric acid and polyhydroxybutyrate. The concentration, productivity, and yield of 3-hydroxybutyrate were increased by 48.2%, 55.6%, and 48.3% at 16 mM Na3C6H5O7. The increases of 80.1%, 47.1%, and 80.0% in the concentration, productivity, and yield of polyhydroxybutyrate were observed at 12 mM Na3C6H5O7. Na2SO4 and Na2HPO4 also have positive effects on the production capacity of 3-hydroxybutyrate and polyhydroxybutyrate within a certain range of concentration. NaCl is not conducive to the improvement of fermentation efficiency. Compared with a single nitrogen source, a mixed nitrogen source is more conducive to enhancing the production of 3-hydroxybutyrate and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
- The Center for Biotechnology & Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Huanyu Guo
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shaoming Jiang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Jinyue Qiao
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Xingyu Chen
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Zixuan Qu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
- School of Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wanyue Cui
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| |
Collapse
|
8
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
9
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose. Bioprocess Biosyst Eng 2020; 44:185-193. [PMID: 32895870 DOI: 10.1007/s00449-020-02434-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic that is comparable with many petroleum-based plastics in terms of mechanical properties and is highly biocompatible. Lignocellulosic biomass conversion into PHB can increase profit and add sustainability. Glucose, xylose and arabinose are the main monomer sugars derived from upstream lignocellulosic biomass processing. The sugar mixture ratios may vary greatly depending on the pretreatment and enzymatic hydrolysis conditions. Paraburkholderia sacchari DSM 17165 is a bacterium strain that can convert all three sugars into PHB. In this study, fed-batch mode was applied to produce PHB on three sugar mixtures (glucose:xylose:arabinose = 4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively. The results provide references for process control to maximize PHB production from real sugar streams derived from corn fibre.
Collapse
|
11
|
Zhang X, Tang H, Chen G, Qiao L, Li J, Liu B, Liu Z, Li M, Liu X. Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03336-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|