1
|
de Alencar Almeida M, Conceição KS, Teixeira JPM, Pan NC, Alves LPS, Nakazato G, Donatti L, Souza EM, Camilios-Neto D, Vignoli JA. Rhamnolipids production in semi-submerged static-cultivation using agar cubes as solid substrate. World J Microbiol Biotechnol 2025; 41:183. [PMID: 40415040 DOI: 10.1007/s11274-025-04412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Surfactants are amphiphilic molecules with a worldwide billionaire market. Although chemical surfactants are the most available and commonly used, the microbiologically produced congeners have attracted attention due to their low toxicity, biodegradability, and high ecological acceptability. Among microbial surfactants rhamnolipids stand out, with high yields of production, excellent surface-active properties and great potential market. However, the application of these compounds is still limited mostly because of excessive production costs. This study presents a cost-effective process for rhamnolipids production by semi-submerged static-cultivation using agar cubes as substrate. A concentration of 50 g/L of rhamnolipids was reached in semi-submerged static-cultivation using agar cubes containing corn bran and soybean oil. Through this static process, besides avoiding foam, gradual release of nutrients provides a large increase in P. aeruginosa growth and consequently on rhamnolipids production.
Collapse
Affiliation(s)
- Mayara de Alencar Almeida
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Karen Stefany Conceição
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Nicole Caldas Pan
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Gerson Nakazato
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Lucélia Donatti
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Josiane A Vignoli
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
2
|
Lu J, Chen Z, Zhu H, Tang Q, Yang Z. Optimizing Rhamnolipid Performance by Modulating the Expression of Fatty Acid Synthesis Genes fabA and fabZ in Pseudomonas aeruginosa PAO1. Genes (Basel) 2025; 16:515. [PMID: 40428336 DOI: 10.3390/genes16050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Rhamnolipids (RLs) are biosurfactants with significant industrial and environmental potential, which physicochemical properties depend greatly on their fatty acyl chain composition. This study investigated the impact of genetically modulating the fatty acid synthesis genes fabA and fabZ on RL composition and functionality in Pseudomonas aeruginosa PAO1. METHODS AND RESULTS Using temperature-sensitive mutants and suppressor strains for these essential genes, we successfully engineered RLs with altered fatty acyl chain lengths and saturation levels. LC-MS/MS analyses showed that deletion and overexpression of fabA and fabZ significantly shifted RL fatty acid profiles. Functional analyses indicated that these structural changes markedly influenced RL emulsification activity and critical micelle concentration (CMC). CONCLUSIONS These findings demonstrate the feasibility of optimizing RL properties through targeted genetic manipulation, offering valuable insights for designing customized biosurfactants for diverse industrial and environmental applications.
Collapse
Affiliation(s)
- Junpeng Lu
- Systems Biology Laboratory, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenhua Chen
- Systems Biology Laboratory, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huiming Zhu
- Systems Biology Laboratory, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qinghai Tang
- Systems Biology Laboratory, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhili Yang
- Systems Biology Laboratory, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Sankhyan S, Kumar P, Pandit S, Kumar S, Ranjan N, Ray S. Biological machinery for the production of biosurfactant and their potential applications. Microbiol Res 2024; 285:127765. [PMID: 38805980 DOI: 10.1016/j.micres.2024.127765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The growing biotechnology industry has focused a lot of attention on biosurfactants because of several advantages over synthetic surfactants. These benefits include worldwide public health, environmental sustainability, and the increasing demand from sectors for environmentally friendly products. Replacement with biosurfactants can reduce upto 8% lifetime CO2 emissions avoiding about 1.5 million tons of greenhouse gas released into the atmosphere. Therefore, the demand for biosurfactants has risen sharply occupying about 10% (∼10 million tons/year) of the world production of surfactants. Biosurfactants' distinct amphipathic structure, which is made up of both hydrophilic and hydrophobic components, enables these molecules to perform essential functions in emulsification, foam formation, detergency, and oil dispersion-all of which are highly valued characteristic in a variety of sectors. Today, a variety of biosurfactants are manufactured on a commercial scale for use in the food, petroleum, and agricultural industries, as well as the pharmaceutical and cosmetic industries. We provide a thorough analysis of the body of knowledge on microbial biosurfactants that has been gained over time in this research. We also discuss the benefits and obstacles that need to be overcome for the effective development and use of biosurfactants, as well as their present and future industrial uses.
Collapse
Affiliation(s)
- Shivangi Sankhyan
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Prasun Kumar
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Fasalwadi, Sangareddy, Telangana 502294, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Nishant Ranjan
- University Center for Research and Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
4
|
Heidarzadeh MH, Amani H, Najafpour Darzi G. Accurate investigation of the mechanism of rhamnolipid biosurfactant effects on food waste composting: A comparison of in-situ and ex-situ techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116090. [PMID: 36049311 DOI: 10.1016/j.jenvman.2022.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The long process time and low product quality are major challenges in the composting process. To overcome the above challenges, the effects of produced biosurfactants on composting were investigated as a biological model. Pseudomonas aeruginosa IBRC-M 11180 inoculum and its supernatant were used as in-situ and ex-situ treatments in the composting process, respectively. The results showed that the presence of rhamnolipid biosurfactants in the composting process could improve many parameters such as maximum temperature, electrical conductivity (EC), cation exchange capacity (CEC), C/N, and germination index (GI). The GI value above 80% was observed for in-situ and ex-situ reactors on 12th day, while for the control was observed on 18th day, which indicates the significant effects of rhamnolipids on process time reduction. The C/N ratios of final compost for ex-situ, in-situ, and control reactors were 12.83, 13.27, and 17.05, respectively, which indicates the rhamnolipids also improves the quality of the final product. To better understand the performance of the rhamnolipids in the composting, wettability changes of the compost surface were evaluated. Our results show that the produced rhamnolipids altered the waste wettability from intermediate wet (θ = 85°) to water-wet (θ = 40°). It can be concluded that the presence of biosurfactants in composting leads to an increase in the contact surface area of microorganisms with nutrient sources and consequently improves the composting process. Furthermore, comparative studies showed that the in-situ treatment has better effects on composting, thus it can be an economically significant achievement because of the high cost of ex-situ treatment.
Collapse
Affiliation(s)
- Mohammad Hossein Heidarzadeh
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hossein Amani
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
5
|
Achieving “Non-Foaming” Rhamnolipid Production and Productivity Rebounds of Pseudomonas aeruginosa under Weakly Acidic Fermentation. Microorganisms 2022; 10:microorganisms10061091. [PMID: 35744608 PMCID: PMC9227327 DOI: 10.3390/microorganisms10061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
The rhamnolipid production of Pseudomonas aeruginosa has been impeded by its severe foaming; overcoming the bottleneck of foaming has become the most urgent requirement for rhamnolipid production in recent decades. In this study, we performed rhamnolipid fermentation under weakly acidic conditions to address this bottleneck. The results showed that the foaming behavior of rhamnolipid fermentation broths was pH-dependent with the foaming ability decreasing from 162.8% to 28.6% from pH 8 to 4. The “non-foaming” rhamnolipid fermentation can be realized at pH 5.5, but the biosynthesis of rhamnolipids was significantly inhibited. Further, rhamnolipid yield rebounded from 8.1 g/L to 15.4 g/L after ultraviolet and ethyl methanesulfonate compound mutagenesis. The mechanism study showed that the species changes of rhamnolipid homologs did not affect the foaming behavior of the fermentation but had a slight effect on the bioactivity of rhamnolipids. At pH 8.0 to 5.0, increased surface tension, decreased viscosity and zeta potential, and aggregation of rhamnolipid molecules contributed to the “non-foaming” rhamnolipid fermentation. This study provides a promising avenue for the “non-foaming” rhamnolipid fermentation and elucidates the mechanisms involved, facilitating the understanding of pH-associated foaming behavior and developing a more efficient strategy for achieving rhamnolipid production.
Collapse
|
6
|
Blunt W, Blanchard C, Morley K. Effects of environmental parameters on microbial rhamnolipid biosynthesis and bioreactor strategies for enhanced productivity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Valdés-Velasco LM, Favela-Torres E, Théatre A, Arguelles-Arias A, Saucedo-Castañeda JG, Jacques P. Relationship between lipopeptide biosurfactant and primary metabolite production by Bacillus strains in solid-state and submerged fermentation. BIORESOURCE TECHNOLOGY 2022; 345:126556. [PMID: 34923080 DOI: 10.1016/j.biortech.2021.126556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The relationship between lipopeptide and primary metabolite production by Bacillus spp. in solid-state fermentation (SSF) and submerged fermentation (SmF) was evaluated. Four wild-type strains and one mutant strain (unable to develop biofilm) were assessed in SSF and SmF, using a defined medium and polyurethane foam as inert support for SSF. Strain ATCC 21,332 in SSF presented the highest lipopeptide production. The wild-type strains revealed higher lipopeptide and biomass production and lower synthesis of primary metabolites in SSF than in SmF. However, the mutant strain showed a slightly higher production of primary metabolites in SSF than in SmF. Carbon balance analysis showed that the carbon flux was mainly directed to lipopeptides in SSF, whereas in SmF, it was directed to the production of primary metabolites and the carbon flux to lipopeptides is inversely related to primary metabolites in both types of cultures.
Collapse
Affiliation(s)
- Luisa Marcela Valdés-Velasco
- Department of Biotechnology, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340, Mexico City, Mexico
| | - Ernesto Favela-Torres
- Department of Biotechnology, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340, Mexico City, Mexico.
| | - Ariane Théatre
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté d́ Agronomie, 2B, B-5030 Gembloux, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté d́ Agronomie, 2B, B-5030 Gembloux, Belgium
| | - Jesús Gerardo Saucedo-Castañeda
- Department of Biotechnology, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340, Mexico City, Mexico
| | - Philippe Jacques
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté d́ Agronomie, 2B, B-5030 Gembloux, Belgium
| |
Collapse
|
8
|
Process Development in Biosurfactant Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:195-233. [DOI: 10.1007/10_2021_195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor. Bioprocess Biosyst Eng 2021; 45:309-319. [PMID: 34767073 DOI: 10.1007/s00449-021-02661-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
Biosurfactants are non-toxic, surface-active biomolecules capable of reducing surface tension (ST) and emulsifying interface at a comparably lower concentration than commercial surfactants. Yet, poor yield, costlier substrates, and complex cultivation processes limit their commercial applications. This study focuses on producing biosurfactants by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor systems using waste cooking oil (WCO) as the sole carbon source. The batch study showed a 92% of WCO biodegradation ability of P. aeruginosa producing 11 g L-1 of biosurfactant. To enhance this biosurfactant production, a fed-batch oil feeding strategy was opted to extend the stationary phase of the bacterium and minimize the effects of substrate deprivation. An enhanced biosurfactant production of 16 g L-1 (i.e. 1.5 times of batch study) was achieved at a feed rate of 5.7 g L-1d-1 with almost 94% of WCO biodegradation activity. The biosurfactant was characterized as rhamnolipid using Fourier transform infrared spectroscopy (FTIR), and its interfacial characterization showed ST reduction to 29 ± 1 mN m-1 and effective emulsification stability at pH value of 4, temperature up to 40 °C and salinity up to 40 g L-1. The biosurfactant exhibited antibacterial activity with minimum inhibitory concentration (MIC) values of 100 µg mL-1 and 150 µg mL-1 for pathogenic E. hirae and E. coli, respectively. These findings suggest that biodegradation of WCO by P. aeruginosa in a fed-batch cultivation strategy is a potential alternative for the economical production of biosurfactants, which can be further explored for biomedical, cosmetics, and oil washing/recovery applications.
Collapse
|
10
|
Gong Z, Yang G, Che C, Liu J, Si M, He Q. Foaming of rhamnolipids fermentation: impact factors and fermentation strategies. Microb Cell Fact 2021; 20:77. [PMID: 33781264 PMCID: PMC8008553 DOI: 10.1186/s12934-021-01516-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/11/2021] [Indexed: 11/25/2022] Open
Abstract
Rhamnolipids have recently attracted considerable attentions because of their excellent biosurfactant performance and potential applications in agriculture, environment, biomedicine, etc., but severe foaming causes the high cost of production, restraining their commercial production and applications. To reduce or eliminate the foaming, numerous explorations have been focused on foaming factors and fermentation strategies, but a systematic summary and discussion are still lacking. Additionally, although these studies have not broken through the bottleneck of foaming, they are conducive to understanding the foaming mechanism and developing more effective rhamnolipids production strategies. Therefore, this review focuses on the effects of fermentation components and control conditions on foaming behavior and fermentation strategies responded to the severe foaming in rhamnolipids fermentation and systematically summarizes 6 impact factors and 9 fermentation strategies. Furthermore, the potentialities of 9 fermentation strategies for large-scale production are discussed and some further strategies are suggested. We hope this review can further facilitate the understanding of foaming factors and fermentation strategies as well as conducive to developing the more effective large-scale production strategies to accelerate the commercial production process of rhamnolipids.![]()
Collapse
Affiliation(s)
- Zhijin Gong
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Ge Yang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Chengchuan Che
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Jinfeng Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Meiru Si
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Qiuhong He
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China.
| |
Collapse
|
11
|
Varjani S, Rakholiya P, Yong Ng H, Taherzadeh MJ, Hao Ngo H, Chang JS, Wong JWC, You S, Teixeira JA, Bui XT. Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. BIORESOURCE TECHNOLOGY 2021; 319:124213. [PMID: 33254448 DOI: 10.1016/j.biortech.2020.124213] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Bio-based rhamnolipid production from waste streams is gaining momentum nowadays because of increasing market demand, huge range of applications and its economic and environment friendly nature. Rhamnolipid type biosurfactants are produced by microorganisms as secondary metabolites and have been used to reduce surface/interfacial tension between two different phases. Biosurfactants have been reported to be used as an alternative to chemical surfactants. Pseudomonas sp. has been frequently used for production of rhamnolipid. Various wastes can be used in production of rhamnolipid. Rhamnolipids are widely used in various industrial applications. The present review provides information about structure and nature of rhamnolipid, production using different waste materials and scale-up of rhamnolipid production. It also provides comprehensive literature on various industrial applications along with perspectives and challenges in this research area.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Parita Rakholiya
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jose A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710057 Braga, Portugal
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|