1
|
Wright JD, Zhang T, Wang X, Riddell IA. Protein and peptide confinement within metal-organic materials. Chem Commun (Camb) 2025; 61:7945-7959. [PMID: 40364740 PMCID: PMC12076117 DOI: 10.1039/d5cc01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Metal-organic materials (MOMs), including both discrete metal-organic cages (MOCs) and metal-organic frameworks (MOFs), are emerging as promising materials for peptide and protein immobilisation. In particular, the ease of synthesis of MOMs alongside their well-defined and modular internal void spaces makes them appealing when considering routes to immobilise and stabilise peptides and proteins outside of biological environments whilst retaining their native activity. Here we review recent advances made in understanding the conformation of peptidic materials confined within MOMs and the enzymes@MOF constructs which show the best enzymatic performance. We highlight opportunities for further advancement in each of these areas and proposed that complementary approaches taken by the MOC and MOF communities might be fruitfully combined to advance our understanding and the development of peptide/protein@MOM applications.
Collapse
Affiliation(s)
- Jack D Wright
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Tongtong Zhang
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Xiangyu Wang
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Imogen A Riddell
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
2
|
Salari R, Rastegari B, Hashemi A, Farjadfar A, Masoomi MY. P53 Gene Therapy with ZIF-8 Metal-Organic Framework: A Platform in Cancer Gene Therapy. ACS OMEGA 2025; 10:10891-10902. [PMID: 40160747 PMCID: PMC11947847 DOI: 10.1021/acsomega.4c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Gene therapy holds great promise as a therapeutic approach for combating cancer, with the choice of gene delivery vector being a critical factor in its success. In recent years, metal-organic frameworks (MOFs) have emerged as valuable tools for intracellular plasmid delivery in this field. This study aimed to encapsulate plasmid DNA encoding the TP53 tumor suppressor gene (pEGFP-N1-TP53) within zeolitic imidazolate framework-8 (ZIF-8) MOFs and ZIF-8-PEI. Subsequently, the transfection efficiency and ability to induce cell death were assessed in MDA-MB-231, MCF-7, and HeLa cancer cells. A comparative analysis was conducted to evaluate the induction of cell death by pEGFP-N1-TP53@ZIF-8-PEI, pEGFP-N1-TP53-ZIF-8 nanoparticles, and Lipofectamine in the aforementioned cell lines. Additionally, an optimal condition for loading the plasmid into ZIF-8 was proposed. The findings from cell transfection assays, MTT assay, and flow cytometry revealed that both pEGFP-N1-TP53@ZIF-8-PEI and pEGFP-N1-TP53-ZIF-8 effectively delivered the plasmid to the cells. Notably, pEGFP-N1-TP53@ZIF-8-PEI exhibited significant results, inducing 77% cell death in the HeLa cell line and 73% in the MDA-MB-231 cell line. Our observations indicated that MDA-MB-231 and HeLa cells exhibited heightened responsiveness to TP53 gene therapy when delivered through ZIF-8-PEI and ZIF-8. Based on these findings, further investigation of pEGFP-N1-TP53@ZIF-8-PEI as a potential cancer therapeutic platform in other cancer cell types is warranted.
Collapse
Affiliation(s)
- Roya Salari
- Department
of Medical Biotechnology, Fasa University
of Medical Sciences, Fasa 7461686688, Iran
| | - Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Amin Hashemi
- Department
of Cell Biology, Faculty of Basic Sciences, Shahed University, Tehran 3319118651, Iran
| | - Akbar Farjadfar
- Department
of Medical Biotechnology, Fasa University
of Medical Sciences, Fasa 7461686688, Iran
| | | |
Collapse
|
3
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
4
|
Wang X, Singh SP, Zhang T, Andrews R, Lizio MG, Whitehead GFS, Riddell IA. Amino Functionality Enables Aqueous Synthesis of Carboxylic Acid-Based MOFs at Room Temperature by Biomimetic Crystallization. Inorg Chem 2024; 63:9801-9808. [PMID: 38743640 PMCID: PMC11134488 DOI: 10.1021/acs.inorgchem.4c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Samarth Pratap Singh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Tongtong Zhang
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Rebecca Andrews
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Maria Giovanna Lizio
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - George F. S. Whitehead
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Imogen A. Riddell
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
5
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
7
|
Weng Y, Li Y, Chen X, Song H, Zhao CX. Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Crit Rev Food Sci Nutr 2023; 64:7941-7958. [PMID: 36971126 DOI: 10.1080/10408398.2023.2193982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enzymes are widely used in the food industry due to their ability in improving the functional, sensory, and nutritional properties of food products. However, their poor stability under harsh industrial conditions and their compromised shelf-lives during long-term storage limit their applications. This review introduces typical enzymes and their functionality in the food industry and demonstrates spray drying as a promising approach for enzyme encapsulation. Recent studies on encapsulation of enzymes in the food industry using spray drying and the key achievements are summarized. The latest developments including the novel design of spray drying chambers, nozzle atomizers and advanced spray drying techniques are also analyzed and discussed in depth. In addition, the scale-up pathways connecting laboratory scale trials and industrial scale productions are illustrated, as most of the current studies have been limited to lab-scales. Enzyme encapsulation using spray drying is a versatile strategy to improve enzyme stability in an economical and industrial viable way. Various nozzle atomizers and drying chambers have recently been developed to increase process efficiency and product quality. A comprehensive understanding of the complex droplet-to-particle transformations during the drying process would be beneficial for both process optimization and scale-up design.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Shortall K, Otero F, Bendl S, Soulimane T, Magner E. Enzyme Immobilization on Metal Organic Frameworks: the Effect of Buffer on the Stability of the Support. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13382-13391. [PMID: 36286410 PMCID: PMC9648341 DOI: 10.1021/acs.langmuir.2c01630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Indexed: 05/04/2023]
Abstract
Metal organic frameworks (MOFs) have been used to encapsulate an array of enzymes in a rapid and facile manner; however, the stability of MOFs as supports for enzymes has not been examined in detail. This study examines the stability of MOFs with different compositions (Fe-BTC, Co-TMA, Ni-TMA, Cu-TMA, and ZIF-zni) in buffered solutions commonly used in enzyme immobilization and biocatalysis. Stability was assessed via quantification of the release of metals by inductively coupled plasma optical emission spectroscopy. The buffers used had varied effects on different MOF supports, with incubation of all MOFs in buffers resulting in the release of metal ions to varying extents. Fe-BTC was completely dissolved in citrate, a buffer that has a profound destabilizing effect on all MOFs analyzed, precluding its use with MOFs. MOFs were more stable in acetate, potassium phosphate, and Tris HCl buffers. The results obtained provide a guide for the selection of an appropriate buffer with a particular MOF as a support for the immobilization of an enzyme. In addition, these results identify the requirement to develop methods of improving the stability of MOFs in aqueous solutions. The use of polymer coatings was evaluated with polyacrylic acid (PAA) providing an improved level of stability. Lipase was immobilized in Fe-BTC with PAA coating, resulting in a stable biocatalyst with retention of activity in comparison to the free enzyme.
Collapse
Affiliation(s)
- Kim Shortall
- Department of Chemical Sciences, Bernal
Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fernando Otero
- Department of Chemical Sciences, Bernal
Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Simon Bendl
- Department of Chemical Sciences, Bernal
Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, Bernal
Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Edmond Magner
- Department of Chemical Sciences, Bernal
Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
9
|
Gan J, Ashraf SS, Bilal M, Iqbal HMN. Biodegradation of environmental pollutants using catalase-based biocatalytic systems. ENVIRONMENTAL RESEARCH 2022; 214:113914. [PMID: 35932834 DOI: 10.1016/j.envres.2022.113914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The synergistic combination of biocatalysts and nanomaterials provides a new interface of a robust biocatalytic system that can effectively remediate environmental pollutants. Enzymes, such as catalase-based constructs, impart the desired candidature for catalytic transformation processes and are potential alternatives to replace conventional remediation strategies that have become laborious and somewhat inefficient. Furthermore, the controlled or uncontrolled discharge of various emerging pollutants (EPs) into water bodies is equally proportional to the fast-growing population and extensive urbanization. EPs affect the entire living being and continuously deteriorate the environmental system, directly or indirectly. The occurrence of EPs (even released after partial treatments, but still in bioactive forms) disturbs ecological integrity. Due to the ineffectiveness of in-practice traditional remediation processes, new and robust treatment measures as effective and sustainable remediation have become a meaningful goal. In this context, special attention has been shifted to engineering an enzyme (catalase)-based biodegradation system with immense prospects in environmental cleanup. The unique synergistic combination of nanomaterials (having multifunctional attributes) with enzymes of interest makes them a state-of-the-art interface that can further ameliorate bio-catalysis and biodegradation performance. This review covers current research and scientific advancement in developing and deploying catalase-based biocatalytic systems to mitigate several EPs from the environment matrices. The biocatalytic features of catalase, along with the mechanistic insight into H2O2 neutralization, several nano-based materials loaded with catalase, including nanoparticles (NPs), carbon nanotubes (CNTs), metal-organic frameworks (MOFs), polymeric-based composites, oxime-functionalized cryo-gel disks, electro-spun nanofibrous membranes, and other hybrid materials have also been discussed with suitable examples.
Collapse
Affiliation(s)
- JianSong Gan
- School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China.
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCas), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
10
|
Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Jing Y, Li J, Zhang X, Sun M, Lei Q, Li B, Yang J, Li H, Li C, Yang X, Xie L. Catalase-integrated metal-organic framework with synergetic catalytic activity for colorimetric sensing. ENVIRONMENTAL RESEARCH 2022; 207:112147. [PMID: 34606841 DOI: 10.1016/j.envres.2021.112147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
As a platform for enzyme immobilization, metal-organic frameworks (MOFs) can protect enzyme activity from the interference of external adverse environment. Although these strategies have been proven to produce good results, little consideration has been given to the functional similarity of MOFs to the encapsulated enzyme. Here, catalase (CAT) was encapsulated in Fe-BTC with peroxidase-like activity to obtain a stable composite (CAT@Fe-BTC) with synergistic catalytic activity. Depending on the superior selectivity and high catalytic activity of CAT@Fe-BTC, colorimetric sensing for the detection of hydrogen peroxide and phenol was developed. This work demonstrates that the integration of functional MOFs with natural enzyme can be well applied to the construction of efficient catalysts.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China.
| | - Jingxin Li
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China
| | - Xuewei Zhang
- China Tobacco Guangdong Industrial Co.Ltd., Guangzhou, Guangdong province, China
| | - Mi Sun
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Qiang Lei
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Bin Li
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Jian Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Huaiqi Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Chunguang Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China.
| | - Xingyou Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| | - Liangwen Xie
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| |
Collapse
|
12
|
Aswathi M, Ganesh V, Berchmans S. MOF based electrode platforms in the assembly of Biofuel cells and Self‐powered sensors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Aswathi
- CSIR-CECRI: Central Electrochemical Research Institute CSIR EEC division INDIA
| | - V. Ganesh
- CSIR-CECRI: Central Electrochemical Research Institute CSIR EEC division INDIA
| | - Sheela Berchmans
- CSIR-Central Electrochemical Research Institute: Central Electrochemical Research Institute CSIR Electrodics and electrocatalysis Division CECRI 630006 Karaikudi INDIA
| |
Collapse
|
13
|
Wang J, Zeng M, Zhao Y, Zuo X, Meng F, Jie H, Lv F, Lu Y, Hou J. Synergetic integration of catalase and Fe 3O 4 magnetic nanoparticles with metal organic framework for colorimetric detection of phenol. ENVIRONMENTAL RESEARCH 2022; 206:112580. [PMID: 34922979 DOI: 10.1016/j.envres.2021.112580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Toxic phenol pollutants pose a great threat to the environment, it is urgent to develop an efficient and recyclable method to monitor phenol. Herein, we reported the synthesis of catalase-Fe3O4@ZIF-8 (CAT-Fe3O4@ZIF-8) through a novel amino-acid-boosted one-pot embedding strategy that synergically integrated catalase and magnetic Fe3O4 nanoparticles with ZIF-8. As expected, CAT-Fe3O4@ZIF-8 exhibited enhanced catalytic activity compared with Fe3O4@ZIF-8, CAT@ZIF-8 and catalase. Depending on the satisfactory performance of CAT-Fe3O4@ZIF-8, a colorimetric detection platform for phenol based on CAT-Fe3O4@ZIF-8 was constructed. The corresponding detection limit was as low as 0.7 μM, and a wide linear range of 5-100 μM was obtained. Besides, CAT-Fe3O4@ZIF-8-based colorimetric detection platform has been verified to possess high stability and recyclability. The proposed method was proven to have potential practical applications in the field of water treatment, which would advance efficient, recyclable monitoring of water quality.
Collapse
Affiliation(s)
- Junning Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Minqian Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanhong Zhao
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fanrong Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hongying Jie
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Lv
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
14
|
Abstract
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligible protein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
Collapse
|